中文版 | English
题名

聚合物动力学过程对其变形与破坏的影响机制研究

其他题名
EFFECTS OF KINETIC PROCESSES ON DEFORMATION AND FRACTURE OF RUBBERY POLYMERS
姓名
姓名拼音
MA Chao
学号
12031124
学位类型
博士
学位专业
080102 固体力学
学科门类/专业学位类别
08 工学
导师
洪伟
导师单位
力学与航空航天工程系
论文答辩日期
2024-05-20
论文提交日期
2024-06-22
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

聚合物软材料因其良好的柔韧性、变形回复能力和环境适应性,被广泛应用于组织工程、软体机器人、柔性电子等诸多领域。其优异的力学性能不仅是实现未来新兴领域应用的基础,也对人类社会的生产生活发展具有重要意义。因此,深入研究聚合物软材料的宏观力学性能及其影响因素,对推动这一材料及其应用领域的发展至关重要。聚合物软材料的力学性能不仅取决于化学组分,还在很大程度上由其网络结构决定。聚合物网络动力学过程中所涉及的化学和力学问题,对理解影响软材料变形与破坏因素及其潜在理论机制至关重要。然而,目前有关聚合物动力学过程对其变形与破坏的影响机制相对较少。因此,深入研究聚合物动力学过程对其变形与破坏的影响机制对推动聚合物软材料及其应用领域的发展具有重要意义。本文从聚合物动力学过程出发,以利用可控聚合制备和具有不同相互作用的聚合物软材料为研究对象,对影响聚合物软材料的模量、流变、溶胀、断裂韧性、疲劳阈值及加载速率相关的疲劳行为进行了细致研究。本文的主要工作包括:

(1)基于可控聚合的方法构建了网络拓扑结构与宏观力学性能的关系。利用可逆加成断裂链转移(RAFT)聚合法制备了一系列具有可控力学性能的聚丙烯酰胺水凝胶,并揭示了这些力学性能变化背后的机制。结合实验和理论研究,深入探讨了链转移剂对网络拓扑结构的影响。不同的力学性能,如剪切模量、流变学响应和平衡膨胀比等,被归因于不同的网络拓扑结构,即悬挂链与有效弹性链的比例。聚合物网络结构的蒙特卡罗模拟结果与实验观察相一致,验证了拓扑结构在水凝胶力学性能中的作用。

(2)通过以RAFT聚合的聚丙烯酰胺(RAFT-PAAm)水凝胶和聚丙烯酸丁酯(RAFT-PBA)弹性体为代表的两种聚合物软材料,本文明确了网络拓扑结构变化对这些材料断裂与疲劳特性的影响。考虑到网络拓扑结构的改变带来的链长及弹性骨干的变化,结合蒙特卡罗模拟结果提出了描述RAFT聚合制备软材料疲劳阈值的修正Lake-Thomas模型,实验测得的疲劳阈值与该理论模型十分吻合。此外,通过RAFT-PBA弹性体在不同加载速率下的疲劳行为,提出了以悬挂链缠结为主要粘性贡献的材料的疲劳行为主要由加载时间决定,加载速率的影响较小。

(3)澄清了与黏弹性材料疲劳测试相关的两个常见误区:即表观阈值和通过积分稳态加载曲线得到的阈值,两者均高度依赖于加载速率。实验结果表明,物理键的贡献直接影响了这两个阈值随加载速率的变化。相比之下,通过积分卸载部分曲线得到的真实阈值是与加载速率无关的,并与静态疲劳阈值一致。此外,观察到的加载速率依赖的疲劳裂纹扩展“速度阶跃”现象直接与加载速率引起的弹性体的韧性-脆性转变相关。

(4)本研究探讨了链断裂与重组的竞争对软材料疲劳的影响。选取无化学交联的P(HEA-co-BA-co-AA)弹性体(链重组为主导)和有化学交联的聚丙烯酸羟乙酯(PHEA)弹性体(链断裂为主导)作为研究对象,研究了两种弹性体在不同加载速率下的疲劳损伤、动态疲劳裂纹扩展以及静态疲劳特性。结果显示,链重组主导的弹性体在低加载速率下表现出更出色的抗疲劳特性,而对于链断裂主导的弹性体,在高加载速率下展现出更卓越的抗疲劳能力。该研究阐明了链断裂与重组在聚合物软材料疲劳破坏中随加载速率变化的竞争关系,为设计具备更高抗疲劳性能的聚合物软材料提供了指导。

其他摘要

Rubbery polymers, renowned for their excellent flexibility, deformability, and adaptability to various environments, have found extensive applications in diverse fields such as tissue engineering, soft robotics, and flexible electronics. The outstanding mechanical properties of these materials serve as the foundation for emerging applications and hold significant importance for advancing human society in both production and daily life. Therefore, unveiling the influencing factors of macroscopic mechanical properties of rubbery polymers is crucial for driving material development and application forward. The chemical and mechanical issues involved in the kinetic processes of polymer network, which are crucial to understanding the factors affecting the mechanical properties of rubbery polymers and their potential theoretical mechanisms. However, studies on the effects of kinetic processes on deformation and fracture of rubbery polymers are still relatively scarce. Therefore, in-depth research on the effects of kinetic processes on deformation and fracture of rubbery polymers is of great importance to the development of rubbery polymers and their applications. This work takes polymer kinetic processes as the starting point and focuses on rubbery polymers prepared by controlled polymerization with different interactions. We systematically investigate the effects of network structure on the modulus, rheology, swelling, fracture toughness, fatigue threshold, and loading rate-dependent fatigue behavior of rubbery polymers. The main contributions of this thesis are as follows:
(1) The relationship between network topology and macroscopic mechanical properties is constructed based on the method of controlled polymerization. A series of polyacrylamide hydrogels with controllable mechanical properties were prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization, and the mechanisms behind the changes in these mechanical properties were revealed. The effect of chain transfer agents (CTA) on network topology was investigated in depth by combining experimental and theoretical studies. Different mechanical properties, such as shear modulus, rheological response, and equilibrium swelling ratio, were attributed to different network topologies, namely the ratio of dangling chains to effective elastic chains. The Monte Carlo simulation results of the polymer network structure agreed with the experimental observations, which verified the role of topology in the mechanical properties of hydrogels.
(2) Examining two representative polymer soft materials, namely RAFT-PAAm hydrogels and RAFT-PBA elastomers, the influence of changes in network topology on fracture and fatigue properties has been clarified. By considering the changes in chain length and elastic backbone caused by changes in network topology, and combining Monte Carlo simulation results, a modified Lake-Thomas model is proposed to describe the fatigue threshold of soft materials prepared by RAFT polymerization. Experimental fatigue threshold values closely match the predictions of this theoretical model. Combined with the fatigue behavior of RAFT-PBA elastomer under different loading rates, it is proposed that the fatigue behavior of materials with suspended chain entanglement as the main viscosity contribution is mainly determined by the loading time, and the impact of the loading rate is small.
(3) Two common misunderstandings related to fatigue testing of viscoelastic materials are clarified: the apparent threshold and the threshold obtained by integrating the steady-state loading curve, both of which are highly dependent on the loading rate. Experimental results indicate that the contribution of physical bonds directly affects the variation of these two thresholds with loading rate. In contrast, the true threshold obtained by integrating the unloaded portion of the curve is loading rate-independent and consistent with the static fatigue threshold. Additionally, the observed "speed jump" phenomenon in fatigue crack propagation, dependent on loading rates, is directly related to the ductile-brittle transition induced by loading rates in the elastomer.
(4) The effect of chain scission and rearrangement on the fatigue of rubbery polymer was studied. Taking P(HEA-co-BA-co-AA) elastomer without chemical cross-linking (chain rearrangement dominant) and chemical cross-linking PHEA elastomer (chain scission dominant) as the research objects, the two properties were studied under different loading rates. Fatigue damage, dynamic fatigue crack growth, and static fatigue characteristics of various elastomers. The study found that elastomers dominated by chain rearrangement have better fatigue resistance at low loading rates. Compared, elastomers dominated by chain scission show better fatigue resistance at high loading rates. This study elucidates the competitive relationship between chain scission and rearrangement in the loading rate-dependent fatigue failure of elastomers, guiding the design of rubbery polymers with higher fatigue resistance.

 

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2024-06
参考文献列表

[1] DE GENNES P G. Soft matter (Nobel lecture) [J]. Angewandte Chemie International Edition in English, 1992, 31(7): 842-5.
[2] WEITZ D A. Soft materials evolution and revolution [J]. Nature Materials, 2022, 21(9): 986-8.
[3] KIM J, KIM J W, KIM H C, et al. Review of Soft Actuator Materials [J]. International Journal of Precision Engineering and Manufacturing, 2019,20(12): 2221-41.
[4] 参考链接:https://www.esrf.fr/files/live/sites/www/files/events/conferences/2023/Summerschool2023/Soft%20Matter%20Studies%20with%20X-rays.pdf
[5] SAALWäCHTER K, SEIFFERT S. Dynamics-based assessment of nanoscopic polymer-network mesh structures and their defects [J]. Soft Matter, 2018, 14(11): 1976-91.
[6] MCCRUM N G, BUCKLEY C P, BUCKNALL C B. Principles of polymer engineering [M]. Oxford University Press, 1997.
[7] COLEMAN M M. Fundamentals of polymer science: An introductory text [M]. Routledge, 2019.
[8] NICHOLSON J W. Etymology of ‘polymers’ [J]. Education in Chemistry, 1991, 28: 70-1.
[9] ZHAO X, CHEN X, YUK H, et al. Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties [J]. Chemical Reviews, 2021, 121(8): 4309-72.
[10] TRELOAR L R G. The physics of rubber elasticity [M]. Oxford University Press, USA, 1975.
[11] GEDDE U. Polymer physics [M]. Springer Science & Business Media, 1995.
[12] SAKAI T, MATSUNAGA T, YAMAMOTO Y, et al. Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers [J]. Macromolecules, 2008, 41(14): 5379-84.
[13] SAKAI T, MATSUNAGA T, YAMAMOTO Y, et al. Design and Fabrication of a High-Strength Hydrogel with Ideally Homogeneous Network Structure from Tetrahedron-like Macromonomers [J]. Macromolecules, 2008, 41(14): 5379-84.
[14] OKUMURA Y, ITO K. The polyrotaxane gel: a topological gel by figureof‐eight cross‐links [J]. Advanced Materials, 2001, 13(7): 485-7.
[15] WENZ G, HAN B-H, MüLLER A. Cyclodextrin Rotaxanes and Polyrotaxanes [J]. Chemical Reviews, 2006, 106(3): 782-817.
[16] GAO P, WANG J, YE L, et al. Stable and Unconventional Conformation of Single PEG Bent γ-CD-Based Polypseudorotaxanes [J]. Macromolecular Chemistry and Physics, 2011, 212(21): 2319-27.
[17] WOOLFSON D N. Building fibrous biomaterials from α-helical and collagen-like coiled-coil peptides [J]. Peptide Science, 2010, 94(1): 118-27.
[18] PRINCE E, KUMACHEVA E. Design and applications of man-made biomimetic fibrillar hydrogels [J]. Nature Reviews Materials, 2019, 4(2): 99-115.
[19] NONOYAMA T, GONG J P. Double-network hydrogel and its potential biomedical application: A review [J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2015, 229(12): 853-63.
[20] SUN J-Y, ZHAO X, ILLEPERUMA W R K, et al. Highly stretchable and tough hydrogels [J]. Nature, 2012, 489(7414): 133-6.
[21] DRAGAN E S. Design and applications of interpenetrating polymer network hydrogels. A review [J]. Chemical Engineering Journal, 2014, 243: 572-90.
[22] CROISIER F, JéRôME C. Chitosan-based biomaterials for tissue engineering [J]. European Polymer Journal, 2013, 49(4): 780-92.
[23] HASSAN C M, PEPPAS N A. Structure and morphology of freeze/thawed PVA hydrogels [J]. Macromolecules, 2000, 33(7): 2472-9.
[24] RUBINSTEIN M, COLBY R H. Polymer Physics [M]. Oxford University Press, 2003.
[25] ROLAND C M. Unconventional rubber networks: circumventing the compromise between stiffness and strength [J]. Rubber Chemistry and Technology, 2013, 86(3): 351-66.
[26] SI L, ZHENG X, NIE J, et al. Silicone-based tough hydrogels with high resilience, fast self-recovery, and self-healing properties [J]. Chemical Communications, 2016, 52(54): 8365-8.
[27] KAMATA H, AKAGI Y, KAYASUGA-KARIYA Y, et al. “Nonswellable”Hydrogel Without Mechanical Hysteresis [J]. Science, 2014, 343(6173): 873-5.
[28] ZHENG S Y, LIU C, JIANG L, et al. Slide-Ring Cross-Links Mediated Tough Metallosupramolecular Hydrogels with Superior Self- Recoverability [J]. Macromolecules, 2019, 52(17): 6748-55.
[29] MOUTOS F T, FREED L E, GUILAK F. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage [J]. Nature Materials, 2007, 6(2): 162-7.
[30] PEAK C W, WILKER J J, SCHMIDT G. A review on tough and sticky hydrogels [J]. Colloid and Polymer Science, 2013, 291(9): 2031-47.
[31] GONG J P. Why are double network hydrogels so tough? [J]. Soft Matter, 2010, 6(12): 2583-90.
[32] AKAGI Y, MATSUNAGA T, SHIBAYAMA M, et al. Evaluation of Topological Defects in Tetra-PEG Gels [J]. Macromolecules, 2010, 43(1): 488-93.
[33] GU Y, ZHAO J, JOHNSON J A. Polymer Networks: From Plastics and Gels to Porous Frameworks [J]. Angewandte Chemie International Edition, 2020, 59(13): 5022-49.
[34] NICOLELLA P, KOZIOL M F, LöSER L, et al. Defect-controlled softness, diffusive permeability, and mesh-topology of metallo-supramolecular hydrogels [J]. Soft Matter, 2022, 18(5): 1071-81.
[35] GUERRERO-SANTOS R, SALDíVAR-GUERRA E, BONILLA-CRUZ J. Free Radical Polymerization [M]. Handbook of Polymer Synthesis, Characterization, and Processing. 2013: 65-83.
[36] KIM J, ZHANG G, SHI M, et al. Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links [J]. Science, 2021, 374(6564): 212-6.
[37] SHARMA S, TIWARI S. RETRACTED: A review on biomacromolecular hydrogel classification and its applications [J]. International Journal of Biological Macromolecules, 2020, 162: 737-47.
[38] WICHTERLE O, LIM D J N. Hydrophilic gels for biological use [J]. Nature, 1960, 185(4706): 117-8.
[39] QIU Y, PARK K J A D D R. Environment-sensitive hydrogels for drug delivery [J]. Advanced Drug Delivery Reviews, 2001, 53(3): 321-39.
[40] GIL E S, HUDSON S M. Stimuli-reponsive polymers and their bioconjugates [J]. Progress in polymer science, 2004, 29(12): 1173-222.
[41] GONG J P, KATSUYAMA Y, KUROKAWA T, et al. Double‐network hydrogels with extremely high mechanical strength [J]. Advanced Materials, 2003, 15(14): 1155-8.
[42] JIANG Z, TAN M L, TAHERI M, et al. Strong, self ‐ healable, and recyclable visible‐light‐responsive hydrogel actuators [J]. Angewandte Chemie, 2020, 132(18): 7115-22.
[43] ZHU Q, LIU W, KHORUZHENKO O, et al. Animating hydrogel knotbots with topology-invoked self-regulation [J]. Nature Communications, 2024, 15.
[44] YANG C, SUO Z. Hydrogel ionotronics [J]. Nature Reviews Materials, 2018, 3(6): 125-42.
[45] LI Y, HUANG G, ZHANG X, et al. Magnetic hydrogels and their potential biomedical applications [J]. Advanced Functional Materials, 2013, 23(6): 660-72.
[46] NIU Y, WU J, KANG Y, et al. Recent advances of magnetic chitosan hydrogel: Preparation, properties and applications [J]. International Journal of Biological Macromolecules, 2023: 125722.
[47] KIM K, CHENG J, LIU Q, et al. Investigation of mechanical properties of soft hydrogel microcapsules in relation to protein delivery using a MEMS force sensor [J]. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2010, 92(1): 103-13.
[48] GUILHERME M R, DE MOURA M R, RADOVANOVIC E, et al. Novel thermo-responsive membranes composed of interpenetrated polymer networks of alginate-Ca2+ and poly (N-isopropylacrylamide) [J]. Polymer, 2005, 46(8): 2668-74.
[49] TIAN E, WANG J, ZHENG Y, et al. Colorful humidity sensitive photonic crystal hydrogel [J]. Journal of Materials Chemistry, 2008, 18(10): 1116-22.
[50] REIS A V, GUILHERME M R, CAVALCANTI O A, et al. Synthesis and characterization of pH-responsive hydrogels based on chemically modified Arabic gum polysaccharide [J]. Polymer, 2006, 47(6): 2023-9.
[51] VEGAS A J, VEISEH O, GüRTLER M, et al. Long-term glycemic control using polymer-encapsulated human stem cell–derived beta cells in immune-competent mice [J]. Nature Medicine, 2016, 22(3): 306-11.
[52] TIBBITT M W, ANSETH K S. Hydrogels as extracellular matrix mimics for 3D cell culture [J]. Biotechnology and Bioengineering, 2009, 103(4): 655-63.
[53] CAMCI-UNAL G, ANNABI N, DOKMECI M R, et al. Hydrogels for cardiac tissue engineering [J]. NPG Asia Materials, 2014, 6(5): e99-e.
[54] ZHANG J, CHEN X, LIN J, et al. Hydrogel bioadhesives harnessing nanoscale phase separation for Achilles tendon repairing [J]. Nano Research, 2023.
[55] YUK H, VARELA C E, NABZDYK C S, et al. Dry double-sided tape for adhesion of wet tissues and devices [J]. Nature, 2019, 575(7781): 169-74.
[56] ZHAO F, ZHOU X, SHI Y, et al. Highly efficient solar vapour generation via hierarchically nanostructured gels [J]. Nature Nanotechnology, 2018,13(6): 489-95.
[57] FELDMAN D. Polymer History [J]. Designed Monomers and Polymers, 2008, 11(1): 1-15.
[58] CARPI F, BAUER S, DE ROSSI D. Stretching dielectric elastomer performance [J]. Science, 2010, 330(6012): 1759-61.
[59] SHI Y, ASKOUNIS E, PLAMTHOTTAM R, et al. A processable, highperformancedielectric elastomer and multilayering process [J]. Science, 2022, 377(6602): 228-32.
[60] ZHALMURATOVA D, CHUNG H-J. Reinforced Gels and Elastomers for Biomedical and Soft Robotics Applications [J]. ACS Applied Polymer Materials, 2020, 2(3): 1073-91.
[61] MARTINEZ R V, BRANCH J L, FISH C R, et al. Robotic tentacles with three-dimensional mobility based on flexible elastomers [J]. Advanced Materials (Deerfield Beach, Fla), 2013, 25(2): 205-12.
[62] LASCHI C, CIANCHETTI M, MAZZOLAI B, et al. Soft Robot Arm Inspired by the Octopus [J]. Advanced Robotics, 2012, 26(7): 709-27.
[63] LIM H-R, KIM H S, QAZI R, et al. Advanced Soft Materials, Sensor Integrations, and Applications of Wearable Flexible Hybrid Electronics in Healthcare, Energy, and Environment [J]. Advanced Materials, 2020, 32(15): 1901924.
[64] KIM D H, AHN J H, CHOI W M, et al. Stretchable and foldable silicon integrated circuits [J]. Science, 2008, 320(5875): 507-11.
[65] ZHOU M, MAO S, WU Z, et al. A flexible omnidirectional rotating magnetic array for MRI-safe transdermal wireless energy harvesting through flexible electronics [J]. Science Advances, 2023, 9(33): eadi5451.
[66] CHEN S, SUN L, ZHOU X, et al. Mechanically and biologically skin-like elastomers for bio-integrated electronics [J]. Nature Communications,2020, 11(1): 1107.
[67] HU H, HUANG H, LI M, et al. A wearable cardiac ultrasound imager [J]. Nature, 2023, 613(7945): 667-75.
[68] ZHU S, HAMIELEC A. Kinetics of polymeric network synthesis via free ‐ radical mechanisms ‐ polymerization and polymer modification; proceedings of the Makromolekulare Chemie Macromolecular Symposia, F, 1992 [C]. Wiley Online Library.
[69] KAZMAIER P M, DAIMON K, GEORGES M K, et al. Nitroxide-mediated “living” free radical polymerization: a rapid polymerization of (chloromethyl) styrene for the preparation of random, block, and segmental arborescent polymers [J]. Macromolecules, 1997, 30(8): 2228-31.
[70] XIA J, GAYNOR S G, MATYJASZEWSKI K J M. Controlled/“living”radical polymerization. Atom transfer radical polymerization of acrylates at ambient temperature [J]. Macromolecules, 1998, 31(17): 5958-9.
[71] BAINBRIDGE C W A, BRODERICK N, JIN J. RAFT agent symmetry and the effects on photo-growth behavior in living polymer networks [J]. Polymer Chemistry, 2021, 12(35): 5017-26.
[72] GAN L H, RAVI P, MAO B W, et al. Controlled/living polymerization of 2‐(diethylamino) ethyl methacrylate and its block copolymer with tertbutyl methacrylate by atom transfer radical polymerization [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2003, 41(17): 2688-95.
[73] MAYADUNNE R T, RIZZARDO E, CHIEFARI J, et al. Living radical polymerization with reversible addition− fragmentation chain transfer (RAFT polymerization) using dithiocarbamates as chain transfer agents [J]. Macromolecules, 1999, 32(21): 6977-80.
[74] EDWARDS S F, GOODYEAR A G. The dynamics of a polymer molecule [J]. Journal of Physics A: General Physics, 1972, 5(7): 965.
[75] EDWARDS S F. The dynamics of polymer networks [J]. Journal of Physics A: Mathematical, Nuclear and General, 1974, 7(2): 318.
[76] EDWARDS S F, GRANT J W V. The effect of entanglements of diffusion in a polymer melt [J]. Journal of Physics A: Mathematical, Nuclear and General, 1973, 6(8): 1169.
[77] MEYER K H, FERRI C. Sur l'élasticité du caoutchouc [J]. Helvetica Chimica Acta, 1935, 18(1): 570-89.
[78] TRELOAR L G. The physics of rubber elasticity [M]; Oxford University Press: New York, 1975.
[79] SHAH B B, KUNDU T, ZHAO D. Mechanical Properties of Shaped Metal–Organic Frameworks [J]. Topics in Current Chemistry, 2019, 377(5): 25.
[80] WRóBEL J K, CORTEZ R, FAUCI L. Modeling viscoelastic networks in Stokes flow [J]. Physics of Fluids, 2014, 26(11).
[81] PJ F. Statistical mechanics of cross-linked polymer networks II. Swelling [J]. The Journal of Chemical Physics, 1943, 11: 521-6.
[82] ERMAN B, FLORY P. Critical phenomena and transitions in swollen polymer networks and in linear macromolecules [J]. Macromolecules, 1986, 19(9): 2342-53.
[83] VASHEGHANI-FARAHANI E, VERA J H, COOPER D G, et al. Swelling of ionic gels in electrolyte solutions [J]. Industrial & engineering chemistry research, 1990, 29(4): 554-60.
[84] ZHAO X. Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks [J]. Soft matter, 2014, 10(5): 672-87.
[85] CRETON C, CICCOTTI M. Fracture and adhesion of soft materials: a review [J]. Reports on Progress in Physics, 2016, 79(4): 046601.
[86] GENT A N. Adhesion and Strength of Viscoelastic Solids. Is There a Relationship between Adhesion and Bulk Properties? [J]. Langmuir, 1996, 12(19): 4492-6.
[87] LIU Y, FENG X, HONG W. Non-affine dissipation in polymer fracture [J]. Extreme Mech Lett, 2023, 59: 101955.
[88] EWING J A, HUMFREY J. The Fracture of Metals under Repeated Alternations of Stress [J]. Proceedings of the Royal Society of London Series I, 1902, 71: 79.
[89] CADWELL S M, MERRILL R A, SLOMAN C M, et al. Dynamic Fatigue Life of Rubber [J]. Industrial & Engineering Chemistry Analytical Edition, 1940, 12(1): 19-23.
[90] TANG J, LI J, VLASSAK J J, et al. Fatigue fracture of hydrogels [J]. Extreme Mechanics Letters, 2017, 10: 24-31.
[91] BAI R, YANG J, SUO Z. Fatigue of hydrogels [J]. European Journal of Mechanics - A/Solids, 2019, 74: 337-70.
[92] ZHANG W, LIU X, WANG J, et al. Fatigue of double-network hydrogels [J]. Engineering Fracture Mechanics, 2018, 187: 74-93.
[93] ZHANG E, BAI R, MORELLE X P, et al. Fatigue fracture of nearly elastic hydrogels [J]. Soft Matter, 2018, 14(18): 3563-71.
[94] LAKE G. Fatigue and fracture of elastomers [J]. Rubber Chemistry and Technology, 1995, 68(3): 435-60.
[95] LAKE G, THOMAS A. The strength of highly elastic materials [J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1967, 300(1460): 108-19.
[96] TANG J, LI J, VLASSAK J J, et al. Fatigue fracture of hydrogels [J]. Extreme Mechanics Letters, 2017, 10: 24-31.
[97] ZHANG W, HU J, TANG J, et al. Fracture Toughness and Fatigue Threshold of Tough Hydrogels [J]. ACS Macro Letters, 2019, 8(1): 17-23.
[98] BAI R, YANG J, MORELLE X P, et al. Fatigue Fracture of Self-Recovery Hydrogels [J]. ACS Macro Letters, 2018, 7(3): 312-7.
[99] ZHAO X, WU J, ZHOU Y, et al. Fatigue behaviors of physical hydrogels based on hydrogen bonds [J]. Extreme Mechanics Letters, 2021, 46: 101320.
[100] LI X, GONG J P. Role of dynamic bonds on fatigue threshold of tough hydrogels [J]. Proceedings of the National Academy of Sciences, 2022,119(20): e2200678119.
[101] XIAO Y, LI Q, YAO X, et al. Fatigue of amorphous hydrogels with dynamic covalent bonds [J]. Extreme Mechanics Letters, 2022, 53: 101679.
[102] LEE K Y, MOONEY D J. Hydrogels for Tissue Engineering [J]. Chemical Reviews, 2001, 101(7): 1869-80.
[103] LEE Y, SONG W, SUN J-Y J M T P. Hydrogel soft robotics [J]. Materials Today Physics, 2020, 15: 100258.
[104] YANG J, BAI R, CHEN B, et al. Hydrogel Adhesion: A Supramolecular Synergy of Chemistry, Topology, and Mechanics [J]. Advanced Functional Materials, 2020, 30(2): 1901693.
[105] NOSSAL R. Network formation in polyacrylamide gels [J]. Macromolecules, 1985, 18(1): 49-54.
[106] ZHANG A-K, LING J, LI K, et al. Molecular structure and properties of click hydrogels with controlled dangling end defect [J]. Journal of Polymer Science Part B: Polymer Physics, 2016, 54(13): 1227-36.
[107] SUN X, RAO P, HE X, et al. Chemically identical gels I – under-crosslinked networks [J]. Journal of the Mechanics and Physics of Solids, 2023, 175: 105278.
[108] PERRIER S. 50th Anniversary Perspective: RAFT Polymerization-A User Guide [J]. Macromolecules, 2017, 50(19): 7433-47.
[109] BEZIAU A, FORTNEY A, FU L, et al. Photoactivated Structurally Tailored and Engineered Macromolecular (STEM) gels as precursors for materials with spatially differentiated mechanical properties [J]. Polymer, 2017, 126: 224-30.
[110] SHANMUGAM S, CUTHBERT J, FLUM J, et al. Transformation of gels via catalyst-free selective RAFT photoactivation [J]. Polymer Chemistry, 2019, 10(19): 2477-83.
[111] CUTHBERT J, ZHANG T, BISWAS S, et al. Structurally tailored and engineered macromolecular (STEM) gels as soft elastomers and hard/soft interfaces [J]. Macromolecules, 2018, 51(22): 9184-91.
[112] LIANG J, SHAN G, PAN P J S M. Double network hydrogels with highly enhanced toughness based on a modified first network [J]. Soft Matter, 2017, 13(22): 4148-58.
[113] JOUBERT F, CHEONG PHEY DENN P, GUO Y, et al. Comparison of thermoresponsive hydrogels synthesized by conventional free radical and RAFT polymerization [J]. Materials (Basel, Switzerland), 2019, 12(17): 2697.
[114] LIU Q, ZHANG P, QING A, et al. Poly (N-isopropylacrylamide) hydrogels with improved shrinking kinetics by RAFT polymerization [J]. Polymer, 2006, 47(7): 2330-6.
[115] HENKEL R, VANA P. The Influence of RAFT on the Microstructure and the Mechanical Properties of Photopolymerized Poly (butyl acrylate) Networks [J]. Macromolecular Chemistry and Physics, 2014, 215(2): 182-9.
[116] MCCARTHY K, BURKHARDT C, PARAZAK D. Mark – Houwink –Sakurada constants and dilute solution behavior of heterodisperse poly (acrylamide‐co‐sodium acrylate) in 0.5 M and 1M NaCl [J]. Journal of applied polymer science, 1987, 33(5): 1699-714.
[117] MOAD G, RIZZARDO E, THANG S H. Living radical polymerization by the RAFT process [J]. Australian journal of chemistry, 2005, 58(6): 379-410.
[118] GREGORY A, STENZEL M H. Complex polymer architectures via RAFT polymerization: From fundamental process to extending the scope using click chemistry and nature's building blocks [J]. Progress in Polymer Science, 2012, 37(1): 38-105.
[119] METROPOLIS N, ULAM S. The monte carlo method [J]. Journal of the American Statistical Association, 1949, 44(247): 335-41.
[120] HERRMANN H J, HONG D, STANLEY H J J O P A M, et al. Backbone and elastic backbone of percolation clusters obtained by the new method of'burning' [J]. Journal of Physics A: Mathematical and General, 1984, 17(5): L261.
[121] KATASHIMA T. Rheological studies on polymer networks with static and dynamic crosslinks [J]. Polymer Journal, 2021, 53(10): 1073-82.
[122] HONG W, ZHAO X, ZHOU J, et al. A theory of coupled diffusion and large deformation in polymeric gels [J]. Journal of the Mechanics and Physics of Solids, 2008, 56(5): 1779-93.
[123] DES CLOIZEAUX J. The Lagrangian theory of polymer solutions at intermediate concentrations [J]. Journal de Physique 1975, 36(4): 281-91.
[124] SITTI M, CUSICK B, AKSAK B, et al. Dangling chain elastomers as repeatable fibrillar adhesives [J]. ACS Applied Materials & Interfaces,2009, 1(10): 2277-87.
[125] COYLE S, MAJIDI C, LEDUC P, et al. Bio-inspired soft robotics: Material selection, actuation, and design [J]. Extreme Mechanics Letters, 2018, 22: 51-9.
[126] YUK H, LIN S, MA C, et al. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water [J]. Nature Communications, 2017, 8(1): 14230.
[127] HAQUE M A, KUROKAWA T, GONG J P. Super tough double network hydrogels and their application as biomaterials [J]. Polymer, 2012, 53(9): 1805-22.
[128] YANG C H, WANG M X, HAIDER H, et al. Strengthening Alginate/Polyacrylamide Hydrogels Using Various Multivalent Cations [J]. ACS Applied Materials & Interfaces, 2013, 5(21): 10418-22.
[129] LIU X, TANG T-C, THAM E, et al. Stretchable living materials and devices with hydrogel–elastomer hybrids hosting programmed cells [J]. Proceedings of the National Academy of Sciences, 2017, 114(9): 2200-5.
[130] LIN S, LIU X, LIU J, et al. Anti-fatigue-fracture hydrogels [J]. Science Advances, 2019, 5(1): eaau8528.
[131] HUA M, WU S, MA Y, et al. Strong tough hydrogels via the synergy of freeze-casting and salting out [J]. Nature, 2021, 590(7847): 594-9.
[132] LIU X, WU J, QIAO K, et al. Topoarchitected polymer networks expand the space of material properties [J]. Nature Communications, 2022, 13(1): 1622.
[133] LIU B, YIN T, ZHU J, et al. Tough and fatigue-resistant polymer networksby crack tip softening [J]. Proceedings of the National Academy of Sciences, 2023, 120(6): e2217781120.
[134] LIN S, LIU J, LIU X, et al. Muscle-like fatigue-resistant hydrogels by mechanical training [J]. Proceedings of the National Academy of Sciences, 2019, 116(21): 10244-9.
[135] YANG C, YIN T, SUO Z. Polyacrylamide hydrogels. I. Network imperfection [J]. Journal of the Mechanics and Physics of Solids, 2019, 131: 43-55.
[136] YANG Y, GUO H, DU Z, et al. Rate-dependent fracture of hydrogels due to water migration [J]. Journal of the Mechanics and Physics of Solids, 2022, 167: 105007.
[137] CHEN S, SUN L, ZHOU X, et al. Mechanically and biologically skin-like elastomers for bio-integrated electronics [J]. Nature Communications 2020, 11(1): 1107.
[138] COURTNEY W A, OYADIJI S O. Preliminary investigations into the mechanical properties of a novel shock absorbing elastomeric composite [J]. Journal of Materials Processing Technology, 2001, 119(1-3): 379-86.
[139] KORNBLUH R D, PELRINE R, PRAHLAD H, et al. From boots to buoys: promises and challenges of dielectric elastomer energy harvesting [J]. Electroactivity in polymeric materials, 2012: 67-93.
[140] RIVLIN R S, THOMAS A G. Rupture of rubber. I. Characteristic energy for tearing [J]. Journal of Polymer Science, 1953, 10(3): 291-318.
[141] BAI R, YANG Q, TANG J, et al. Fatigue fracture of tough hydrogels [J]. Extreme Mechanics Letters, 2017, 15: 91-6.
[142] GENT A N. Engineering with rubber: how to design rubber components [M]. Carl Hanser Verlag GmbH Co KG, 2012.
[143] GENT A N, LAI S M. Interfacial bonding, energy dissipation, and adhesion [J]. Journal of Polymer Science Part B: Polymer Physics, 1994, 32(8): 1543-55.
[144] LI X, CUI K, SUN T L, et al. Mesoscale bicontinuous networks in self-healing hydrogels delay fatigue fracture [J]. Proceedings of the National Academy of Sciences, 2020, 117(14): 7606-12.
[145] SAHU R K, PATRA K. Rate-dependent mechanical behavior of VHB 4910 elastomer [J]. Mechanics of Advanced Materials and Structures, 2016, 23(2): 170-9.
[146] PERSSON B N, BRENER E A. Crack propagation in viscoelastic solids [J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2005, 71(3 Pt 2A): 036123.
[147] WILLIAMS M. Fatigue ‐ Fracture Growth in Linearly Viscoelastic Material [J]. Journal of Applied Physics, 1967, 38(11): 4476-80.
[148] KNAUSS W G. A review of fracture in viscoelastic materials [J]. International Journal of Fracture, 2015, 196: 99-146.
[149] DE GENNES P-G. Soft adhesives [J]. Langmuir, 1996, 12(19): 4497-500.
[150] CHEN L, SUN T L, CUI K, et al. Facile synthesis of novel elastomers with tunable dynamics for toughness, self-healing and adhesion [J]. Journal of Materials Chemistry A, 2019, 7(29): 17334-44.
[151] SARVA S S, DESCHANEL S, BOYCE M C, et al. Stress–strain behavior of a polyurea and a polyurethane from low to high strain rates [J]. Polymer, 2007, 48(8): 2208-13.
[152] YI J, BOYCE M C, LEE G F, et al. Large deformation rate-dependent stress–strain behavior of polyurea and polyurethanes [J]. Polymer, 2006, 47(1): 319-29.
[153] LIAO Z, YAO X, ZHANG L, et al. Temperature and strain rate dependent large tensile deformation and tensile failure behavior of transparent polyurethane at intermediate strain rates [J]. International Journal of Impact Engineering, 2019, 129: 152-67.
[154] HASSAN S, KIM J, SUO Z. Polyacrylamide hydrogels. IV. Near-perfect elasticity and rate-dependent toughness [J]. Journal of the Mechanics and Physics of Solids, 2022, 158: 104675.
[155] KINLOCH A J. Fracture behaviour of polymers [M]. Springer Science & Business Media, 2013.
[156] DOI M, EDWARDS S F. The theory of polymer dynamics [M]. oxford university press, 1988.
[157] FUTAMURA S. Designing elastomer network for desired tire performance characteristics [J]. Die Angewandte Makromolekulare Chemie: Applied Macromolecular Chemistry and Physics, 1996, 240(1): 137-49.
[158] CHEN F, WANG M Y. Dynamic performance of a dielectric elastomer balloon actuator [J]. Meccanica, 2015, 50: 2731-9.
[159] PEACOCK R. Practical selection of elastomer materials for vacuum seals [J]. Journal of Vacuum Science and Technology, 1980, 17(1): 330-6.
[160] YABUKI Y, TANAHASHI K, HOSHIKAWA S, et al. Development of new cosmetic gloves for myoelectric prosthetic hand by using thermoplastic styrene elastomer; proceedings of the Intelligent Autonomous Systems 14: Proceedings of the 14th International Conference IAS-14 14, F, 2017 [C].Springer.
[161] LEE C, KIM M, KIM Y J, et al. Soft robot review [J]. International Journal of Control, Automation and Systems, 2017, 15: 3-15.
[162] GODABA H, LI J, WANG Y, et al. A soft jellyfish robot driven by a dielectric elastomer actuator [J]. IEEE Robotics and Automation Letters, 2016, 1(2): 624-31.
[163] MARCHESE A D, KATZSCHMANN R K, RUS D. A recipe for soft fluidicelastomer robots [J]. Soft robotics, 2015, 2(1): 7-25.
[164] DI J, YAO S, YE Y, et al. Stretch-triggered drug delivery from wearable elastomer films containing therapeutic depots [J]. ACS nano, 2015, 9(9): 9407-15.
[165] HUANG S, LIU Y, ZHAO Y, et al. Flexible electronics: stretchable electrodes and their future [J]. Advanced Functional Materials, 2019, 29(6): 1805924.
[166] ZHANG C, LAI Z, RAO X, et al. Energy harvesting from a novel contact-type dielectric elastomer generator [J]. Energy conversion and management, 2020, 205: 112351.
[167] HAMED G R. Molecular Aspects of the Fatigue and Fracture of Rubber [J]. Rubber Chemistry and Technology, 1994, 67(3): 529-36.
[168] WOJTECKI R J, MEADOR M A, ROWAN S J. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers [J]. Nature Materials, 2011, 10(1): 14-27.
[169] UTRERA-BARRIOS S, HERNáNDEZ SANTANA M, VERDEJO R, et al. Design of Rubber Composites with Autonomous Self-Healing Capability [J]. ACS Omega, 2020, 5(4): 1902-10.
[170] XU C, NIE J, WU W, et al. Self-Healable, Recyclable, and Strengthened Epoxidized Natural Rubber/Carboxymethyl Chitosan Biobased Composites with Hydrogen Bonding Supramolecular Hybrid Networks [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(18): 15778-89.
[171] NARITA T, MAYUMI K, DUCOURET G, et al. Viscoelastic properties of poly (vinyl alcohol) hydrogels having permanent and transient cross-links studied by microrheology, classical rheometry, and dynamic light scattering [J]. Macromolecules, 2013, 46(10): 4174-83.
[172] LIU J, XIAO C, TANG J, et al. Construction of a Dual Ionic Network in Natural Rubber with High Self-Healing Efficiency through Anionic Mechanism [J]. Industrial & Engineering Chemistry Research, 2020, 59(28): 12755-65.
[173] NAJWA THAJUDIN N L, ZAINOL M H, SHUIB R K. Intrinsic room temperature self-healing natural rubber based on metal thiolate ionic network [J]. Polymer Testing, 2021, 93: 106975.
[174] SANKA R S P, KRISHNAKUMAR B, LETERRIER Y, et al. Soft selfhealing nanocomposites [J]. Frontiers in Materials, 2019, 6: 137.
[175] MOHD KANAFI N, ABDUL GHANI A, ABDUL RAHMAN N, et al. A review of self-healable natural rubber based on reversible bonds: fundamental, design principle and performance [J]. Journal of Materials Science, 2023, 58(2): 608-35.
[176] ZHANG L, LIU Z, WU X, et al. A highly efficient self‐healing elastomer with unprecedented mechanical properties [J]. Advanced Materials, 2019,31(23): 1901402.
[177] JONES A S, RULE J D, MOORE J S, et al. Catalyst Morphology and Dissolution Kinetics of Self-Healing Polymers [J]. Chemistry of Materials,2006, 18(5): 1312-7.110.
[178] ZHANG B, LI H, CHENG J, et al. Mechanically Robust and UV-Curable Shape-Memory Polymers for Digital Light Processing Based 4D Printing [J]. Advanced Materials, 2021, 33(27): 2101298.
[179] CUI K, SUN T L, LIANG X, et al. Multiscale Energy Dissipation Mechanism in Tough and Self-Healing Hydrogels [J]. Physical Review Letters, 2018, 121(18): 185501.
[180] LAMONT S C, MULDERRIG J, BOUKLAS N, et al. Rate-Dependent Damage Mechanics of Polymer Networks with Reversible Bonds [J]. Macromolecules, 2021, 54(23): 10801-13.
[181] VERNEREY F J, LONG R, BRIGHENTI R. A statistically-based continuum theory for polymers with transient networks [J]. Journal of the Mechanics and Physics of Solids, 2017, 107: 1-20.
[182] SHEN T, VERNEREY F J. Rate-dependent fracture of transient networks [J]. Journal of the Mechanics and Physics of Solids, 2020, 143: 104028.
[183] KRAUSZ A. The theory of non-steady state fracture propagation rate [J]. International Journal of Fracture, 1976, 12: 239-42.
[184] TOBOLSKY A, EYRING H. Mechanical properties of polymeric materials [J]. The Journal of chemical physics, 1943, 11(3): 125-34.
[185] LI X, GONG J P. Role of dynamic bonds on fatigue threshold of tough hydrogels [J]. Proceedings of the National Academy of Sciences, 2022, 119(20): e2200678119.
[186] SUN T L, KUROKAWA T, KURODA S, et al. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity [J]. Nature Materials, 2013, 12(10): 932-7.
[187] SUN T L, LUO F, HONG W, et al. Bulk Energy Dissipation Mechanism for the Fracture of Tough and Self-Healing Hydrogels [J]. Macromolecules, 2017, 50(7): 2923-31.
[188] SCHAPERY R A. A theory of crack initiation and growth in viscoelastic media II. Approximate methods of analysis [J]. International Journal of Fracture, 1975, 11: 369-88.
[189] CHRISTENSEN R M, WU E M. A theory of crack growth in viscoelastic materials [J]. Engineering Fracture Mechanics, 1981, 14(1): 215-25.
[190] BOUASSE H, CARRIèRE Z. Sur les courbes de traction du caoutchouc vulcanisé [J]. Annales de la Faculté des sciences de l'Université de Toulouse pour les sciences mathématiques et les sciences physiques, 1903, 5(3): 257-83.
[191] MULLINS L. Softening of Rubber by Deformation [J]. Rubber Chemistry and Technology, 1969, 42(1): 339-62.
[192] MULLINS L, TOBIN N. Theoretical model for the elastic behavior of filler-reinforced vulcanized rubbers [J]. Rubber chemistry and technology, 1957, 30(2): 555-71.
[193] WAN H, GAO K, LI S, et al. Chemical Bond Scission and Physical Slippage in the Mullins Effect and Fatigue Behavior of Elastomers [J]. Macromolecules, 2019, 52(11): 4209-21.

所在学位评定分委会
力学
国内图书分类号
O34
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765828
专题南方科技大学
工学院_力学与航空航天工程系
推荐引用方式
GB/T 7714
马超. 聚合物动力学过程对其变形与破坏的影响机制研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12031124-马超-力学与航空航天工(10647KB)学位论文--限制开放CC BY-NC-SA请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[马超]的文章
百度学术
百度学术中相似的文章
[马超]的文章
必应学术
必应学术中相似的文章
[马超]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。