中文版 | English
题名

二维磁性材料Fe3GaTe2的磁性及自旋输运性质研究

其他题名
MAGNETISM AND SPIN TRANSPORT STUDY OF TWO-DIMENSIONAL MAGNET Fe3GaTe2
姓名
姓名拼音
YIN Xiaolong
学号
12132865
学位类型
硕士
学位专业
0702Z1 量子科学与工程
学科门类/专业学位类别
07 理学
导师
陈廷勇,谭振兵
导师单位
量子科学与工程研究院;量子科学与工程研究院
论文答辩日期
2024-05-08
论文提交日期
2024-06-21
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

二维van der Waals(vdW)磁性材料可构建单原子层自旋电子器件,通常具有强的磁各向异性和弱的层间耦合,为研究很多基础磁性现象提供了新的平台。磁性体系中的交换偏置现象(exchange bias)是磁存储的关键问题之一,但目前在二维vdW材料体系中只在远低于室温下观测到,这限制了其应用。最近发现的二维铁磁材料Fe3GaTe2有很强的垂直磁各向异性而且居里温度在室温以上,是研究二维体系交换偏置的理想材料。本论文首先生长了Fe3GaTe2单晶样品并研究了它们的物理性质,包括结构和磁性,然后基于机械剥离的纳米片制备了多个输运器件,并研究了这些纳米器件的输运性质。

通过单晶X射线衍射和透射电子显微镜研究发现生长的Fe3GaTe2具有较高的质量。磁性研究发现居里温度为350 K左右,室温下的饱和磁化强度为38.2 emu/g。在零场冷却的条件下测量的M-T曲线在250 K附近存在异常转变,我们认为这与单晶Fe3GaTe2的磁畴随温度的演变有关,并不代表样品中存在反铁磁相。

在二维Fe3GaTe2纳米片的输运研究中,我们首次观察到近室温(280 K)的交换偏置现象,该偏置现象可不经过场冷能自发产生,且偏置方向和大小可以通过扫场方式和扫场范围进行调控。本论文提出一个新的模型——交换弹簧模型,很好的解释了我们所有数据。Fe3GaTe2样品中存在矫顽场大的硬磁相和矫顽场小的软磁相,它们界面的交换弹簧作用导致了我们观察到的,可以用外磁场调控的磁滞偏置现象。

本论文中首次在二维vdW磁性材料中观察到近室温的交换偏置现象,并且提出一个新的交换弹簧模型进行了解释。此外,因为交换弹簧效应导致的偏置可以受外场调控,相比于传统的铁磁/反铁磁结构具有明显优势,这为构建磁性存储钉扎层提供了新的思路。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] MEIKLEJOHN W H, BEAN C P. New Magnetic Anisotropy [J]. Physical Review, 1956, 102(5): 1413-4.
[2] NOGUéS J, SORT J, LANGLAIS V, et al. Exchange bias in nanostructures [J]. Physics Reports, 2005, 422(3): 65-117.
[3] NOGUES J, LEDERMAN D, MORAN T J, et al. Positive exchange bias in FeF2-Fe bilayers [J]. Phys Rev Lett, 1996, 76(24): 4624-7.
[4] WANG F, XIAO D, YUAN W, et al. Observation of Interfacial Antiferromagnetic Coupling between Magnetic Topological Insulator and Antiferromagnetic Insulator [J]. Nano Lett, 2019, 19(5): 2945-52.
[5] MEIKLEJOHN W H. Exchange Anisotropy—A Review [J]. Journal of Applied Physics, 1962, 33(3): 1328-35.
[6] MEIKLEJOHN W H, BEAN C P. New Magnetic Anisotropy [J]. Physical Review, 1957, 105(3): 904-13.
[7] NéEL L. Étude théorique du couplage ferro-antiferromagnétique dans les couches minces [J]. Ann Phys, 1967, 14(2): 61-80.
[8] MAURI D, SIEGMANN H C, BAGUS P S, et al. Simple model for thin ferromagnetic films exchange coupled to an antiferromagnetic substrate [J]. Journal of Applied Physics, 1987, 62(7): 3047-9.
[9] KIWI M, MEJı́A-LóPEZ J, PORTUGAL R D, et al. Exchange-bias systems with compensated interfaces [J]. Applied Physics Letters, 1999, 75(25): 3995-7.
[10] KIWI M, MEJíA-LóPEZ J, PORTUGAL R D, et al. Exchange bias model for Fe/FeF2: Role of domains in the ferromagnet [J]. Europhysics Letters (EPL), 1999, 48(5): 573-9.
[11] GESHEV J. Analytical solutions for exchange bias and coercivity in ferromagnetic/antiferromagnetic bilayers [J]. Physical Review B, 2000, 62(9): 5627-33.
[12] MALOZEMOFF A P. Heisenberg-to-Ising crossover in a random-field model with uniaxial anisotropy [J]. Phys Rev B Condens Matter, 1988, 37(13): 7673-9.
[13] MALOZEMOFF A P. Mechanisms of exchange anisotropy (invited) [J]. Journal of Applied Physics, 1988, 63(8): 3874-9.
[14] KOON N C. Calculations of Exchange Bias in Thin Films with Ferromagnetic/Antiferromagnetic Interfaces [J]. Physical Review Letters, 1997, 78(25): 4865-8.
[15] CAIN W C, KRYDER M H. Investigation of the exchange mechanism in NiFe-TbCo bilayers [J]. Journal of Applied Physics, 1990, 67(9): 5722-4.
[16] VAN DER ZAAG P J, WOLF R M, BALL A R, et al. A study of the magnitude of exchange biasing in
[111] Fe3O4/CoO bilayers [J]. Journal of Magnetism and Magnetic Materials, 1995, 148(1-2): 346-8.
[17] MANGIN S, MONTAIGNE F, SCHUHL A. Interface domain wall and exchange bias phenomena in ferrimagnetic/ferrimagnetic bilayers [J]. Physical Review B, 2003, 68(14).
[18] ALI M, ADIE P, MARROWS C H, et al. Exchange bias using a spin glass [J]. Nat Mater, 2007, 6(1): 70-5.
[19] KE X, RZCHOWSKI M S, BELENKY L J, et al. Positive exchange bias in ferromagnetic La0.67Sr0.33MnO3/SrRuO3 bilayers [J]. Applied Physics Letters, 2004, 84(26): 5458-60.
[20] BINEK C, POLISETTY S, HE X, et al. Exchange bias training effect in coupled all ferromagnetic bilayer structures [J]. Phys Rev Lett, 2006, 96(6): 067201.
[21] FERNANDO G W. Chapter 4 - Magnetic Anisotropy in Transition Metal Systems [M]//FERNANDO G W. Handbook of Metal Physics. Elsevier. 2008: 89-110.
[22] SHARMA S K. Exchange Bias : From Thin Film to Nanogranular and Bulk Systems, F, 2017 [C].
[23] FULLERTON E E, JIANG J S, BADER S D. Hard/soft magnetic heterostructures: model exchange-spring magnets [J]. Journal of Magnetism and Magnetic Materials, 1999, 200(1-3): 392-404.
[24] KNELLER E, HAWIG R. The exchange-spring magnet: a new material principle for permanent magnets [J]. IEEE Transactions on Magnetics, 1991, 27: 3588-600.
[25] MANGIN S, MARCHAL G, BELLOUARD C, et al. Magnetic behavior and resistivity of the domain-wall junction GdFe(1000 Å) TbFe GdFe(500 Å) [J]. Physical Review B, 1998, 58(5): 2748-57.
[26] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666-9.
[27] CAO Y, FATEMI V, FANG S, et al. Unconventional superconductivity in magic-angle graphene superlattices [J]. Nature, 2018, 556(7699): 43-50.
[28] CAO Y, FATEMI V, DEMIR A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices [J]. Nature, 2018, 556(7699): 80-4.
[29] HUANG B, CLARK G, NAVARRO-MORATALLA E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit [J]. Nature, 2017, 546(7657): 270-3.
[30] GONG C, LI L, LI Z, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals [J]. Nature, 2017, 546(7657): 265-9.
[31] DENG Y, YU Y, SONG Y, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2 [J]. Nature, 2018, 563(7729): 94-9.
[32] ZHANG G, GUO F, WU H, et al. Above-room-temperature strong intrinsic ferromagnetism in 2D van der Waals Fe3GaTe2 with large perpendicular magnetic anisotropy [J]. Nat Commun, 2022, 13(1): 5067.
[33] MERMIN N D, WAGNER H. Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models [J]. Physical Review Letters, 1966, 17(22): 1133-6.
[34] ONSAGER L. Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition [J]. Physical Review, 1944, 65(3-4): 117-49.
[35] GIBERTINI M, KOPERSKI M, MORPURGO A F, et al. Magnetic 2D materials and heterostructures [J]. Nat Nanotechnol, 2019, 14(5): 408-19.
[36] BEREZINSKIT V L. Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continuous symmetry group. II . QUANTUM, F, 2011 [C].
[37] KOSTERLITZ J M, THOULESS D J. Ordering, metastability and phase transitions in two-dimensional systems [J]. Journal of Physics C: Solid State Physics, 1973, 6(7): 1181.
[38] FEI Z, HUANG B, MALINOWSKI P, et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2 [J]. Nat Mater, 2018, 17(9): 778-82.
[39] UHLENBECK G E, GOUDSMIT S. Spinning Electrons and the Structure of Spectra [J]. Nature, 1926, 117(2938): 264-5.
[40] BINASCH G, GRUNBERG P, SAURENBACH F, et al. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange [J]. Phys Rev B Condens Matter, 1989, 39(7): 4828-30.
[41] BAIBICH M N, BROTO J M, FERT A, et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices [J]. Phys Rev Lett, 1988, 61(21): 2472-5.
[42] IKEDA S, HAYAKAWA J, ASHIZAWA Y, et al. Tunnel magnetoresistance of 604% at 300K by suppression of Ta diffusion in CoFeB∕MgO∕CoFeB pseudo-spin-valves annealed at high temperature [J]. Applied Physics Letters, 2008, 93(8).
[43] SLONCZEWSKI J C. Current-driven excitation of magnetic multilayers [J]. Journal of Magnetism and Magnetic Materials, 1996, 159(1-2): L1-L7.
[44] LIU L, PAI C F, LI Y, et al. Spin-torque switching with the giant spin Hall effect of tantalum [J]. Science, 2012, 336(6081): 555-8.
[45] MIRON I M, GARELLO K, GAUDIN G, et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection [J]. Nature, 2011, 476(7359): 189-93.
[46] XU H, WEI J, ZHOU H, et al. High Spin Hall Conductivity in Large-Area Type-II Dirac Semimetal PtTe2 [J]. Adv Mater, 2020, 32(17): e2000513.
[47] WU H, CHEN A, ZHANG P, et al. Magnetic memory driven by topological insulators [J]. Nat Commun, 2021, 12(1): 6251.
[48] BAI H, ZHANG Y C, ZHOU Y J, et al. Efficient Spin-to-Charge Conversion via Altermagnetic Spin Splitting Effect in Antiferromagnet RuO2 [J]. Phys Rev Lett, 2023, 130(21): 216701.
[49] MAZIN I. Editorial: Altermagnetism—A New Punch Line of Fundamental Magnetism [J]. Physical Review X, 2022, 12(4).
[50] ZHANG S, LEVY P M. Conductivity perpendicular to the plane of multilayered structures [J]. Journal of Applied Physics, 1991, 69(8): 4786-8.
[51] PRATT W P, JR., LEE S, SLAUGHTER J M, et al. Perpendicular giant magnetoresistances of Ag/Co multilayers [J]. Phys Rev Lett, 1991, 66(23): 3060-3.
[52] ZHANG X, BUTLER W. Theory of Giant Magnetoresistance and Tunneling Magnetoresistance [M]. Handbook of Spintronics. 2015: 1-56.
[53] YANG S, ZHANG J. Current Progress of Magnetoresistance Sensors [J]. Chemosensors, 2021, 9(8).
[54] JULLIERE M. Tunneling between ferromagnetic films [J]. Physics Letters A, 1975, 54(3): 225-6.
[55] MIYAZAKI T, TEZUKA N. Giant magnetic tunneling effect in Fe/Al2O3/Fe junction [J]. Journal of Magnetism and Magnetic Materials, 1995, 139(3): L231-L4.
[56] MOODERA J S, KINDER L R, WONG T M, et al. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions [J]. Phys Rev Lett, 1995, 74(16): 3273-6.
[57] MATHON J, UMERSKI A. Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction [J]. Physical Review B, 2001, 63(22).
[58] BUTLER W H, ZHANG X G, SCHULTHESS T C, et al. Spin-dependent tunneling conductance of Fe/MgO/Fe sandwiches [J]. Physical Review B, 2001, 63(5).
[59] YUASA S, NAGAHAMA T, FUKUSHIMA A, et al. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions [J]. Nat Mater, 2004, 3(12): 868-71.
[60] PARKIN S S, KAISER C, PANCHULA A, et al. Giant tunnelling magnetoresistance at room temperature with MgO(100) tunnel barriers [J]. Nat Mater, 2004, 3(12): 862-7.
[61] HIROHATA A, YAMADA K, NAKATANI Y, et al. Review on spintronics: Principles and device applications [J]. Journal of Magnetism and Magnetic Materials, 2020, 509.
[62] KAWAHARA T, ITO K, TAKEMURA R, et al. Spin-transfer torque RAM technology: Review and prospect [J]. Microelectronics Reliability, 2012, 52(4): 613-27.
[63] MACNEILL D, STIEHL G M, GUIMARAES M H D, et al. Control of spin–orbit torques through crystal symmetry in WTe2/ferromagnet bilayers [J]. Nature Physics, 2016, 13(3): 300-5.
[64] WANG Z, SAPKOTA D, TANIGUCHI T, et al. Tunneling Spin Valves Based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals Heterostructures [J]. Nano Lett, 2018, 18(7): 4303-8.
[65] LI X, LU J T, ZHANG J, et al. Spin-Dependent Transport in van der Waals Magnetic Tunnel Junctions with Fe3GeTe2 Electrodes [J]. Nano Lett, 2019, 19(8): 5133-9.
[66] ZHU W, XIE S, LIN H, et al. Large Room-Temperature Magnetoresistance in van der Waals Ferromagnet/Semiconductor Junctions [J]. Chinese Physics Letters, 2022, 39(12).
[67] WANG X, TANG J, XIA X, et al. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2 [J]. Sci Adv, 2019, 5(8): eaaw8904.
[68] KAO I H, MUZZIO R, ZHANG H, et al. Deterministic switching of a perpendicularly polarized magnet using unconventional spin-orbit torques in WTe2 [J]. Nat Mater, 2022, 21(9): 1029-34.
[69] PAN Z C, LI D, YE X G, et al. Room-temperature orbit-transfer torque enabling van der Waals magnetoresistive memories [J]. Sci Bull (Beijing), 2023, 68(22): 2743-9.
[70] ZHU R, ZHANG W, SHEN W, et al. Exchange Bias in van der Waals CrCl3/Fe3GeTe2 Heterostructures [J]. Nano Lett, 2020, 20(7): 5030-5.
[71] ZHANG L, HUANG X, DAI H, et al. Proximity-Coupling-Induced Significant Enhancement of Coercive Field and Curie Temperature in 2D van der Waals Heterostructures [J]. Adv Mater, 2020, 32(38): e2002032.
[72] DAI H, CHENG H, CAI M, et al. Enhancement of the Coercive Field and Exchange Bias Effect in Fe3GeTe2/MnPX3 (X = S and Se) van der Waals Heterostructures [J]. ACS Appl Mater Interfaces, 2021, 13(20): 24314-20.
[73] HU G, ZHU Y, XIANG J, et al. Antisymmetric Magnetoresistance in a van der Waals Antiferromagnetic/Ferromagnetic Layered MnPS3/Fe3GeTe2 Stacking Heterostructure [J]. ACS Nano, 2020, 14(9): 12037-44.
[74] WU Y, WANG W, PAN L, et al. Manipulating Exchange Bias in a Van der Waals Ferromagnet [J]. Adv Mater, 2022, 34(12): e2105266.
[75] WU Y, HU Y, WANG C, et al. Fe-Intercalation Dominated Ferromagnetism of van der Waals Fe3GeTe2 [J]. Adv Mater, 2023, 35(36): e2302568.
[76] WU Q, ZHANG Y, CUI Z, et al. Giant and Nonvolatile Control of Exchange Bias in Fe3GeTe2/Irradiated Fe3GeTe2/MgO Heterostructure Through Ultralow Voltage [J]. Advanced Functional Materials, 2023, 33(23).
[77] LIU C, ZHANG H, ZHANG S, et al. Emergent, Non-Aging, Extendable, and Rechargeable Exchange Bias in 2D Fe3GeTe2 Homostructures Induced by Moderate Pressuring [J]. Adv Mater, 2023, 35(1): e2203411.
[78] GWEON H K, LEE S Y, KWON H Y, et al. Exchange Bias in Weakly Interlayer-Coupled van der Waals Magnet Fe3GeTe2 [J]. Nano Lett, 2021, 21(4): 1672-8.
[79] ZHENG G, XIE W Q, ALBARAKATI S, et al. Gate-Tuned Interlayer Coupling in van der Waals Ferromagnet Fe3GeTe2 Nanoflakes [J]. Phys Rev Lett, 2020, 125(4): 047202.
[80] ZANG Z, XI M, TIAN S, et al. Exchange Bias Effects in Ferromagnetic MnSb2Te4 down to a Monolayer [J]. ACS Applied Electronic Materials, 2022, 4(7): 3256-62.
[81] REYES A R, CORRAL G A H, CASANOVA E G O, et al. Development and Validation of an X-ray Imaging Detector for Digital Radiography at Low Resolution, F, 2020 [C].
[82] BRAGG W H. The Reflection of X-Rays by Crystals [J]. Nature, 1913, 91(2280): 477.
[83] DE BROGLIE L. On the theory of quanta; proceedings of the Annales de Physique, F, 1925 [C].
[84] CHANDEKAR K V, SHKIR M, KHAN A, et al. 3 - Novel magnetic materials preparation, characterizations and their applications [M]//HUSSAIN C M, PATANKAR K K. Fundamentals and Industrial Applications of Magnetic Nanoparticles. Woodhead Publishing. 2022: 67-116.
[85] WILLIAMS D B, CARTER C B. Transmission Electron Microscopy [M]. 1996.
[86] DENG X, XIONG F, LI X, et al. Application of atomic force microscopy in cancer research [J]. Journal of Nanobiotechnology, 2018, 16.
[87] CAO H. Refrigeration Below 1 Kelvin [J]. Journal of Low Temperature Physics, 2021, 204(5): 175-205.
[88] ZHAO G. Spin Polarized Currents in Magnetic and Superconducting Structures [D]; Arizona State University, 2018.
[89] SIDDAPPA P G, TARIQ A. Low-temperature thermoelectric transport properties of selected metals and dielectrics [J]. Thermal Science and Engineering Progress, 2021, 24: 100940.
[90] YAMAMOTO S, MATSUDA I. Measurement of the Resonant Magneto-Optical Kerr Effect Using a Free Electron Laser [J]. Applied Sciences, 2017, 7: 662.
[91] YANG S, XU X, ZHU Y, et al. Odd-Even Layer-Number Effect and Layer-Dependent Magnetic Phase Diagrams in MnBi2Te4 [J]. Physical Review X, 2021, 11(1).
[92] JIN W, ZHANG G, WU H, et al. Room-Temperature and Tunable Tunneling Magnetoresistance in Fe3GaTe2-Based 2D van der Waals Heterojunctions [J]. ACS Appl Mater Interfaces, 2023, 15(30): 36519-26.
[93] PAN H, ZHANG C, SHI J, et al. Room-Temperature Lateral Spin Valve in Graphene/Fe3GaTe2 van der Waals Heterostructures [J]. ACS Materials Letters, 2023, 5(8): 2226-32.
[94] YUN C, GUO H, LIN Z, et al. Efficient current-induced spin torques and field-free magnetization switching in a room-temperature van der Waals magnet [J]. Sci Adv, 2023, 9(49): eadj3955.
[95] WU H, HU C, XIE Y, et al. Spectral Evidence for Local-Moment Ferromagnetism in van der Waals Metals Fe3GaTe2 and Fe3GeTe2 [J]. arXiv preprint arXiv:230700441, 2023.
[96] LEE J E, YAN S, OH S, et al. Electronic Structure of Above-Room-Temperature van der Waals Ferromagnet Fe3GaTe2 [J]. Nano Lett, 2023, 23(24): 11526-32.
[97] CHEN Z, YANG Y, YING T, et al. High-Tc Ferromagnetic Semiconductor in Thinned 3D Ising Ferromagnetic Metal Fe3GaTe2 [J]. Nano Lett, 2024, 24(3): 993-1000.
[98] LéVY F A. Crystallography and crystal chemistry of materials with layered structures [M]. Springer Science & Business Media, 2012.
[99] KONG T, GUO S, NI D, et al. Crystal structure and magnetic properties of the layered van der Waals compound VBr3 [J]. Physical Review Materials, 2019, 3(8).
[100]YI J, ZHUANG H, ZOU Q, et al. Competing antiferromagnetism in a quasi-2D itinerant ferromagnet: Fe3GeTe2 [J]. 2D Materials, 2016, 4(1).
[101]TIAN C-K, WANG C, JI W, et al. Domain wall pinning and hard magnetic phase in Co-doped bulk single crystalline Fe3GeTe2 [J]. Physical Review B, 2019, 99(18).
[102]GUGUCHIA Z, VEREZHAK J A T, GAWRYLUK D J, et al. Tunable anomalous Hall conductivity through volume-wise magnetic competition in a topological kagome magnet [J]. Nat Commun, 2020, 11(1): 559.
[103]LACHMAN E, MURPHY R A, MAKSIMOVIC N, et al. Exchange biased anomalous Hall effect driven by frustration in a magnetic kagome lattice [J]. Nat Commun, 2020, 11(1): 560.
[104]SOH J-R, YI C, ZIVKOVIC I, et al. Magnetic structure of the topological semimetal Co3Sn2S2 [J]. Physical Review B, 2022, 105(9).
[105]SHEN Z, ZHU X, ULLAH R R, et al. Anomalous depinning of magnetic domain walls within the ferromagnetic phase of the Weyl semimetal Co3Sn2S2 [J]. Journal of Physics: Condensed Matter, 2022, 35(4): 045802.
[106]LEE C, VIR P, MANNA K, et al. Observation of a phase transition within the domain walls of ferromagnetic Co3Sn2S2 [J]. Nature communications, 2022, 13(1): 3000.
[107]HOWLADER S, RAMACHANDRAN R, MONGA S, et al. Domain structure evolution in the ferromagnetic Kagome-lattice Weyl semimetal Co3Sn2S2 [J]. J Phys Condens Matter, 2020.
[108]WANG C, WANG J, XIE W-Q, et al. Sign-tunable exchange bias effect in proton-intercalated Fe3GaTe2 nanoflakes [J]. Physical Review B, 2023, 107(14).
[109]KONDO J. Resistance minimum in dilute magnetic alloys [J]. Progress of theoretical physics, 1964, 32(1): 37-49.
[110]RAPP Ö, BHAGAT S M, GUDMUNDSSON H. Evidence for correlation effects: −√T behaviour in the low temperature electrical resistance of disordered metals [J]. Solid State Communications, 1982, 42(10): 741-4.
[111]TAN C, LEE J, JUNG S G, et al. Hard magnetic properties in nanoflake van der Waals Fe3GeTe2 [J]. Nat Commun, 2018, 9(1): 1554.
[112]AMBROSE T, SOMMER R L, CHIEN C L. Angular dependence of exchange coupling in ferromagnet/antiferromagnet bilayers [J]. Physical Review B, 1997, 56(1): 83-6.

所在学位评定分委会
物理学
国内图书分类号
O469
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765830
专题南方科技大学
量子科学与工程研究院
推荐引用方式
GB/T 7714
尹小龙. 二维磁性材料Fe3GaTe2的磁性及自旋输运性质研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132865-尹小龙-量子科学与工程(9409KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[尹小龙]的文章
百度学术
百度学术中相似的文章
[尹小龙]的文章
必应学术
必应学术中相似的文章
[尹小龙]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。