[1] DE GENNES P G. Soft matter (Nobel lecture) [J]. Angewandte Chemie International Edition in English, 1992, 31(7): 842-5.
[2] WEITZ D A. Soft materials evolution and revolution [J]. Nature Materials, 2022, 21(9): 986-8.
[3] KIM J, KIM J W, KIM H C, et al. Review of Soft Actuator Materials [J]. International Journal of Precision Engineering and Manufacturing, 2019,20(12): 2221-41.
[4] 参考链接:https://www.esrf.fr/files/live/sites/www/files/events/conferences/2023/Summerschool2023/Soft%20Matter%20Studies%20with%20X-rays.pdf
[5] SAALWäCHTER K, SEIFFERT S. Dynamics-based assessment of nanoscopic polymer-network mesh structures and their defects [J]. Soft Matter, 2018, 14(11): 1976-91.
[6] MCCRUM N G, BUCKLEY C P, BUCKNALL C B. Principles of polymer engineering [M]. Oxford University Press, 1997.
[7] COLEMAN M M. Fundamentals of polymer science: An introductory text [M]. Routledge, 2019.
[8] NICHOLSON J W. Etymology of ‘polymers’ [J]. Education in Chemistry, 1991, 28: 70-1.
[9] ZHAO X, CHEN X, YUK H, et al. Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties [J]. Chemical Reviews, 2021, 121(8): 4309-72.
[10] TRELOAR L R G. The physics of rubber elasticity [M]. Oxford University Press, USA, 1975.
[11] GEDDE U. Polymer physics [M]. Springer Science & Business Media, 1995.
[12] SAKAI T, MATSUNAGA T, YAMAMOTO Y, et al. Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers [J]. Macromolecules, 2008, 41(14): 5379-84.
[13] SAKAI T, MATSUNAGA T, YAMAMOTO Y, et al. Design and Fabrication of a High-Strength Hydrogel with Ideally Homogeneous Network Structure from Tetrahedron-like Macromonomers [J]. Macromolecules, 2008, 41(14): 5379-84.
[14] OKUMURA Y, ITO K. The polyrotaxane gel: a topological gel by figureof‐eight cross‐links [J]. Advanced Materials, 2001, 13(7): 485-7.
[15] WENZ G, HAN B-H, MüLLER A. Cyclodextrin Rotaxanes and Polyrotaxanes [J]. Chemical Reviews, 2006, 106(3): 782-817.
[16] GAO P, WANG J, YE L, et al. Stable and Unconventional Conformation of Single PEG Bent γ-CD-Based Polypseudorotaxanes [J]. Macromolecular Chemistry and Physics, 2011, 212(21): 2319-27.
[17] WOOLFSON D N. Building fibrous biomaterials from α-helical and collagen-like coiled-coil peptides [J]. Peptide Science, 2010, 94(1): 118-27.
[18] PRINCE E, KUMACHEVA E. Design and applications of man-made biomimetic fibrillar hydrogels [J]. Nature Reviews Materials, 2019, 4(2): 99-115.
[19] NONOYAMA T, GONG J P. Double-network hydrogel and its potential biomedical application: A review [J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2015, 229(12): 853-63.
[20] SUN J-Y, ZHAO X, ILLEPERUMA W R K, et al. Highly stretchable and tough hydrogels [J]. Nature, 2012, 489(7414): 133-6.
[21] DRAGAN E S. Design and applications of interpenetrating polymer network hydrogels. A review [J]. Chemical Engineering Journal, 2014, 243: 572-90.
[22] CROISIER F, JéRôME C. Chitosan-based biomaterials for tissue engineering [J]. European Polymer Journal, 2013, 49(4): 780-92.
[23] HASSAN C M, PEPPAS N A. Structure and morphology of freeze/thawed PVA hydrogels [J]. Macromolecules, 2000, 33(7): 2472-9.
[24] RUBINSTEIN M, COLBY R H. Polymer Physics [M]. Oxford University Press, 2003.
[25] ROLAND C M. Unconventional rubber networks: circumventing the compromise between stiffness and strength [J]. Rubber Chemistry and Technology, 2013, 86(3): 351-66.
[26] SI L, ZHENG X, NIE J, et al. Silicone-based tough hydrogels with high resilience, fast self-recovery, and self-healing properties [J]. Chemical Communications, 2016, 52(54): 8365-8.
[27] KAMATA H, AKAGI Y, KAYASUGA-KARIYA Y, et al. “Nonswellable”Hydrogel Without Mechanical Hysteresis [J]. Science, 2014, 343(6173): 873-5.
[28] ZHENG S Y, LIU C, JIANG L, et al. Slide-Ring Cross-Links Mediated Tough Metallosupramolecular Hydrogels with Superior Self- Recoverability [J]. Macromolecules, 2019, 52(17): 6748-55.
[29] MOUTOS F T, FREED L E, GUILAK F. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage [J]. Nature Materials, 2007, 6(2): 162-7.
[30] PEAK C W, WILKER J J, SCHMIDT G. A review on tough and sticky hydrogels [J]. Colloid and Polymer Science, 2013, 291(9): 2031-47.
[31] GONG J P. Why are double network hydrogels so tough? [J]. Soft Matter, 2010, 6(12): 2583-90.
[32] AKAGI Y, MATSUNAGA T, SHIBAYAMA M, et al. Evaluation of Topological Defects in Tetra-PEG Gels [J]. Macromolecules, 2010, 43(1): 488-93.
[33] GU Y, ZHAO J, JOHNSON J A. Polymer Networks: From Plastics and Gels to Porous Frameworks [J]. Angewandte Chemie International Edition, 2020, 59(13): 5022-49.
[34] NICOLELLA P, KOZIOL M F, LöSER L, et al. Defect-controlled softness, diffusive permeability, and mesh-topology of metallo-supramolecular hydrogels [J]. Soft Matter, 2022, 18(5): 1071-81.
[35] GUERRERO-SANTOS R, SALDíVAR-GUERRA E, BONILLA-CRUZ J. Free Radical Polymerization [M]. Handbook of Polymer Synthesis, Characterization, and Processing. 2013: 65-83.
[36] KIM J, ZHANG G, SHI M, et al. Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links [J]. Science, 2021, 374(6564): 212-6.
[37] SHARMA S, TIWARI S. RETRACTED: A review on biomacromolecular hydrogel classification and its applications [J]. International Journal of Biological Macromolecules, 2020, 162: 737-47.
[38] WICHTERLE O, LIM D J N. Hydrophilic gels for biological use [J]. Nature, 1960, 185(4706): 117-8.
[39] QIU Y, PARK K J A D D R. Environment-sensitive hydrogels for drug delivery [J]. Advanced Drug Delivery Reviews, 2001, 53(3): 321-39.
[40] GIL E S, HUDSON S M. Stimuli-reponsive polymers and their bioconjugates [J]. Progress in polymer science, 2004, 29(12): 1173-222.
[41] GONG J P, KATSUYAMA Y, KUROKAWA T, et al. Double‐network hydrogels with extremely high mechanical strength [J]. Advanced Materials, 2003, 15(14): 1155-8.
[42] JIANG Z, TAN M L, TAHERI M, et al. Strong, self ‐ healable, and recyclable visible‐light‐responsive hydrogel actuators [J]. Angewandte Chemie, 2020, 132(18): 7115-22.
[43] ZHU Q, LIU W, KHORUZHENKO O, et al. Animating hydrogel knotbots with topology-invoked self-regulation [J]. Nature Communications, 2024, 15.
[44] YANG C, SUO Z. Hydrogel ionotronics [J]. Nature Reviews Materials, 2018, 3(6): 125-42.
[45] LI Y, HUANG G, ZHANG X, et al. Magnetic hydrogels and their potential biomedical applications [J]. Advanced Functional Materials, 2013, 23(6): 660-72.
[46] NIU Y, WU J, KANG Y, et al. Recent advances of magnetic chitosan hydrogel: Preparation, properties and applications [J]. International Journal of Biological Macromolecules, 2023: 125722.
[47] KIM K, CHENG J, LIU Q, et al. Investigation of mechanical properties of soft hydrogel microcapsules in relation to protein delivery using a MEMS force sensor [J]. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2010, 92(1): 103-13.
[48] GUILHERME M R, DE MOURA M R, RADOVANOVIC E, et al. Novel thermo-responsive membranes composed of interpenetrated polymer networks of alginate-Ca2+ and poly (N-isopropylacrylamide) [J]. Polymer, 2005, 46(8): 2668-74.
[49] TIAN E, WANG J, ZHENG Y, et al. Colorful humidity sensitive photonic crystal hydrogel [J]. Journal of Materials Chemistry, 2008, 18(10): 1116-22.
[50] REIS A V, GUILHERME M R, CAVALCANTI O A, et al. Synthesis and characterization of pH-responsive hydrogels based on chemically modified Arabic gum polysaccharide [J]. Polymer, 2006, 47(6): 2023-9.
[51] VEGAS A J, VEISEH O, GüRTLER M, et al. Long-term glycemic control using polymer-encapsulated human stem cell–derived beta cells in immune-competent mice [J]. Nature Medicine, 2016, 22(3): 306-11.
[52] TIBBITT M W, ANSETH K S. Hydrogels as extracellular matrix mimics for 3D cell culture [J]. Biotechnology and Bioengineering, 2009, 103(4): 655-63.
[53] CAMCI-UNAL G, ANNABI N, DOKMECI M R, et al. Hydrogels for cardiac tissue engineering [J]. NPG Asia Materials, 2014, 6(5): e99-e.
[54] ZHANG J, CHEN X, LIN J, et al. Hydrogel bioadhesives harnessing nanoscale phase separation for Achilles tendon repairing [J]. Nano Research, 2023.
[55] YUK H, VARELA C E, NABZDYK C S, et al. Dry double-sided tape for adhesion of wet tissues and devices [J]. Nature, 2019, 575(7781): 169-74.
[56] ZHAO F, ZHOU X, SHI Y, et al. Highly efficient solar vapour generation via hierarchically nanostructured gels [J]. Nature Nanotechnology, 2018,13(6): 489-95.
[57] FELDMAN D. Polymer History [J]. Designed Monomers and Polymers, 2008, 11(1): 1-15.
[58] CARPI F, BAUER S, DE ROSSI D. Stretching dielectric elastomer performance [J]. Science, 2010, 330(6012): 1759-61.
[59] SHI Y, ASKOUNIS E, PLAMTHOTTAM R, et al. A processable, highperformancedielectric elastomer and multilayering process [J]. Science, 2022, 377(6602): 228-32.
[60] ZHALMURATOVA D, CHUNG H-J. Reinforced Gels and Elastomers for Biomedical and Soft Robotics Applications [J]. ACS Applied Polymer Materials, 2020, 2(3): 1073-91.
[61] MARTINEZ R V, BRANCH J L, FISH C R, et al. Robotic tentacles with three-dimensional mobility based on flexible elastomers [J]. Advanced Materials (Deerfield Beach, Fla), 2013, 25(2): 205-12.
[62] LASCHI C, CIANCHETTI M, MAZZOLAI B, et al. Soft Robot Arm Inspired by the Octopus [J]. Advanced Robotics, 2012, 26(7): 709-27.
[63] LIM H-R, KIM H S, QAZI R, et al. Advanced Soft Materials, Sensor Integrations, and Applications of Wearable Flexible Hybrid Electronics in Healthcare, Energy, and Environment [J]. Advanced Materials, 2020, 32(15): 1901924.
[64] KIM D H, AHN J H, CHOI W M, et al. Stretchable and foldable silicon integrated circuits [J]. Science, 2008, 320(5875): 507-11.
[65] ZHOU M, MAO S, WU Z, et al. A flexible omnidirectional rotating magnetic array for MRI-safe transdermal wireless energy harvesting through flexible electronics [J]. Science Advances, 2023, 9(33): eadi5451.
[66] CHEN S, SUN L, ZHOU X, et al. Mechanically and biologically skin-like elastomers for bio-integrated electronics [J]. Nature Communications,2020, 11(1): 1107.
[67] HU H, HUANG H, LI M, et al. A wearable cardiac ultrasound imager [J]. Nature, 2023, 613(7945): 667-75.
[68] ZHU S, HAMIELEC A. Kinetics of polymeric network synthesis via free ‐ radical mechanisms ‐ polymerization and polymer modification; proceedings of the Makromolekulare Chemie Macromolecular Symposia, F, 1992 [C]. Wiley Online Library.
[69] KAZMAIER P M, DAIMON K, GEORGES M K, et al. Nitroxide-mediated “living” free radical polymerization: a rapid polymerization of (chloromethyl) styrene for the preparation of random, block, and segmental arborescent polymers [J]. Macromolecules, 1997, 30(8): 2228-31.
[70] XIA J, GAYNOR S G, MATYJASZEWSKI K J M. Controlled/“living”radical polymerization. Atom transfer radical polymerization of acrylates at ambient temperature [J]. Macromolecules, 1998, 31(17): 5958-9.
[71] BAINBRIDGE C W A, BRODERICK N, JIN J. RAFT agent symmetry and the effects on photo-growth behavior in living polymer networks [J]. Polymer Chemistry, 2021, 12(35): 5017-26.
[72] GAN L H, RAVI P, MAO B W, et al. Controlled/living polymerization of 2‐(diethylamino) ethyl methacrylate and its block copolymer with tertbutyl methacrylate by atom transfer radical polymerization [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2003, 41(17): 2688-95.
[73] MAYADUNNE R T, RIZZARDO E, CHIEFARI J, et al. Living radical polymerization with reversible addition− fragmentation chain transfer (RAFT polymerization) using dithiocarbamates as chain transfer agents [J]. Macromolecules, 1999, 32(21): 6977-80.
[74] EDWARDS S F, GOODYEAR A G. The dynamics of a polymer molecule [J]. Journal of Physics A: General Physics, 1972, 5(7): 965.
[75] EDWARDS S F. The dynamics of polymer networks [J]. Journal of Physics A: Mathematical, Nuclear and General, 1974, 7(2): 318.
[76] EDWARDS S F, GRANT J W V. The effect of entanglements of diffusion in a polymer melt [J]. Journal of Physics A: Mathematical, Nuclear and General, 1973, 6(8): 1169.
[77] MEYER K H, FERRI C. Sur l'élasticité du caoutchouc [J]. Helvetica Chimica Acta, 1935, 18(1): 570-89.
[78] TRELOAR L G. The physics of rubber elasticity [M]; Oxford University Press: New York, 1975.
[79] SHAH B B, KUNDU T, ZHAO D. Mechanical Properties of Shaped Metal–Organic Frameworks [J]. Topics in Current Chemistry, 2019, 377(5): 25.
[80] WRóBEL J K, CORTEZ R, FAUCI L. Modeling viscoelastic networks in Stokes flow [J]. Physics of Fluids, 2014, 26(11).
[81] PJ F. Statistical mechanics of cross-linked polymer networks II. Swelling [J]. The Journal of Chemical Physics, 1943, 11: 521-6.
[82] ERMAN B, FLORY P. Critical phenomena and transitions in swollen polymer networks and in linear macromolecules [J]. Macromolecules, 1986, 19(9): 2342-53.
[83] VASHEGHANI-FARAHANI E, VERA J H, COOPER D G, et al. Swelling of ionic gels in electrolyte solutions [J]. Industrial & engineering chemistry research, 1990, 29(4): 554-60.
[84] ZHAO X. Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks [J]. Soft matter, 2014, 10(5): 672-87.
[85] CRETON C, CICCOTTI M. Fracture and adhesion of soft materials: a review [J]. Reports on Progress in Physics, 2016, 79(4): 046601.
[86] GENT A N. Adhesion and Strength of Viscoelastic Solids. Is There a Relationship between Adhesion and Bulk Properties? [J]. Langmuir, 1996, 12(19): 4492-6.
[87] LIU Y, FENG X, HONG W. Non-affine dissipation in polymer fracture [J]. Extreme Mech Lett, 2023, 59: 101955.
[88] EWING J A, HUMFREY J. The Fracture of Metals under Repeated Alternations of Stress [J]. Proceedings of the Royal Society of London Series I, 1902, 71: 79.
[89] CADWELL S M, MERRILL R A, SLOMAN C M, et al. Dynamic Fatigue Life of Rubber [J]. Industrial & Engineering Chemistry Analytical Edition, 1940, 12(1): 19-23.
[90] TANG J, LI J, VLASSAK J J, et al. Fatigue fracture of hydrogels [J]. Extreme Mechanics Letters, 2017, 10: 24-31.
[91] BAI R, YANG J, SUO Z. Fatigue of hydrogels [J]. European Journal of Mechanics - A/Solids, 2019, 74: 337-70.
[92] ZHANG W, LIU X, WANG J, et al. Fatigue of double-network hydrogels [J]. Engineering Fracture Mechanics, 2018, 187: 74-93.
[93] ZHANG E, BAI R, MORELLE X P, et al. Fatigue fracture of nearly elastic hydrogels [J]. Soft Matter, 2018, 14(18): 3563-71.
[94] LAKE G. Fatigue and fracture of elastomers [J]. Rubber Chemistry and Technology, 1995, 68(3): 435-60.
[95] LAKE G, THOMAS A. The strength of highly elastic materials [J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1967, 300(1460): 108-19.
[96] TANG J, LI J, VLASSAK J J, et al. Fatigue fracture of hydrogels [J]. Extreme Mechanics Letters, 2017, 10: 24-31.
[97] ZHANG W, HU J, TANG J, et al. Fracture Toughness and Fatigue Threshold of Tough Hydrogels [J]. ACS Macro Letters, 2019, 8(1): 17-23.
[98] BAI R, YANG J, MORELLE X P, et al. Fatigue Fracture of Self-Recovery Hydrogels [J]. ACS Macro Letters, 2018, 7(3): 312-7.
[99] ZHAO X, WU J, ZHOU Y, et al. Fatigue behaviors of physical hydrogels based on hydrogen bonds [J]. Extreme Mechanics Letters, 2021, 46: 101320.
[100] LI X, GONG J P. Role of dynamic bonds on fatigue threshold of tough hydrogels [J]. Proceedings of the National Academy of Sciences, 2022,119(20): e2200678119.
[101] XIAO Y, LI Q, YAO X, et al. Fatigue of amorphous hydrogels with dynamic covalent bonds [J]. Extreme Mechanics Letters, 2022, 53: 101679.
[102] LEE K Y, MOONEY D J. Hydrogels for Tissue Engineering [J]. Chemical Reviews, 2001, 101(7): 1869-80.
[103] LEE Y, SONG W, SUN J-Y J M T P. Hydrogel soft robotics [J]. Materials Today Physics, 2020, 15: 100258.
[104] YANG J, BAI R, CHEN B, et al. Hydrogel Adhesion: A Supramolecular Synergy of Chemistry, Topology, and Mechanics [J]. Advanced Functional Materials, 2020, 30(2): 1901693.
[105] NOSSAL R. Network formation in polyacrylamide gels [J]. Macromolecules, 1985, 18(1): 49-54.
[106] ZHANG A-K, LING J, LI K, et al. Molecular structure and properties of click hydrogels with controlled dangling end defect [J]. Journal of Polymer Science Part B: Polymer Physics, 2016, 54(13): 1227-36.
[107] SUN X, RAO P, HE X, et al. Chemically identical gels I – under-crosslinked networks [J]. Journal of the Mechanics and Physics of Solids, 2023, 175: 105278.
[108] PERRIER S. 50th Anniversary Perspective: RAFT Polymerization-A User Guide [J]. Macromolecules, 2017, 50(19): 7433-47.
[109] BEZIAU A, FORTNEY A, FU L, et al. Photoactivated Structurally Tailored and Engineered Macromolecular (STEM) gels as precursors for materials with spatially differentiated mechanical properties [J]. Polymer, 2017, 126: 224-30.
[110] SHANMUGAM S, CUTHBERT J, FLUM J, et al. Transformation of gels via catalyst-free selective RAFT photoactivation [J]. Polymer Chemistry, 2019, 10(19): 2477-83.
[111] CUTHBERT J, ZHANG T, BISWAS S, et al. Structurally tailored and engineered macromolecular (STEM) gels as soft elastomers and hard/soft interfaces [J]. Macromolecules, 2018, 51(22): 9184-91.
[112] LIANG J, SHAN G, PAN P J S M. Double network hydrogels with highly enhanced toughness based on a modified first network [J]. Soft Matter, 2017, 13(22): 4148-58.
[113] JOUBERT F, CHEONG PHEY DENN P, GUO Y, et al. Comparison of thermoresponsive hydrogels synthesized by conventional free radical and RAFT polymerization [J]. Materials (Basel, Switzerland), 2019, 12(17): 2697.
[114] LIU Q, ZHANG P, QING A, et al. Poly (N-isopropylacrylamide) hydrogels with improved shrinking kinetics by RAFT polymerization [J]. Polymer, 2006, 47(7): 2330-6.
[115] HENKEL R, VANA P. The Influence of RAFT on the Microstructure and the Mechanical Properties of Photopolymerized Poly (butyl acrylate) Networks [J]. Macromolecular Chemistry and Physics, 2014, 215(2): 182-9.
[116] MCCARTHY K, BURKHARDT C, PARAZAK D. Mark – Houwink –Sakurada constants and dilute solution behavior of heterodisperse poly (acrylamide‐co‐sodium acrylate) in 0.5 M and 1M NaCl [J]. Journal of applied polymer science, 1987, 33(5): 1699-714.
[117] MOAD G, RIZZARDO E, THANG S H. Living radical polymerization by the RAFT process [J]. Australian journal of chemistry, 2005, 58(6): 379-410.
[118] GREGORY A, STENZEL M H. Complex polymer architectures via RAFT polymerization: From fundamental process to extending the scope using click chemistry and nature's building blocks [J]. Progress in Polymer Science, 2012, 37(1): 38-105.
[119] METROPOLIS N, ULAM S. The monte carlo method [J]. Journal of the American Statistical Association, 1949, 44(247): 335-41.
[120] HERRMANN H J, HONG D, STANLEY H J J O P A M, et al. Backbone and elastic backbone of percolation clusters obtained by the new method of'burning' [J]. Journal of Physics A: Mathematical and General, 1984, 17(5): L261.
[121] KATASHIMA T. Rheological studies on polymer networks with static and dynamic crosslinks [J]. Polymer Journal, 2021, 53(10): 1073-82.
[122] HONG W, ZHAO X, ZHOU J, et al. A theory of coupled diffusion and large deformation in polymeric gels [J]. Journal of the Mechanics and Physics of Solids, 2008, 56(5): 1779-93.
[123] DES CLOIZEAUX J. The Lagrangian theory of polymer solutions at intermediate concentrations [J]. Journal de Physique 1975, 36(4): 281-91.
[124] SITTI M, CUSICK B, AKSAK B, et al. Dangling chain elastomers as repeatable fibrillar adhesives [J]. ACS Applied Materials & Interfaces,2009, 1(10): 2277-87.
[125] COYLE S, MAJIDI C, LEDUC P, et al. Bio-inspired soft robotics: Material selection, actuation, and design [J]. Extreme Mechanics Letters, 2018, 22: 51-9.
[126] YUK H, LIN S, MA C, et al. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water [J]. Nature Communications, 2017, 8(1): 14230.
[127] HAQUE M A, KUROKAWA T, GONG J P. Super tough double network hydrogels and their application as biomaterials [J]. Polymer, 2012, 53(9): 1805-22.
[128] YANG C H, WANG M X, HAIDER H, et al. Strengthening Alginate/Polyacrylamide Hydrogels Using Various Multivalent Cations [J]. ACS Applied Materials & Interfaces, 2013, 5(21): 10418-22.
[129] LIU X, TANG T-C, THAM E, et al. Stretchable living materials and devices with hydrogel–elastomer hybrids hosting programmed cells [J]. Proceedings of the National Academy of Sciences, 2017, 114(9): 2200-5.
[130] LIN S, LIU X, LIU J, et al. Anti-fatigue-fracture hydrogels [J]. Science Advances, 2019, 5(1): eaau8528.
[131] HUA M, WU S, MA Y, et al. Strong tough hydrogels via the synergy of freeze-casting and salting out [J]. Nature, 2021, 590(7847): 594-9.
[132] LIU X, WU J, QIAO K, et al. Topoarchitected polymer networks expand the space of material properties [J]. Nature Communications, 2022, 13(1): 1622.
[133] LIU B, YIN T, ZHU J, et al. Tough and fatigue-resistant polymer networksby crack tip softening [J]. Proceedings of the National Academy of Sciences, 2023, 120(6): e2217781120.
[134] LIN S, LIU J, LIU X, et al. Muscle-like fatigue-resistant hydrogels by mechanical training [J]. Proceedings of the National Academy of Sciences, 2019, 116(21): 10244-9.
[135] YANG C, YIN T, SUO Z. Polyacrylamide hydrogels. I. Network imperfection [J]. Journal of the Mechanics and Physics of Solids, 2019, 131: 43-55.
[136] YANG Y, GUO H, DU Z, et al. Rate-dependent fracture of hydrogels due to water migration [J]. Journal of the Mechanics and Physics of Solids, 2022, 167: 105007.
[137] CHEN S, SUN L, ZHOU X, et al. Mechanically and biologically skin-like elastomers for bio-integrated electronics [J]. Nature Communications 2020, 11(1): 1107.
[138] COURTNEY W A, OYADIJI S O. Preliminary investigations into the mechanical properties of a novel shock absorbing elastomeric composite [J]. Journal of Materials Processing Technology, 2001, 119(1-3): 379-86.
[139] KORNBLUH R D, PELRINE R, PRAHLAD H, et al. From boots to buoys: promises and challenges of dielectric elastomer energy harvesting [J]. Electroactivity in polymeric materials, 2012: 67-93.
[140] RIVLIN R S, THOMAS A G. Rupture of rubber. I. Characteristic energy for tearing [J]. Journal of Polymer Science, 1953, 10(3): 291-318.
[141] BAI R, YANG Q, TANG J, et al. Fatigue fracture of tough hydrogels [J]. Extreme Mechanics Letters, 2017, 15: 91-6.
[142] GENT A N. Engineering with rubber: how to design rubber components [M]. Carl Hanser Verlag GmbH Co KG, 2012.
[143] GENT A N, LAI S M. Interfacial bonding, energy dissipation, and adhesion [J]. Journal of Polymer Science Part B: Polymer Physics, 1994, 32(8): 1543-55.
[144] LI X, CUI K, SUN T L, et al. Mesoscale bicontinuous networks in self-healing hydrogels delay fatigue fracture [J]. Proceedings of the National Academy of Sciences, 2020, 117(14): 7606-12.
[145] SAHU R K, PATRA K. Rate-dependent mechanical behavior of VHB 4910 elastomer [J]. Mechanics of Advanced Materials and Structures, 2016, 23(2): 170-9.
[146] PERSSON B N, BRENER E A. Crack propagation in viscoelastic solids [J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2005, 71(3 Pt 2A): 036123.
[147] WILLIAMS M. Fatigue ‐ Fracture Growth in Linearly Viscoelastic Material [J]. Journal of Applied Physics, 1967, 38(11): 4476-80.
[148] KNAUSS W G. A review of fracture in viscoelastic materials [J]. International Journal of Fracture, 2015, 196: 99-146.
[149] DE GENNES P-G. Soft adhesives [J]. Langmuir, 1996, 12(19): 4497-500.
[150] CHEN L, SUN T L, CUI K, et al. Facile synthesis of novel elastomers with tunable dynamics for toughness, self-healing and adhesion [J]. Journal of Materials Chemistry A, 2019, 7(29): 17334-44.
[151] SARVA S S, DESCHANEL S, BOYCE M C, et al. Stress–strain behavior of a polyurea and a polyurethane from low to high strain rates [J]. Polymer, 2007, 48(8): 2208-13.
[152] YI J, BOYCE M C, LEE G F, et al. Large deformation rate-dependent stress–strain behavior of polyurea and polyurethanes [J]. Polymer, 2006, 47(1): 319-29.
[153] LIAO Z, YAO X, ZHANG L, et al. Temperature and strain rate dependent large tensile deformation and tensile failure behavior of transparent polyurethane at intermediate strain rates [J]. International Journal of Impact Engineering, 2019, 129: 152-67.
[154] HASSAN S, KIM J, SUO Z. Polyacrylamide hydrogels. IV. Near-perfect elasticity and rate-dependent toughness [J]. Journal of the Mechanics and Physics of Solids, 2022, 158: 104675.
[155] KINLOCH A J. Fracture behaviour of polymers [M]. Springer Science & Business Media, 2013.
[156] DOI M, EDWARDS S F. The theory of polymer dynamics [M]. oxford university press, 1988.
[157] FUTAMURA S. Designing elastomer network for desired tire performance characteristics [J]. Die Angewandte Makromolekulare Chemie: Applied Macromolecular Chemistry and Physics, 1996, 240(1): 137-49.
[158] CHEN F, WANG M Y. Dynamic performance of a dielectric elastomer balloon actuator [J]. Meccanica, 2015, 50: 2731-9.
[159] PEACOCK R. Practical selection of elastomer materials for vacuum seals [J]. Journal of Vacuum Science and Technology, 1980, 17(1): 330-6.
[160] YABUKI Y, TANAHASHI K, HOSHIKAWA S, et al. Development of new cosmetic gloves for myoelectric prosthetic hand by using thermoplastic styrene elastomer; proceedings of the Intelligent Autonomous Systems 14: Proceedings of the 14th International Conference IAS-14 14, F, 2017 [C].Springer.
[161] LEE C, KIM M, KIM Y J, et al. Soft robot review [J]. International Journal of Control, Automation and Systems, 2017, 15: 3-15.
[162] GODABA H, LI J, WANG Y, et al. A soft jellyfish robot driven by a dielectric elastomer actuator [J]. IEEE Robotics and Automation Letters, 2016, 1(2): 624-31.
[163] MARCHESE A D, KATZSCHMANN R K, RUS D. A recipe for soft fluidicelastomer robots [J]. Soft robotics, 2015, 2(1): 7-25.
[164] DI J, YAO S, YE Y, et al. Stretch-triggered drug delivery from wearable elastomer films containing therapeutic depots [J]. ACS nano, 2015, 9(9): 9407-15.
[165] HUANG S, LIU Y, ZHAO Y, et al. Flexible electronics: stretchable electrodes and their future [J]. Advanced Functional Materials, 2019, 29(6): 1805924.
[166] ZHANG C, LAI Z, RAO X, et al. Energy harvesting from a novel contact-type dielectric elastomer generator [J]. Energy conversion and management, 2020, 205: 112351.
[167] HAMED G R. Molecular Aspects of the Fatigue and Fracture of Rubber [J]. Rubber Chemistry and Technology, 1994, 67(3): 529-36.
[168] WOJTECKI R J, MEADOR M A, ROWAN S J. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers [J]. Nature Materials, 2011, 10(1): 14-27.
[169] UTRERA-BARRIOS S, HERNáNDEZ SANTANA M, VERDEJO R, et al. Design of Rubber Composites with Autonomous Self-Healing Capability [J]. ACS Omega, 2020, 5(4): 1902-10.
[170] XU C, NIE J, WU W, et al. Self-Healable, Recyclable, and Strengthened Epoxidized Natural Rubber/Carboxymethyl Chitosan Biobased Composites with Hydrogen Bonding Supramolecular Hybrid Networks [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(18): 15778-89.
[171] NARITA T, MAYUMI K, DUCOURET G, et al. Viscoelastic properties of poly (vinyl alcohol) hydrogels having permanent and transient cross-links studied by microrheology, classical rheometry, and dynamic light scattering [J]. Macromolecules, 2013, 46(10): 4174-83.
[172] LIU J, XIAO C, TANG J, et al. Construction of a Dual Ionic Network in Natural Rubber with High Self-Healing Efficiency through Anionic Mechanism [J]. Industrial & Engineering Chemistry Research, 2020, 59(28): 12755-65.
[173] NAJWA THAJUDIN N L, ZAINOL M H, SHUIB R K. Intrinsic room temperature self-healing natural rubber based on metal thiolate ionic network [J]. Polymer Testing, 2021, 93: 106975.
[174] SANKA R S P, KRISHNAKUMAR B, LETERRIER Y, et al. Soft selfhealing nanocomposites [J]. Frontiers in Materials, 2019, 6: 137.
[175] MOHD KANAFI N, ABDUL GHANI A, ABDUL RAHMAN N, et al. A review of self-healable natural rubber based on reversible bonds: fundamental, design principle and performance [J]. Journal of Materials Science, 2023, 58(2): 608-35.
[176] ZHANG L, LIU Z, WU X, et al. A highly efficient self‐healing elastomer with unprecedented mechanical properties [J]. Advanced Materials, 2019,31(23): 1901402.
[177] JONES A S, RULE J D, MOORE J S, et al. Catalyst Morphology and Dissolution Kinetics of Self-Healing Polymers [J]. Chemistry of Materials,2006, 18(5): 1312-7.110.
[178] ZHANG B, LI H, CHENG J, et al. Mechanically Robust and UV-Curable Shape-Memory Polymers for Digital Light Processing Based 4D Printing [J]. Advanced Materials, 2021, 33(27): 2101298.
[179] CUI K, SUN T L, LIANG X, et al. Multiscale Energy Dissipation Mechanism in Tough and Self-Healing Hydrogels [J]. Physical Review Letters, 2018, 121(18): 185501.
[180] LAMONT S C, MULDERRIG J, BOUKLAS N, et al. Rate-Dependent Damage Mechanics of Polymer Networks with Reversible Bonds [J]. Macromolecules, 2021, 54(23): 10801-13.
[181] VERNEREY F J, LONG R, BRIGHENTI R. A statistically-based continuum theory for polymers with transient networks [J]. Journal of the Mechanics and Physics of Solids, 2017, 107: 1-20.
[182] SHEN T, VERNEREY F J. Rate-dependent fracture of transient networks [J]. Journal of the Mechanics and Physics of Solids, 2020, 143: 104028.
[183] KRAUSZ A. The theory of non-steady state fracture propagation rate [J]. International Journal of Fracture, 1976, 12: 239-42.
[184] TOBOLSKY A, EYRING H. Mechanical properties of polymeric materials [J]. The Journal of chemical physics, 1943, 11(3): 125-34.
[185] LI X, GONG J P. Role of dynamic bonds on fatigue threshold of tough hydrogels [J]. Proceedings of the National Academy of Sciences, 2022, 119(20): e2200678119.
[186] SUN T L, KUROKAWA T, KURODA S, et al. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity [J]. Nature Materials, 2013, 12(10): 932-7.
[187] SUN T L, LUO F, HONG W, et al. Bulk Energy Dissipation Mechanism for the Fracture of Tough and Self-Healing Hydrogels [J]. Macromolecules, 2017, 50(7): 2923-31.
[188] SCHAPERY R A. A theory of crack initiation and growth in viscoelastic media II. Approximate methods of analysis [J]. International Journal of Fracture, 1975, 11: 369-88.
[189] CHRISTENSEN R M, WU E M. A theory of crack growth in viscoelastic materials [J]. Engineering Fracture Mechanics, 1981, 14(1): 215-25.
[190] BOUASSE H, CARRIèRE Z. Sur les courbes de traction du caoutchouc vulcanisé [J]. Annales de la Faculté des sciences de l'Université de Toulouse pour les sciences mathématiques et les sciences physiques, 1903, 5(3): 257-83.
[191] MULLINS L. Softening of Rubber by Deformation [J]. Rubber Chemistry and Technology, 1969, 42(1): 339-62.
[192] MULLINS L, TOBIN N. Theoretical model for the elastic behavior of filler-reinforced vulcanized rubbers [J]. Rubber chemistry and technology, 1957, 30(2): 555-71.
[193] WAN H, GAO K, LI S, et al. Chemical Bond Scission and Physical Slippage in the Mullins Effect and Fatigue Behavior of Elastomers [J]. Macromolecules, 2019, 52(11): 4209-21.
修改评论