中文版 | English
题名

过渡金属硫族化合物中电荷密度波及其他物性的调控与机理

其他题名
MODULATION AND MECHANISM OF CHARGE DENSITY WAVES AND OTHER PHYSICAL PROPERTIES IN THE TRANSITION METAL DICHALCOGENIDES
姓名
姓名拼音
ZHANG Wen
学号
12031190
学位类型
博士
学位专业
070205 凝聚态物理
学科门类/专业学位类别
07 理学
导师
吴健生
导师单位
量子科学与工程研究院
论文答辩日期
2024-05-09
论文提交日期
2024-06-22
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
过渡金属硫族化合物(Transition metal dichalcogenidesTMDs)因为独特的结构和丰富的物理性质受到广泛关注,尤其其中的电荷密度波(Charge Density WaveCDW)相变是近些年的研究热点。在这一家族材料中,即使晶体结构和电子结构相似,也会表现出丰富的 CDW 现象。并且由于强电子关联作用以及电声耦合作用,CDW 相、Mott 绝缘相和超导相之间的关系仍然是一个值得探究的课题。虽然CDW 相变已被广泛的研究,但目前对于这一体系内在机理探究仍然存在争议。为了有效地调控二维 TMDs 材料的 CDW 相,并深入研究其内在物理机理,需要研究者寻找切实可行的方法。这对于 TMDs 在低维电子学器件中的应用以及探索其新的物理性质具有重要的意义。本论文基于第一性原理计算,系统地对第五族和第六族 TMDs 材料中的 CDW 相的性质以及其他物性进行了详细研究。
本文通过分析 H-MX2 (M = Nb, Ta; X = S, Se) 体系在单层极限下的非谐声子谱,较准确的预测了四种材料的 CDW 相变温度,并且发现 H-NbS2 在非谐性的抑制下 CDW 完全缺失,但是微弱的应变调控可以诱导出 CDW 相变。随后证明了影响 CDW 相变强度的三个内在机制:离子电荷转移、电子-声子耦合和电子关联效应。这一理论框架为后续研究中解释其他相变机制提供了全面的分析视角。
本文系统地研究了 T-MX2 (M = Nb, Ta; X = S, Se) 材料中 CDW 相在不同的堆叠和厚度调控下的电子性质,这些材料中都存在一个能量最稳定的特殊堆叠序,因层间二聚化而形成天然的能带绝缘体。讨论了这一系列材料在不同的堆叠结构下,有无电子关联效应,以及不同磁序都会表现出不同的物理基态。该结果扩展了此前仅以 Mott-Hubbard 模型作为驱动力的金属-绝缘体相变的机制,并发掘了其应用于相变器件的潜力。
为了探究 TMDs 家族中其他 CDW 相变可能,本文系统地计算了电子掺杂对单层 H-MX2 (M = Mo, W; X = S, Se) 体系的电学性质、电子-声子相互作用和超导相的影响。本研究发现了两个分别来源于费米表面嵌套和电子-声子耦合的 CDW相。构建了在不同电子掺杂浓度下 CDW 相与超导相之间共存与竞争的复杂相图,并解释了这种复杂关系的内在物理机制。此外,本文以掺杂 K 原子的双层 MoS2为例,发现应变可通过调节层间载流子浓度来调控超导和 CDW 相变强度。这项研究结果为探索和调控二维 CDW 材料开辟了新途径。
基于 TMDs 场效应晶体管的实际应用,本文计算了不同金属-多层 MoS2 质结界面的肖特基势垒。计算结果表明不同的金属电极决定了肖特基势垒的类型,MoS2 层数会影响肖特基势垒大小。另外我们提出了两种调控肖特基势垒的大小和类型的可行性方案,一是多相堆叠,二是层间原子掺杂。该研究为优化和改进TMDs 材料的特性,以满足不同应用领域对电子器件性能的需求具有一定的理论指导意义。
关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2024-07
参考文献列表

[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thincarbon films[J]. Science, 2004, 306(5696): 666-669.
[2] GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.
[3] ZHANG Y, TAN Y W, STORMER H L, et al. Experimental observation of the quantum halleffect and Berry’s phase in graphene[J]. Nature, 2005, 438(7065): 201-204.
[4] LIU H, DU Y C, DENG Y X, et al. Semiconducting black phosphorus: Synthesis, transportproperties and electronic applications[J]. Chemical Society Reviews, 2015, 44(9): 2732-2743.
[5] LIN Y, WILLIAMS T V, CONNELL J W. Soluble, exfoliated hexagonal boron nitridenanosheets[J]. Journal of Physical Chemistry Letters, 2009, 237(653): 2732-2743.
[6] LIU Y, CHEN X, WANG X, et al. Research progress of two dimensional transition metaldichalcogenides[J]. Materials Review, 2014, 28(2A): 23-27.
[7] PING J, FAN Z, SINDORO M, et al. Nanosheet sensors: Recent advances in sensing applica￾tions of two-dimensional transition metal dichalcogenide nanosheets and their composites[J].Advanced Functional Materials, 2017, 27(19): 1605817.
[8] XUE Y H, ZHANG Q, WANG W J, et al. Opening two-dimensional materials for energyconversion and storage: A concept[J]. Advanced Energy Materials, 2017, 7(19): 1602684.
[9] TAN C, CAO X, WU X J, et al. Recent advances in ultrathin two-dimensional nanomaterials[J]. Chemical Reviews, 2017, 117(9): 6225-6331.
[10] BURCH K S, MANDRUS D, PARK J G. Magnetism in two-dimensional van der Waals mate￾rials[J]. Nature, 2018, 563(7729): 47-52.
[11] MAK K F, LEE C, HONE J, et al. Atomically thin MoS2: A new direct-gap semiconductor[J].Physical Review Letters, 2010, 105(13): 136805.
[12] KAM K K, PARKINSON B A. Detailed photocurrent spectroscopy of the semiconductinggroup VIB transition metal dichalcogenides[J]. Journal of Physical Chemistry, 1982, 86(4):463-467.
[13] BöKER T, SEVERIN R, MüLLER A, et al. Band structure of MoS2, MoSe2, and α-MoTe2:Angle-resolved photoelectron spectroscopy and ab-initio calculations[J]. Physical Review B,2001, 64(23): 235305-235305.
[14] SAHIN H, TONGAY S, HORZUM S, et al. Anomalous raman spectra and thickness dependentelectronic properties of WSe2[J]. Physical Review B, 2013, 87(16): 1106-1115.
[15] ZHENG F P, CAI C Y, GE S F, et al. On the quantum spin hall gap of monolayer 1T-WTe2[J].Advanced Materials, 2016, 28(24): 4845-4851.
[16] WANG Y J, LIU E F, LIU H M, et al. Gate-tunable negative longitudinal magnetoresistance inthe predicted type-II weyl semimetal WTe2[J]. Nature Communications, 2016, 7(24): 13142.117参考文献
[17] HELLGREN M, BAGUET L, CALANDRA M, et al. Electronic structure of TiSe2from aquasi-self-consistent G0W0 approach[J]. American Physical Society, 2021, 103(7): 075101.
[18] ALEX, ZUNGER, A., et al. Band structure and lattice instability of TiSe2[J]. Physical ReviewB, 1978, 17(4): 1839-1842.
[19] SöRGEL T, NUSS J, WEDIG U, et al. A new low temperature modification of TaTe2: Compari￾son to the room temperature and the hypothetical 1T-TaTe2 modification[J]. Materials ResearchBulletin, 2006, 41(5): 987-1000.
[20] DOUBLET M L, REMY S, LEMOIGNO F. Density functional theory analysis of the localchemical bonds in the periodic tantalum dichalcogenides TaX2(X=S, Se, Te)[J]. Journal ofChemical Physics, 2000, 113(14): 5879-5890.
[21] DE LA BARRERA S C, SINKO M R, GOPALAN D P, et al. Tuning Ising superconductiv￾ity with layer and spin-orbit coupling in two-dimensional transition-metal dichalcogenides[J].Nature Communications, 2018, 9: 1427.
[22] WEBER F, HOTT R, HEID R, et al. Three-dimensional Fermi surface of 2H-NbSe2: Implica￾tions for the mechanism of charge density waves[J]. Physical Review B, 2018, 97(23): 235122.
[23] LV R, ROBINSON J A, SCHAAK R E, et al. Transition metal dichalcogenides and beyond:Synthesis, properties, and applications of single- and few-layer nanosheets[J]. Accounts ofChemical Research, 2015, 48(1): 56-64.
[24] LIN Y C, DUMCENCON D O, HUANG Y S, et al. Atomic mechanism of the semiconducting￾to-metallic phase transition in single-layered MoS2[J]. Nature Nanotechnology, 2014, 9(5):391-396.
[25] WILSON J A, YOFFE A D. Transition metal dichalcogenides discussion and interpretation ofobserved optical,optical,electrical and structural properties[J]. Advances in Physics, 1969, 18(73): 193-197.
[26] FIORI G, BONACCORSO F, IANNACCONE G, et al. Electronics based on two-dimensionalmaterials[J]. Nature Nanotechnology, 2014, 9(10): 768-779.
[27] ANG R, TANAKA Y, IEKI E, et al. Real-space coexistence of the melted Mott state and super￾conductivity in Fe-substituted 1T-TaS2[J]. Physical Review Letters, 2012, 109(17): 176403.
[28] WANG B S, LIU Y, LUO X, et al. Universal phase diagram of superconductivity and chargedensity wave versus high hydrostatic pressure in pure and Se-doped 1T-TaS2[J]. Physical ReviewB, 2018, 97(22): 220504.
[29] HILL H M, RIGOSI A F, RIM K T, et al. Band alignment in MoS2/WS2transition metaldichalcogenide heterostructures probed by scanning tunneling microscopy and spectroscopy[J].Nano Letters, 2016, 16(8): 4831-4837.
[30] SIPOS B, KUSMARTSEVA A F, AKRAP A, et al. From Mott state to superconductivity in1T-TaS2[J]. Nature Materials, 2008, 7(12): 960-965.
[31] KEUM D H, CHO S, KIM J H, et al. Bandgap opening in few-layered monoclinic MoTe2[J].Nature Physics, 2015, 11(6): 482-U144.
[32] ZHU X T, GUO J D, ZHANG J D, et al. Misconceptions associated with the origin of chargedensity waves[J]. Advances in Physics-X, 2017, 2(3): 622-640.118参考文献
[33] JOHANNES M D, MAZIN I I. Fermi surface nesting and the origin of charge density waves inmetals[J]. Physical Review B, 2008, 77(16): 165135.
[34] WEBER F, ROSENKRANZ S, CASTELLAN J P, et al. Extended phonon collapse and theorigin of the charge-density wave in 2H-NbSe2[J]. Physical Review Letters, 2011, 107(10):107403.
[35] ZHU X, CAO Y, ZHANG J, et al. Classification of charge density waves based on their nature[J]. Proceedings of the National Academy of Sciences, 2015, 112(8): 2367-2371.
[36] LIU Y, ANG R, LU W J, et al. Superconductivity induced by Se-doping in layered charge￾density-wave system 1T-TaS2−𝑥Se𝑥[J]. Applied Physics Letters, 2013, 102(19): 192602.
[37] CHO K, KOńCZYKOWSKI M, TEKNOWIJOYO S, et al. Using controlled disorder to probethe interplay between charge order and superconductivity in NbSe2[J]. Nature Communications,2018, 9(1): 2796.
[38] BERTHIER C, MOLINIE P, JEROME D. Evidence for a connection between charge-dencitywaves and pressure enhancement of superconductivity in 2H-NbSe2[J]. Solid State Communi￾cations, 1976, 18(9-10): 1393-1395.
[39] KATZKE H, TOLEDANO P, DEPMEIER W. Phase transitions between polytypes and in￾tralayer superstructures in transition metal dichalcogenides[J]. Physical Review B, 2004, 69(13): 134111.
[40] KOLOBOV A V, TOMINAGA J. Two-dimensional transition-metal dichalcogenides[M]. 2016.
[41] LIN D, LI S, WEN J, et al. Patterns and driving forces of dimensionality-dependent chargedensity waves in 2H-type transition metal dichalcogenides[J]. Nature Communications, 2020,11(1): 2406.
[42] RESHAK A H, AULUCK S. Calculated optical properties of 2H-MoS2intercalated with lithium[J]. Physical Review B, 2003, 68(12): 125101.
[43] RESHAK A H, AULUCK S. Band structure and optical response of 2H-MoX2 compounds (X= S, Se, and Te)[J]. Physical Review B, 2005, 71(15): 155114.
[44] FARMANBAR M, BROCKS G. First-principles study of van der Waals interactions and latticemismatch at MoS2/metal interfaces[J]. Physical Review B, 2016, 93(8): 085304.
[45] 陈良惠. 半导体异质结及其在光电子学中的应用[J]. 物理, 2001.
[46] 翟天佑. 二维原子晶体的可控制备与光电性能研究[C]//中国化学会学术年会-第三十六分会: 纳米材料合成与组装. 2016.
[47] ALLAIN A, KANG J, BANERJEE K, et al. Electrical contacts to two-dimensional semicon￾ductors[J]. Nature Materials, 2015, 14(12): 1195-1205.
[48] CHEN Y W, LI Y C, WU J, et al. General criterion to distinguish between Schottky and Ohmiccontacts at the metal/two-dimensional semiconductor interface[J]. Nanoscale, 2017, 9(5): 2068-2073.
[49] XU Y, CHENG C, DU S C, et al. Contacts between two- and three-dimensional materials:Ohmic, Schottky, and 𝑝 − 𝑛 heterojunctions[J]. ACS Nano, 2016, 10(5): 4895-4919.
[50] POPOV I, SEIFERT G, TOMáNEK D. Designing electrical contacts to MoS2 monolayers: Acomputational study[J]. Physical Review Letters, 2012, 108(15): 156802.119参考文献
[51] KWON J Y, LEE J Y, YU Y J, et al. Thickness-dependent Schottky barrier height of MoS2field-effect transistors[J]. Nanoscale, 2017, 9(18): 6151-6157.
[52] GONG C, COLOMBO L, WALLACE R M, et al. The unusual mechanism of partial Fermi levelpinning at metal-MoS2interfaces[J]. Nano Letters, 2014, 14(4): 1714-1720.
[53] KANG J H, LIU W, SARKAR D, et al. Computational study of metal contacts to monolayertransition-metal dichalcogenide semiconductors[J]. Physical Review X, 2014, 4(3): 031005.
[54] CHEN W, SANTOS E J G, ZHU W G, et al. Tuning the electronic and chemical properties ofmonolayer MoS2 adsorbed on transition metal substrates[J]. Nano Letters, 2013, 13(2): 509-514.
[55] WILLIAM S. On the surface states associated with a periodic potential[J]. Physical Review,1939, 56(4): 317-323.
[56] BARDEEN J. Surface states and rectification at a metal semiconductor contact[J]. PhysicalReview, 1947, 71(10): 717-727.
[57] DAS S, CHEN H Y, PENUMATCHA A V, et al. High performance multilayer MoS2transistorswith scandium contacts[J]. Nano Letters, 2013, 13(1): 100-105.
[58] TUNG R T. The physics and chemistry of the Schottky barrier height[J]. Applied PhysicsReviews, 2014, 1(1): 011304.
[59] HEINE V. Theory of surface states[J]. Physical Review, 1965, 138(6A): A1689-A1696.
[60] LOUIET S G, COHEN M L. Self-consistent pseudopotential alculaction for a metal￾semiconductor interface[J]. Physical Review Letters, 1975, 35(13): 866-869.
[61] HASEGAWA H, SAWADA T. On the electrical properties of compound semiconductor inter￾faces in metal/insulator/semiconductor structures and the possible origin of interface states[J].Thin Solid Films, 1983, 103(1-3): 119-140.
[62] CHENG G, LUIGI C, ROBERT M W, et al. The unusual mechanism of partial Fermi levelpinning at metal-MoS2interfaces[J]. Nano Letters, 2014, 14(4): 1714-1720.
[63] GUO Y Z, LIU D M, ROBERTSON J. 3D behavior of Schottky barriers of 2D transition-metaldichalcogenides[J]. ACS Applied Materials Interfaces, 2015, 7(46): 25709-25715.
[64] LIU B, WU L J, ZHAO Y Q, et al. Tuning the Schottky barrier height of the Pd-MoS2 contactby different strains[J]. Physical Chemistry Chemical Physics, 2015, 17(40): 27088.
[65] ZHONG H X, QUHE R G, WANG Y Y, et al. Interfacial properties of monolayer and bilayerMoS2 contacts with metals: Beyond the energy band calculations[J]. Scientific Reports, 2016,6(2): 21786.
[66] PADILHA J E, FAZZIO A, DA SILVA A J. Van der Waals heterostructure of phosphorene andgraphene: Tuning the Schottky barrier and doping by electrostatic gating[J]. Physical ReviewLetters, 2015, 114(6): 066803.
[67] OZCELIK V O, AZADANI J G, YANG C, et al. Band alignment of two-dimensional semicon￾ductors for designing heterostructures with momentum space matching[J]. Physical Review B,2016, 94(3): 035125.
[68] 王倩. 金属-多层二维 MoS2 异质结的理论研究[D]. 哈尔滨工业大学, 2020.120参考文献
[69] CUI P, WEI D, JI J, et al. Planar 𝑝 − 𝑛 homojunction perovskite solar cells with efficiencyexceeding 21.3%[J]. Nature Energy, 2019, 4(2): 150-159.
[70] WU Z G, NEATON J B, GROSSMAN J C. Charge separation via strain in silicon nanowires[J]. Nano Letters, 2009, 9(6): 2418-2422.
[71] LI P, ZHOU Y, ZHAO Z Y, et al. Hexahedron prism-anchored octahedronal CeO2: Crystalfacet-based homojunction promoting efficient solar fuel synthesis[J]. Journal of the AmericanChemical Society, 2015, 137(30): 9547-9550.
[72] ZIZHENG, ZHAO, GANG, et al. Phase junction CdS: High efficient and stable photocatalystfor hydrogen generation[J]. Applied Catalysis B-Environmental, 2018, 221: 179-186.
[73] BAI Y, ZHOU Y E, ZHANG J, et al. Homophase junction for promoting spatial charge sepa￾ration in photocatalytic water splitting[J]. ACS Catalysis, 2019, 9(4): 3242-3252.
[74] WANG X L, LI C. Roles of phase junction in photocatalysis and photoelectrocatalysis[J]. Jour￾nal of Physical Chemistry C, 2018, 122(37): 21083-21096.
[75] PAN Y, FöLSCH S, LIN Y C, et al. WSe2 homojunctions and quantum dots created by patternedhydrogenation of epitaxial graphene substrates[J]. 2D Materials, 2019, 6(2): 021001.
[76] LI B, WAN Z, WANG C, et al. Van der Waals epitaxial growth of air-stable CrSe2 nanosheetswith thickness-tunable magnetic order[J]. Nature Materials, 2021, 20(6): 818-821.
[77] AVSAR A, CHEON C Y, PIZZOCHERO M, et al. Probing magnetism in atomically thin semi￾conducting PtSe2[J]. Nature Communications, 2020, 11(1): 4806.
[78] ZHANG K, ZOU N L, REN Y R, et al. Realization of coexisting charge density wave andquantum spin/anomalous hall state in monolayer NbTe2[J]. Advanced Functional Materials,2022, 32(23): 2111675.
[79] KOPNIN N B, HEIKKILä T T, VOLOVIK G E. High-temperature surface superconductivityin topological flat-band systems[J]. Physical Review B, 2011, 83(22): 220503.
[80] GHOSH S, BAO W Z, NIKA D L, et al. Dimensional crossover of thermal transport in few-layergraphene[J]. Nature Materials, 2010, 9(7): 555-558.
[81] LEE D S, RIEDL C, BERINGER T, et al. Quantum hall effect in twisted bilayer graphene[J].Physical Review Letters, 2011, 107(21): 216602.
[82] PEIERLS R E. Quantum theory of solids[M]. Oxford University Press, 1955.
[83] 阎守胜. 固体物理基础[M]. 固体物理基础, 2011.
[84] JOHANNES M D, MAZIN I, HOWELLS C A. Fermi-surface nesting and the origin of thecharge-density wave in NbSe2[J]. Physical Review B, 2006, 73(20): 205102.
[85] DUGDALE S B. Life on the edge: A beginner’s guide to the Fermi surface[J]. Physica Scripta,2016, 91(5): 053009.
[86] BORISENKO S V, KORDYUK A A, YARESKO A N, et al. Pseudogap and charge densitywaves in two dimensions[J]. Physical Review Letters, 2008, 100(19): 196402.
[87] INOSOV D S, ZABOLOTNYY V B, EVTUSHINSKY D V, et al. Fermi surface nesting inseveral transition metal dichalcogenides[J]. New Journal of Physics, 2008, 10: 12507.121参考文献
[88] BORISENKO S V, KORDYUK A A, ZABOLOTNYY V B, et al. Two energy gaps and fermi￾surface “arcs”in NbSe2[J]. Physical Review Letters, 2009, 102(16).
[89] O S, A C. An electron diffraction evidence of charge density wave instability in 2H-NbSe2[J].Physics Letters A, 1976, 56(1): 63-64.
[90] MONCTON D E, AXE J D, DISALVO F J. Study of superlattice fromation in 2H-NbSe2 and2H-TaSe2 by neutron-scattering[J]. Physical Review Letters, 1975, 34(12): 734-737.
[91] MONCTON D E, AXE J D, DISALVO F J. Neutron-scattering study of charge-dencity wavetransitions in 2H-TaSe2 and Nbe2[J]. Physical Review B, 1977, 16(2): 801-819.
[92] DU C H, LIN W J, SU Y, et al. X-ray scattering studies of 2H-NbSe2, a superconductorand charge density wave material, under high external magnetic fields[J]. Journal of Physics￾Condensed Matter, 2000, 12(25): 5361-5370.
[93] SOUMYANARAYANAN A, YEE M M, HE Y, et al. Quantum phase transition from triangularto stripe charge order in NbSe2[J]. Proceedings of The National Academy of Sciences of theUnited States of America, 2013, 110(5): 1623-1627.
[94] ARGUELLO C J, CHOCKALINGAM S P, ROSENTHAL E P, et al. Visualizing the chargedensity wave transition in 2H-NbSe2in real space[J]. Physical Review B, 2014, 89(23): 235115.
[95] MONCTON D E, AXE J D, DISALVO F J. Neutron-scattering study of charge-density wavetransitions in 2H-TaS2 and 2H-NbSe2[J]. Physical Review B, 1977, 16(2): 801-819.
[96] DUVJIR G, CHOI B K, JANG I, et al. Emergence of a metal-insulator transition and high￾temperature charge-density waves in VSe2 at the monolayer limit[J]. Nano Letters, 2018, 18(9):5432-5438.
[97] CHUA R, HENKE J, SAHA S, et al. Coexisting charge-ordered states with distinct drivingmechanisms in monolayer VSe2[J]. ACS Nano, 2022, 16(1): 783-791.
[98] CALANDRA M, MAZIN I, MAURI F. Effect of dimensionality on the charge-density wave infew-layer 2H-NbSe2[J]. Physical Review B, 2009, 80(24): 241108.
[99] KOGAR A, RAK M S, VIG S, et al. Signatures of exciton condensation in a transition metaldichalcogenide[J]. Science, 2017, 358(6368): 1314-1317.
[100] JEROME D, RICE T M, KOHN W. Excitonic insulator[J]. Physical Review, 1967, 158(2):462-475.
[101] SCRUBY C B, WILLIAMS P M, PARRY G S. Role of charge-density waves in structuraltransformations of 1T-TaS2[J]. Philosophical Magazine, 1975, 31(2): 255-274.
[102] TANDA S, SAMBONGI T, TANI T, et al. X-ray of charge-density waves structure in 1T-TaS2[J]. Journal of the Physical Society of Japan, 1984, 53(2): 476-479.
[103] CLERC F, BATTAGLIA C, BOVET M, et al. Lattice-distortion-enhanced electron-phononcoupling and Fermi surface nesting in 1T-TaS2[J]. Physical Review B, 2006, 74(15): 155114.
[104] RITSCHEL T, TRINCKAUF J, GARBARINO G, et al. Pressure dependence of the chargedensity wave in 1T-TaS2 and its relation to superconductivity[J]. Physical Review B, 2013, 87(12): 125135.122参考文献
[105] PERFETTI L, GLOOR T A, MILA F, et al. Unexpected periodicity in the quasi-two￾dimensional Mott insulator 1T-TaS2revealed by angle-resolved photoemission[J]. PhysicalReview B, 2005, 71(15): 153101.
[106] WANG Y D, YAO W L, XIN Z M, et al. Band insulator to Mott insulator transition in 1T-TaS2[J]. Nature Communications, 2020, 11(1): 4215.
[107] SVETIN D, VASKIVSKYI I, SUTAR P, et al. Transitions between photoinduced macroscopicquantum states in 1T-TaS2 controlled by substrate strain[J]. Applied Physics Express, 2014, 7(10): 103201.
[108] LEROUX M, CARIO L, BOSAK A, et al. Traces of charge density waves in NbS2[J]. PhysicalReview B, 2018, 97(19): 195140.
[109] XI X X, ZHAO L, WANG Z F, et al. Strongly enhanced charge-density-wave order in monolayerNbSe2[J]. Nature Nanotechnology, 2015, 10(9): 765-770.
[110] HORIBA K, ONO K, OH J H, et al. Charge-density wave and three-dimensional Fermi surface in1T−TaSe2studied by photoemission spectroscopy[J]. Physical Review B, 2002, 66(7): 073106.
[111] ZHANG K, SI C, LIAN C S, et al. Mottness collapse in monolayer 1T-TaSe2 with persistingcharge density wave order[J]. Journal of Materials Chemistry C, 2020, 8(28): 9742-9747.
[112] WILSON J A, DISALVO F J, MAHAJAN S. Charge-density waves and superlattices in metalliclayered transition-metal dichalcogeides[J]. Advances in Physics, 1975, 24(2): 117-201.
[113] YOSHIDA M, SUZUKI R, ZHANG Y J, et al. Memristive phase switching in two-dimensional1T-TaS2 crystals[J]. Science Advances, 2015, 1(9): e1500606.
[114] CHEN Y, RUAN W, WU M, et al. Strong correlations and orbital texture in single-layer 1T￾TaSe2[J]. Nature Physics, 2020, 16(2): 218-224.
[115] NAKATA Y, SUGAWARA K, CHAINANI A, et al. Robust charge-density wave strengthenedby electron correlations in monolayer 1T-TaSe2 and 1T-NbSe2[J]. Nature Communications,2021, 12(1): 5873.
[116] NAKATA Y, SUGAWARA K, SHIMIZU R, et al. Monolayer 1T-NbSe2 as a Mott insulator[J].NPG Asia Materials, 2016, 8(11): e321-e321.
[117] CALANDRA M. Phonon-assisted magnetic Mott-insulating state in the charge density wavephase of single-layer 1T-NbSe2[J]. Physical Review Letters, 2018, 121(2): 026401.
[118] WANG W, WANG B, GAO Z, et al. Charge density wave instability and pressure-inducedsuperconductivity in bulk 1T−NbS2[J]. Physical Review B, 2020, 102(15): 155115.
[119] TRESCA C, CALANDRA M. Charge density wave and spin 1/2 insulating state in single layer1T-NbS2[J]. 2D Materials, 2019, 6(3): 035041.
[120] CASTRO NETO A H. Charge density wave, superconductivity, and anomalous metallic be￾havior in 2D transition metal dichalcogenides[J]. Physical Review Letters, 2001, 86(19): 4382-4385.
[121] LEROUX M, TACON M L, CALANDRA M, et al. Anharmonic suppression of charge densitywave in 2H-NbS2[J]. Physical Review B, 2012, 86(15): 155125-155125.123参考文献
[122] LIN H, HUANG W, ZHAO K, et al. Growth of atomically thick transition metal sulfide filmsongraphene/6H-SiC(0001) by molecular beam epitaxy[J]. Nano Research, 2018, 11(9): 4722-4727.
[123] STAN R M, MAHATHA S K, BIANCHI M, et al. Epitaxial single-layer NbS2 on Au(111): Syn￾thesis, structure, and electronic properties[J]. Physical Review Materials, 2019, 3(4): 044003.
[124] LIAN C S, HEIL C, LIU X, et al. Coexistence of superconductivity with enhanced chargedensity wave order in the two-dimensional limit of TaSe2[J]. Journal of Physical ChemistryLetters, 2019, 10(14): 4076-4081.
[125] NAVARRO-MORATALLA E, ISLAND J O, MAñAS-VALERO S, et al. Enhanced supercon￾ductivity in atomically thin TaS2[J]. Nature Communications, 2016, 7.
[126] WAGNER K E, MOROSAN E, HOR Y S, et al. Tuning the charge density wave and supercon￾ductivity in Cu𝑥TaS2[J]. Physical Review B, 2008, 78(10): 104520.
[127] HARPER J M E, GEBALLE T H, DISALVO F J. Thermal properties of layered transition￾metal dichalcogendides at charge-density wave transitions[J]. Physical Review B, 1977, 15(6):2943-2951.
[128] HEIL C, PONCé S, LAMBERT H, et al. Origin of superconductivity and latent charge densitywave in NbS2[J]. Physical Review Letters, 2017, 119(8): 087003.
[129] BIN SUBHAN M K, SULEMAN A, MOORE G, et al. Charge density waves in electron-dopedmolybdenum disulfide[J]. Nano Letters, 2021, 21(13): 5516-5521.
[130] HUBBARD J. Electron correlations in narrow energy bands[J]. Proceedings of the Royal Soci￾ety of London Series a Mathematical and Physical Sciences, 1963, 276(1364): 238-257.
[131] MOTT N F. Metal-insulator transition[J]. Reviews of Modern Physics, 1968, 40: 677-683.
[132] 冯瑞, 金国钧. 凝聚态物理学[M]. 高等教育出版社, 2003.
[133] WILSON J A, DISALVO F J, MAHAJAN S. Charge-density waves in metallic, layered,transition-metal dichalcogenides[J]. Physical Review Letters, 1974, 32(16): 882-885.
[134] MEYER S F, HOWARD R E, STEWART G R, et al. Properties of intercalated 2H-NbSe2,4Hb-TaS2, and 1T-TaS2[J]. Journal of Chemical Physics, 1975, 62(11): 4411-4419.
[135] YU Y J, YANG F Y, LU X F, et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2[J].Nature Nanotechnology, 2015, 10(3): 270-276.
[136] QIAO S, LI X T, WANG N Z, et al. Mottness collapse in 1T-TaS2−𝑥Se𝑥 transition-metaldichalcogenide: An interplay between localized and itinerant orbitals[J]. Physical Review X,2017, 7(4): 041054.
[137] LIU G X, DEBNATH B, POPE T R, et al. A charge density wave oscillator based on an in￾tegrated tantalum disulfide boron nitride graphene device operating at room temperature[J].Nature Nanotechnology, 2016, 11(10): 844-850.
[138] BUTLER C J, YOSHIDA M, HANAGURI T, et al. Mottness versus unitcell doubling as thedriver of the insulating state in 1T-TaS2[J]. Nat Commun, 2020, 11(1): 2477.
[139] MARTINO E, PISONI A, ĆIRIć L, et al. Preferential out-of-plane conduction and quasi-one￾dimensional electronic states in layered 1T-TaS2[J]. npj 2D Materials and Applications, 2020,4(1): 7.124参考文献
[140] DARANCET P, MILLIS A J, MARIANETTI C A. Three-dimensional metallic and two￾dimensional insulating behavior in octahedral tantalum dichalcogenides[J]. Physical ReviewB, 2014, 90(4): 045134.
[141] LIN H, HUANG W, ZHAO K, et al. Scanning tunneling spectroscopic study of monolayer1T-TaS2 and 1T-TaSe2[J]. Nano Research, 2019, 13(1): 133-137.
[142] KANCHARLA S S, OKAMOTO S. Band insulator to Mott insulator transition in a bilayerHubbard model[J]. Physical Review B, 2007, 75(19): 193103.
[143] TAYLOR A W B. Microscopic theory superconductivity[J]. Contemporary Physics, 1968, 9(6): 549-556.
[144] 张裕恒, 李玉芝. 超导物理[M]. 超导物理, 1992.
[145] MOLINIE P, JEROME D, GRANT A J. Pressure-enhanced superconductivity and superlatticestructures in transition-metal dichalcogenide layer crystals[J]. Philosophical Magazine, 1974,30(5): 1091-1103.
[146] SHAO D F, XIAO R C, LU W J, et al. Manipulating charge density waves in 1T−TaS2 bycharge-carrier doping: A first-principles investigation[J]. Physical Review B, 2016, 94(12):125126.
[147] SHI J, CHEN X, ZHAO L, et al. Chemical vapor deposition grown wafer-scale 2D tantalum dise￾lenide with robust charge-density-wave order[J]. Advanced Materials, 2018, 30(44): e1804616.
[148] WU Y, HE J, LIU J, et al. Dimensional reduction and ionic gating induced enhancement ofsuperconductivity in atomically thin crystals of 2H-TaSe2[J]. Nanotechnology, 2019, 30(3):035702.
[149] LIAN C S, SI C, DUAN W. Unveiling charge-density wave, superconductivity, and their com￾petitive nature in two-dimensional NbSe2[J]. Nano Letters, 2018, 18(5): 2924-2929.
[150] FANG Y, PAN J, HE J, et al. Structure re-determination and superconductivity observation ofbulk 1T MoS2[J]. Angewandte Chemie-International Edition, 2018, 57(5): 1232-1235.
[151] HEINE T. Transition metal chalcogenides: Ultrathin inorganic materials with tunable electronicproperties[J]. Accounts of Chemical Research, 2015, 48(1): 65-72.
[152] WOOLLAM J A, SOMOANO R B. Physics and chemistry of MoS2intercalation compounds[J]. Materials Science and Engineering, 1977, 31(9): 289-295.
[153] YE J T, ZHANG Y J, AKASHI R, et al. Superconducting dome in a gate-tuned band insulator[J]. Science, 2012, 338(6111): 1193-1196.
[154] SHI W, YE J, ZHANG Y, et al. Superconductivity series in transition metal dichalcogenides byionic gating[J]. Scientific Reports, 2015, 5: 12534.
[155] RAO G V S, SHAFER M W, KAWARAZA.S, et al. Superconductivity in alkaline-earth metaland Yb intercalated group VI layed dichalcogenides[J]. Journal of Solid State Chemistry, 1974,9(4): 323-329.
[156] FENG J, SUN X, WU C Z, et al. Metallic few-layered VS2 ultrathin nanosheets: High two￾dimensional conductivity for in-plane supercapacitors[J]. Journal of the American ChemicalSociety, 2011, 133(44): 17832-17838.125参考文献
[157] HUANG Y H, CHEN R S, ZHANG J R, et al. Electronic transport in NbSe2two-dimensionalnanostructures: Semiconducting characteristics and photoconductivity[J]. Nanoscale, 2015, 7(45): 18964-18970.
[158] WU M C, AZIZ A, WITT J D S, et al. Structural and functional analysis of nanopillar spinelectronic devices fabricated by 3D focused ion beam lithography[J]. Nanotechnology, 2008,19(48): 485305.
[159] MRAZ A, VASKIVSKYI I, VENTURINI R, et al. Charge configuration memory (CCM) device- a novel approach to memory[J]. Informacije Midem-Journal of Microelectronics ElectronicComponents and Materials, 2021, 51(3): 157-167.
[160] VASKIVSKYI I, MIHAILOVIC I A, BRAZOVSKII S, et al. Fast electronic resistance switchinginvolving hidden charge density wave states[J]. Nature Communications, 2016, 7(10): 11442.
[161] PáSZTOR A, SCARFATO A, SPERA M, et al. Multiband charge density wave exposed in atransition metal dichalcogenide[J]. Nature Communications, 2021, 12(1): 6037.
[162] GYE G, OH E, YEOM H W. Topological landscape of competing charge density waves in2H-NbSe2[J]. Physical Review Letters, 2019, 122(1): 016403.
[163] WANG J, GUO C, GUO W L, et al. Tunable 2H-TaSe2room-temperature terahertz photode￾tector[J]. Chinese Physics B, 2019, 28(4): 046802.
[164] FENG H F, XU Z F, ZHUANG J C, et al. Role of charge density wave in monatomic assemblyin transition metal dichalcogenides[J]. Advanced Functional Materials, 2019, 29(15): 1900367.
[165] ZHANG Q Z, HUANG Z P, HOU Y H, et al. Tuning molecular superlattice by charge-density￾wave patterns in two-dimensional monolayer crystals[J]. Journal of Physical Chemistry Letters,2021, 12(14): 3545-3551.
[166] TULLY J C. Perspective on zur quantentheorie der molekeln[J]. Theoretical Chemistry Ac￾counts, 2000, 103(3-4): 173-176.
[167] ESSéN H. The physics of the Born-Oppenheimer approximation[J]. International Journal ofQuantum Chemistry, 1977, 12(4): 721-735.
[168] GRIBOV L A. Calculation of the potential energy surface of a polyatomic molecule in anadiabatic approximation[J]. Journal of Structural Chemistry, 1995, 36(6): 1046-1048.
[169] HARTREE D R. The wave mechanics of an atom with a non-coulomb central field part I theoryand methods[J]. Proceedings of the Cambridge Philosophical Society, 1928, 24: 89-110.
[170] HARTREE D R. The wave mechanics of an atom with a non-coulomb central field part IIsome results and discussion[J]. Proceedings of The Cambridge Philosophical Society, 1928,24: 111-132.
[171] FOCK V. Näherungs methode zur Lösung des quanten mechanischen mehrkörper problems[J].Zeitschrift fur Medizinische Physik, 1930, 61(1-2): 126-148.
[172] STRATMANN R E, SCUSERIA G E, FRISCH M J. An efficient implementation of time￾dependent density-functional theory for the calculation of excitation energies of large molecules[J]. Journal of Chemical Physics, 1998, 109(19): 8218-8224.
[173] 谢希德. 固体能带理论[M]. 固体能带理论, 1998.126参考文献
[174] 徐光宪, 黎乐民, 王德民. 量子化学基本原理和从头计算法[M]. 量子化学基本原理和从头计算法, 1985.
[175] HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Physical Review B, 1964, 136(3B): B864-B870.
[176] KOHN W, SHAM L J. Self-consisten equations including exchange and corrlation effects[J].Physical Review, 1965, 140(4A): 1133-1138.
[177] DREIZLER R, GROSS E. Density functional theory: An approach to the quantum many bodyproblem[M]. Springer Science Business Media, 2012.
[178] KOHN W. Nobel lecture: Electronic structure of matter-wave functions and density functionals[J]. Reviews of Modern Physics, 1999, 71(5): 1253-1266.
[179] 曾瑾言. 量子力学导论[M]. 量子力学导论, 1998.
[180] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
[181] LIECHTENSTEIN A I, ANISIMOV V I, ZAANEN J. Density-functional theory and strong￾interactions-orbital ordering in Mott-Hubbard insulators[J]. Physical Review B, 1995, 52(8):R5467-R5470.
[182] DUDAREV S L, BOTTON G A, SAVRASOV S Y, et al. Electron-energy-loss spectra and thestructural stability of nickel oxide: An LSDA+U study[J]. Physical Review B, 1998, 57(3):1505-1509.
[183] ARYASETIAWAN F, GUNNARSSON O. The GW method[J]. Reports on Progress in Physics,1998, 61(3): 237-312.
[184] GEORGES A, KOTLIAR G, KRAUTH W, et al. Dynamical mean-field theory of stronglycorrelated fermion systems and the limit of infinite dimensions[J]. Reviews of Modern Physics,1996, 68(1): 13-125.
[185] PERDEW J P, WANG Y. Accurate and simple analytic representation of the electron-gas cor￾relation energy[J]. Physical Review B, 1992, 45(23): 13244-13249.
[186] SHI J M, PEETERS F M, HAI G Q, et al. Donor transition energy in gaas superlattices in amagnetic-field along the growth axis[J]. Physical Review B, 1991, 44(11): 5692-5702.
[187] BECKE A D, JOHNSON E R. A simple effective potential for exchange[J]. Journal of ChemicalPhysics, 2006, 124(22): 221101.
[188] TRAN F, BLAHA P. Accurate band gaps of semiconductors and insulators with a semilocalexchange-correlation potential[J]. Physical Review Letters, 2009, 102(22): 226401.
[189] PAIER J, MARSMAN M, HUMMER K, et al. Screened hybrid density functionals applied tosolids[J]. Journal of Chemical Physics, 2006, 125(24): 249901.
[190] HEYD J, SCUSERIA G E, ERNZERHOF M. Hybrid functionals based on a screened coulombpotential[J]. Journal of Chemical Physics, 2003, 118(18): 8207-8215.
[191] BLOCHL P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24): 17953-17979.
[192] SCHLUTER M, HAMANN D R, CHIANG C. Norm-conserving pseudopotentials[J]. Bulletinof the American Physical Society, 1980, 25(3): 394-394.127参考文献
[193] VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B, 1990, 41(11): 7892-7895.
[194] HERNáNDEZ-TRUJILLO J, CORTéS-GUZMáN F, FANG D C, et al. Forces in molecules[J].Faraday Discussions, 2007, 135: 79-95.
[195] PARLINSKI K, LI Z Q, KAWAZOE Y. First-principles determination of the soft mode in cubicZrO2[J]. Physical Review Letters, 1997, 78(21): 4063-4066.
[196] GIANNOZZI P, ANDREUSSI O, BRUMME T, et al. Advanced capabilities for materials mod￾elling with QUANTUM ESPRESSO[J]. Journal of Physics-Condensed Matter, 2017, 29(46):465901.
[197] BUDAI J D, HONG J W, MANLEY M E, et al. Metallization of vanadium dioxide driven bylarge phonon entropy[J]. Nature, 2014, 515(7528): 535-542.
[198] ROMERO A H, GROSS E K U, VERSTRAETE M J, et al. Thermal conductivity in PbTe fromfirst principles[J]. Physical Review B, 2015, 91(21): 214310.
[199] CAR R, PARRINELLO M. Unified for molecular-dynamics and density-functional theory[J].Physical Review Letters, 1985, 55(22): 2471-2474.
[200] ERIKSSON F, FRANSSON E, ERHART P. The Hiphive package for the extraction of high￾odrer force constants by machine learning[J]. Advanced Theory and Simulations, 2019, 2(5):1800184.
[201] ADA T E, ADEM D, NIGUSSA K N, et al. The amplitudons of dynamical as well as stablebinary cubic crystals for hot-electron cooling and enhanced thermoelectric effect[J]. Physica B:Condensed Matter, 2023, 666: 415091.
[202] ALLEN P B, DYNES R C. Transition-temperature of strong-coupled superconductors reana￾lyzed[J]. Physical Review B, 1975, 12(3): 905-922.
[203] MARQUES M A L, LüDERS M, LATHIOTAKIS N N, et al. Ab initio theory of superconduc￾tivity II: application to elemental metals[J]. Physical Review B, 2005, 72(2): 024546.
[204] LüDERS M, MARQUES M A L, LATHIOTAKIS N N, et al. Ab initio theory of superconduc￾tivity I: density functional formalism and approximate functionals[J]. Physical Review B, 2005,72(2): 024545.
[205] AKASHI R, KAWAMURA M, TSUNEYUKI S, et al. First-principles study of the pressureand crystal-structure dependences of the superconducting transition temperature in compressedsulfur hydrides[J]. Physical Review B, 2015, 91(22): 518-525.
[206] PROBERT M. Electronic structure: Basic theory and practical methods[J]. ContemporaryPhysics, 2020, 61(4): 312-312.
[207] KORTUS J, MAZIN I, BELASHCHENKO K D, et al. Superconductivity of metallic boron inMgB2[J]. Physical Review Letters, 2001, 86(20): 4656-4659.
[208] CALANDRA M, MAURI F. Charge-density wave and superconducting dome in TiSe2fromelectron-phonon interaction[J]. Physical Review Letters, 2011, 106(19): 196406.
[209] ZHENG F P, LI X B, LIN Y P, et al. Emergent superconductivity in two-dimensional NiTe2crystals[J]. Physical Review B, 2020, 101(10): 100505.128参考文献
[210] KRESSE G, FURTHMULLER J. Efficient iterative schemes for ab-initio total-energy calcula￾tions using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186.
[211] KRESSE G, HAFNER J. Norm-conserving and ultrasoft pseudopotentials for first-row andtransition-elements[J]. Journal of Physics Condensed Matter, 1994, 6(40): 8245-8257.
[212] SAMIN A, LI X, ZHANG J S, et al. Ab initio molecular dynamics study of the properties ofcerium in liquid sodium at 1000 K temperature[J]. Journal of Applied Physics, 2015, 118(23):234902.
[213] GONZE X. Adiabatic density-functional perturbation-theory[J]. Physical Review A, 1995, 52(2): 1096-1114.
[214] BARONI S, DE GIRONCOLI S, DAL CORSO A, et al. Phonons and related crystal propertiesfrom density-functional perturbation theory[J]. Reviews of Modern Physics, 2001, 73(2): 515-562.
[215] GONZE X. Adiabatic density-functional perturbation theory[J]. Physical Review A, 1996, 54(5): 4591-4591.
[216] HAJIYEV P, CONG C X, QIU C Y, et al. Contrast and raman spectroscopy study of single- andfew-layered charge density wave material: 2H-TaSe2[J]. Scientific Reports, 2013, 3: 2593.
[217] UGEDA M M, BRADLEY A J, ZHANG Y, et al. Characterization of collective ground statesin single-layer NbSe2[J]. Nature Physics, 2015, 12(1): 92-97.
[218] CHEN P, CHAN Y H, FANG X Y, et al. Charge density wave transition in single-layer titaniumdiselenide[J]. Nature Communications, 2015, 6: 8943.
[219] SUGAWARA K, NAKATA Y, SHIMIZU R, et al. Unconventional charge-density-wave transi￾tion in monolayer 1T-TiSe2[J]. ACS Nano, 2016, 10(1): 1341-1345.
[220] RYU H, CHEN Y, KIM H, et al. Persistent charge-density-wave order in single-layer TaSe2[J].Nano Letters, 2018, 18(2): 689-694.
[221] FU W, CHEN Y, LIN J, et al. Controlled synthesis of atomically thin 1T-TaS2for tunable chargedensity wave phase transitions[J]. Chemistry of Materials, 2016, 28(21): 7613-7618.
[222] WANG H, CHEN Y, DUCHAMP M, et al. Large-area atomic layers of the charge-density-waveconductor TiSe2[J]. Advanced Materials, 2018, 30(8): 1704382.
[223] YANG Y F, FANG S, FATEMI V, et al. Enhanced superconductivity upon weakening of chargedensity wave transport in 2H-TaS2in the two-dimensional limit[J]. Physical Review B, 2018,98(3): 035203.
[224] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wavemethod[J]. Physical Review B, 1999, 59(3): 1758-1775.
[225] TOGO A, TANAKA I. First principles phonon calculations in materials science[J]. ScriptaMaterialia, 2015, 108(28): 1-5.
[226] VERSTRAETE M J, TORRENT M, JOLLET F, et al. Density functional perturbation theorywith spin-orbit coupling: Phonon band structure of lead[J]. Physical Review B, 2008, 78(4).
[227] CHIS V, SKLYADNEVA I Y, KOKH K A, et al. Vibrations in binary and ternary topologicalinsulators: First-principles calculations and Raman spectroscopy measurements[J]. PhysicalReview B, 2012, 86(17).129参考文献
[228] BIANCO R, MONACELLI L, CALANDRA M, et al. Weak dimensionality dependence anddominant role of ionic fluctuations in the charge-density-wave transition of NbSe2[J]. PhysicalReview Letters, 2020, 125(10): 106101.
[229] BIANCO R, ERREA I, MONACELLI L, et al. Quantum enhancement of charge density wavein NbS2in the two-dimensional limit[J]. Nano Letters, 2019, 19(5): 3098-3103.
[230] CHEN C, SINGH B, LIN H, et al. Reproduction of the charge density wave phase diagram in1T-TiSe2 exposes its excitonic character[J]. Physical Review Letters, 2018, 121(22): 226602.
[231] DUONG D L, RYU G, HOYER A, et al. Raman characterization of the charge density wavephase of 1T-TiSe2: From bulk to atomically thin layers[J]. ACS Nano, 2017, 11(1): 1034-1040.
[232] DUONG D L, BURGHARD M, SCHöN J C. Ab initio computation of the transition temperatureof the charge density wave transition in TiSe2[J]. Physical Review B, 2015, 92(24): 245131.
[233] LEROUX M, ERREA I, LE TACON M, et al. Strong anharmonicity induces quantum melting ofcharge density wave in 2H−NbSe2 under pressure[J]. Physical Review B, 2015, 92(14): 140303.
[234] ZHOU J Q S, MONACELLI L, BIANCO R, et al. Anharmonicity and doping melt the chargedensity wave in single-layer TiSe2[J]. Nano Letters, 2020, 20(7): 4809-4815.
[235] RIBEIRO G A S, PAULATTO L, BIANCO R, et al. Strong anharmonicity in the phonon spectraof PbTe and SnTe from first principles[J]. Physical Review B, 2018, 97(1): 014306.
[236] ASEGINOLAZA U, BIANCO R, MONACELLI L, et al. Strong anharmonicity and high ther moelectric efficiency in high-temperature SnS from first principles[J]. Physical Review B, 2019,100(21): 214307.
[237] FISHER W G, SIENKO M J. Stoichiometry, structure, and physical-properties of niobiumdisulfied[J]. Inorganic Chemistry, 1980, 19(1): 39-43.
[238] ZHENG F, FENG J. Electron-phonon coupling and the coexistence of superconductivity andcharge-Density wave in monolayer NbSe2[J]. Physical Review B, 2019, 99(16): 161119.
[239] HINSCHE N F, THYGESEN K S. Electron-phonon interaction and transport properties ofmetallic bulk and monolayer transition metal dichalcogenide TaS2[J]. 2D Materials, 2018, 5(1): 015009.
[240] VAN LOON E, RöSNER M, SCHöNHOFF G, et al. Competing coulomb and electron-phononinteractions in NbS2[J]. Npj Quantum Materials, 2018, 3(2): 32.
[241] GONG C, LI L, LI Z, et al. Discovery of intrinsic ferromagnetism in two-dimensional van derWaals crystals[J]. Nature, 2017, 546(7657): 265-269.
[242] NOVOSELOV K S, MISHCHENKO A, CARVALHO A, et al. 2D materials and van der Waalsheterostructures[J]. Science, 2016, 353(6298): aac9439.
[243] BARNES N. Van der Waals heterostructures[J]. Nature Reviews Methods Primers, 2022, 2(1):541-549.
[244] LU X B, STEPANOV P, YANG W, et al. Superconductors, orbital magnets and correlated statesin magic-angle bilayer graphene[J]. Nature, 2019, 574(7780): 653-661.
[245] YANKOWITZ M, CHEN S W, POLSHYN H, et al. Tuning superconductivity in twisted bilayergraphene[J]. Science, 2019, 363(6431): 1059-1064.
[246] ZHANG W J, WANG Q, HU L, et al. Electrical contacts to few-layer MoS2 with phase￾engineering and metal intercalation for tuning the contact performance[J]. Journal of ChemicalPhysics, 2021, 154(18): 184705.
[247] SHARPE A L, FOX E J, BARNARD A W, et al. Emergent ferromagnetism near three-quartersfilling in twisted bilayer graphene[J]. Science, 2019, 365(6453): 605-608.
[248] WANG W, SI C, LEI W, et al. Stacking order and coulomb correlation effect in the layeredcharge density wave phase of 1T−NbS2[J]. Physical Review B, 2022, 105(3): 035119.
[249] GIVENS F, FREDERICKS G. Thermal expansion op NbSe2 and TaS2[J]. Journal of Physicsand Chemistry of Solids, 1977, 38(12): 1363-1365.
[250] CARMALT C J, MANNING T D, PARKIN I P, et al. Formation of a new (1T) trigonal NbS2polytype via atmospheric pressure chemical vapour deposition[J]. Journal of Materials Chem￾istry, 2004, 14(3): 290-291.
[251] ZHANG Q Y, GAN L Y, CHENG Y C, et al. Spin polarization driven by a charge-density wavein monolayer 1T-TaS2[J]. Physical Review B, 2014, 90(8): 081103.
[252] FAZEKAS P, TOSATTI E. Charge carrier localization in pure and doped 1T-TaS2[J]. PhysicaB+C, 1980, 99(1-4): 183-187.
[253] JIANG T, HU T, ZHAO G D, et al. Two-dimensional charge density waves in TaX2(X=S, Se,Te) from first principles[J]. Physical Review B, 2021, 104(7): 075147.
[254] PASQUIER D, YAZYEV O V. Charge density wave phase, mottness, and ferromagnetism inmonolayer 1T−NbSe2[J]. Physical Review B, 2018, 98(4): 045114.
[255] LEE S H, GOH J S, CHO D. Origin of the insulating phase and first-order metal-insulatortransition in 1T-TaS2[J]. Physical Review Letters, 2019, 122(10): 106404.
[256] RITSCHEL T, TRINCKAUF J, KOEPERNIK K, et al. Orbital textures and charge density wavesin transition metal dichalcogenides[J]. Nature Physics, 2015, 11(4): 328-331.
[257] YU X L, LIU D Y, QUAN Y M, et al. Electronic correlation effects and orbital density wave inthe layered compound 1T-TaS2[J]. Physical Review B, 2017, 96(12): 125138.
[258] VON WITTE G, KIßLINGER T, HORSTMANN J G, et al. Surface structure and stackingof the commensurate(13×13)R13.9ff charge density wave phase of 1T−TaS2(0001)[J]. PhysicalReview B, 2019, 100(15): 155407.
[259] HOVDEN R, TSEN A W, LIU P, et al. Atomic lattice disorder in charge-density-wave phasesof exfoliated dichalcogenides (1T-TaS2)[J]. Proceedings of the National Academy of Sciencesof the United States of America, 2016, 113(41): 11420-11424.
[260] CHO D, CHEON S, KIM K S, et al. Nanoscale manipulation of the Mott insulating state coupledto charge order in 1T-TaS2[J]. Nature Communications, 2016, 7: 10453.
[261] MA L, YE C, YU Y, et al. A metallic mosaic phase and the origin of Mott-insulating state in1T-TaS2[J]. Nature Communications, 2016, 7(1): 10956.
[262] STAHL Q, KUSCH M, HEINSCH F, et al. Collapse of layer dimerization in the photo-inducedhidden state of 1T-TaS2[J]. Nature Communications, 2020, 11(1): 1247.131参考文献
[263] GERASIMENKO Y A, KARPOV P, VASKIVSKYI I, et al. Intertwined chiral charge orders andtopological stabilization of the light-induced state of a prototypical transition metal dichalco￾genide[J]. npj Quantum Materials, 2019, 4(1): 32.
[264] RIBAK A, SILBER I, BAINES C, et al. Gapless excitations in the ground state of 1T−TaS2[J].Physical Review B, 2017, 96(19): 195131.
[265] MAñAS-VALERO S, HUDDART B M, LANCASTER T, et al. Quantum phases and spin liquidproperties of 1T-TaS2[J]. npj Quantum Materials, 2021, 6(1): 69.
[266] LI C K, YAO X P, LIU J, et al. Fractionalization on the surface: Is type-II terminated 1T-TaS2surface an anomalously realized spin liquid?[J]. Physical Review letters, 2022, 129(1): 017202.
[267] WANG W, ZHAO B, MING X, et al. Multiple quantum states induced in 1T‐TaSe2 by control￾ling the stacking order of charge density waves[J]. Advanced Functional Materials, 2023, 33(20): 2214583.
[268] WANG W, ZHAO B, MING X, et al. Multiple quantum states induced in 1T-TaSe2 by control￾ling the stacking order of charge density waves[J]. Advanced Functional Materials, 2023, 33(20): 2214583.
[269] DION M, RYDBERG H, SCHRODER E, et al. Van der Waals density functional for generalgeometries[J]. Physical Review Letters, 2004, 92(24): 246401.
[270] KLIMES J, BOWLER D R, MICHAELIDES A. Van der Waals density functionals applied tosolids[J]. Physical Review B, 2011, 83(19): 195131.
[271] CLERC F, BATTAGLIA C, CERCELLIER H, et al. Fermi surface of layered compoundsand bulk charge density wave systems[J]. Journal of Physics-Condensed Matter, 2007, 19(35):355002.
[272] BOVET M, POPOVIC D, CLERC F, et al. Pseudogapped fermi surfaces of 1T-TaS2 and 1T￾TaSe2: A charge density wave effect[J]. Physical Review B, 2004, 69(12): 125117.
[273] WOOLLEY A M, WEXLER G. Band structures and Fermi surfaces for 1T-TaS2, 1T-TaSe2,1T-TaSe2 and 1T-VSe2[J]. Journal of Physics C-Solid State Physics, 1977, 10(14): 2601-2616.
[274] ROSSNAGEL K. On the origin of charge-density waves in select layered transition-metaldichalcogenides[J]. Journal of Physics-Condensed Matter, 2011, 23(21): 213001.
[275] GE Y, LIU A Y. First-principles investigation of the charge-density-wave instability in 1T-TaSe2[J]. Physical Review B, 2010, 82(15): 155133.
[276] SHANG C J, XU B, LEI X L, et al. Bandgap tuning in MoSSe bilayers: Synergistic effects ofdipole moment and interlayer distance[J]. Physical Chemistry Chemical Physics, 2018, 20(32):20919-20926.
[277] LIU L, YANG H, HUANG Y, et al. Direct identification of Mott Hubbard band pattern beyondcharge density wave superlattice in monolayer 1T-NbSe2[J]. Nature Communications, 2021, 12(1): 1978.
[278] RITSCHEL T, BERGER H, GECK J. Stacking-driven gap formation in layered 1T-TaS2[J].Physical Review B, 2018, 98(19): 195134.
[279] FUHRMANN A, HEILMANN D, MONIEN H. From Mott insulator to band insulator: Adynamical mean-field theory study[J]. Physical Review B, 2006, 73(24): 245118.132参考文献
[280] CHEN W O, SUN Z Y, WANG Z J, et al. Direct observation of van der Waals stacking-dependentinterlayer magnetism[J]. Science, 2019, 366(6468): 983-987.
[281] FEI Z, ZHAO W, PALOMAKI T A, et al. Ferroelectric switching of a two-dimensional metal[J]. Nature, 2018, 560(7718): 336-339.
[282] ELLIS J K, LUCERO M J, SCUSERIA G E. The indirect to direct band gap transition in mul￾tilayered MoS2 as predicted by screened hybrid density functional theory[J]. Applied PhysicsLetters, 2011, 99(26): 261908.
[283] VAN WEZEL J, NAHAI-WILLIAMSON P, SAXENA S S. Exciton-phonon interactions andsuperconductivity bordering charge order in TiSe2[J]. Physical Review B, 2011, 83(2): 024502.
[284] KUC A, ZIBOUCHE N, HEINE T. Influence of quantum confinement on the electronic structureof the transition metal sulfide TS2[J]. Physical Review B, 2011, 83(24): 245213.
[285] KADANTSEV E S, HAWRYLAK P. Electronic structure of a single MoS2 monolayer[J]. SolidState Communications, 2012, 152(10): 909-913.
[286] GIANNOZZI P, BARONI S, BONINI N, et al. Quantum Espresso: A modular and open-sourcesoftware project for quantum simulations of materials[J]. Journal of Physics-Condensed Matter,2009, 21(39): 395502.
[287] GIANNOZZI P, ANDREUSSI O, BRUMME T, et al. Advanced capabilities for materials mod￾elling with QUANTUM ESPRESSO[J]. Journal of Physics-Condensed Matter, 2017, 29(46):465901.
[288] SOHIER T, CALANDRA M, MAURI F. Density functional perturbation theory for gated two￾dimensional heterostructures: Theoretical developments and application to flexural phonons ingraphene[J]. Physical Review B, 2017, 96(7): 075448.
[289] HUANG G Q, XING Z W, XING D Y. Dynamical stability and superconductivity of Li￾intercalated bilayer MoS2: A first-principles prediction[J]. Physical Review B, 2016, 93(10):104511.
[290] ZHANG J J, GAO B, DONG S. Strain-enhanced superconductivity of MoX2(X=S or Se)bilayers with Na intercalation[J]. Physical Review B, 2016, 93(15): 155430.
[291] LIAN C S, SI C, WU J, et al. First-principless study of Na-intercalated bilayer NbSe2: Sup￾pressed charge-density wave and strain-enhanced superconductivity[J]. Physical Review B,2017, 96(23): 235426.
[292] RöSNER M, HAAS S, WEHLING T O. Phase diagram of electron-doped dichalcogenides[J].Physical Review B, 2014, 90(24): 245105.
[293] KAWAMURA M. FermiSurfer: Fermi-surface viewer providing multiple representationschemes[J]. Computer Physics Communications, 2019, 239(1): 197-203.
[294] ZHU Z Y, CHENG Y C, SCHWINGENSCHLöGL U. Giant spin-orbit-induced spin splitting intwo-dimensional transition-metal dichalcogenide semiconductors[J]. Physical Review B, 2011,84(15): 153402.
[295] KOSMIDER K, GONZáLEZ J W, FERNáNDEZ-ROSSIER J. Large spin splitting in the con￾duction band of transition metal dichalcogenide monolayers[J]. Physical Review B, 2013, 88(24): 245436.133参考文献
[296] FU Y J, LIU E F, YUAN H T, et al. Gated tuned superconductivity and phonon softening inmonolayer and bilayer MoS2[J]. npj Quantum Materials, 2017, 2(1): 52.
[297] ZENG S M, ZHAO Y C, LI G, et al. Strongly enhanced superconductivity in doped monolayerMoS2 by strain[J]. Physical Review B, 2016, 94(2): 024501.
[298] DONG L, WANG G Y, ZHU Z, et al. Charge density wave states in 2H-MoTe2revealed byscanning tunneling microscopy[J]. Chinese Physics Letters, 2018, 35(6): 066801.
[299] MARINI G, CALANDRA M. Light-tunable charge density wave orders in MoTe2 and WTe2single layers[J]. Physical Review Letters, 2016, 127(25): 257401.
[300] LU J M, ZHELIUK O, LEERMAKERS I, et al. Evidence for two-dimensional ising supercon￾ductivity in gated MoS2[J]. Science, 2015, 350(6266): 1353-1357.
[301] SAITO Y, NAKAMURA Y, BAHRAMY M S, et al. Superconductivity protected by spin-valleylocking in ion-gated MoS2[J]. Nature Physics, 2016, 12(2): 144-150.
[302] GE Y, LIU A Y. Phonon-mediated superconductivity in electron-doped single-layer MoS2: Afirst-principles prediction[J]. Physical Review B, 2013, 87(24): 241408.
[303] HUANG G Q, XING Z W, XING D Y. Prediction of superconductivity in Li-intercalated bilayerphosphorene[J]. Applied Physics Letters, 2015, 106(11): 113107.
[304] XUE M, CHEN G, YANG H, et al. Superconductivity in potassium-doped few-layer graphene[J]. Journal of the American Chemical Society, 2012, 134(15): 6536-6539.
[305] TANIGUCHI K, MATSUMOTO A, SHIMOTANI H, et al. Electric-field-induced supercon￾ductivity at 9.4K in a layered transition metal disulphide MoS2[J]. Applied Physics Letters,2012, 101(4): 042603.
[306] JIN X L, CHEN X J, CUI T, et al. Crossover from metal to insulator in dense lithium-richcompound CLi4[J]. Proceedings of the National Academy of Sciences of the United States ofAmerica, 2016, 113(9): 2366-2369.
[307] ZHUANG Q, JIN X L, CUI T, et al. Effect of electrons scattered by optical phonons on super￾conductivity in MH3(M = S, Ti, V, Se)[J]. Physical Review B, 2018, 98(2): 024514.
[308] ULLAH S, DENIS P A, MENEZES M G, et al. Tunable optoelectronic properties in h-BP/h￾BAs bilayers: The effect of an external electrical field[J]. Applied Surface Science, 2019, 493(1): 308-319.
[309] GUINEA F, KATSNELSON M I, GEIM A K. Energy gaps and a zero-field quantum hall effectin graphene by strain engineering[J]. Nature Physics, 2009, 6(1): 30-33.
[310] WOOLLAM J A, SOMOANO R B. Superconducting critical fields of alkali and alkaline-earthintercalates of MoS2[J]. Physical Review B, 1976, 13(9): 3843-3853.
[311] PY M A, HAERING R R. Structural destabilization induced by lithium intercalation in MoS2and related-compounds[J]. Canadian Journal of Physics, 1983, 61(1): 76-84.
[312] GUO G H, HONG J H, CONG C J, et al. Molybdenum disulfide synthesized by hydrothermalmethod as anode for lithium rechargeable batteries[J]. Journal of Materials Science, 2005, 40(9): 2557-2559.
[313] ZHUANG H L, JOHANNES M D, SINGH A K, et al. Doping-controlled phase transitions insingle-layer MoS2[J]. Physical Review B, 2017, 96(16): 165305.134参考文献
[314] JENA D, KONAR A. Enhancement of carrier mobility in semiconductor nanostructures bydielectric engineering[J]. Physical Review Letters, 2007, 98(13): 136805.
[315] DUMCENCO D, OVCHINNIKOV D, MARINOV K, et al. Large-area epitaxial monolayerMoS2[J]. ACS Nano, 2015, 9(4): 4611-4620.
[316] YOON Y, GANAPATHI K, SALAHUDDIN S. How good can monolayer MoS2transistors be?[J]. Nano Letters, 2011, 11(9): 3768-3773.
[317] LUI C H, MAK K F, SHAN J, et al. Ultrafast photoluminescence from graphene[J]. PhysicalReview Letters, 2010, 105(12): 127404.
[318] RAI A, VALSARAJ A, MOVVA H C, et al. Air stable doping and intrinsic mobility enhance￾ment in monolayer molybdenum disulfide by amorphous titanium suboxide encapsulation[J].Nano Letters, 2015, 15(7): 4329-4336.
[319] CHUANG H J, CHAMLAGAIN B P, KOEHLER M, et al. Low-resistance 2D/2D Ohmic con￾tacts: A universal approach to high-performance WSe2, MoS2, and MoSe2transistors[J]. NanoLetters, 2016, 16(3): 1896-1902.
[320] JENA D, BANERJEE K, XING G H. 2D crystal semiconductors intimate contacts[J]. NatureMaterials, 2014, 13(12): 1076-1078.
[321] WANG N. Ohmic contacts for atomically-thin transition metal dichalcogenide semiconductors[J]. Journal of Semiconductors, 2020, 41(7): 070401.
[322] LIU Y, STRADINS P, WEI S H. Van der Waals metal-semiconductor junction: weak fermilevel pinning enables effective tuning of Schottky barrier[J]. Science Advances, 2016, 2(4):e1600069.
[323] LIU Y, GUO J, ZHU E, et al. Approaching the Schottky-Mott limit in van der Waals metal￾semiconductor junctions[J]. Nature, 2018, 557(7707): 696-700.
[324] WANG Q, SHAO Y F, GONGA P L, et al. Metal–2D multilayered semiconductor junctions:Layer-number dependent Fermi level pinning[J]. Journal of Materials Chemistry C, 2020, 8(9):3113-3119.
[325] KIM C, MOON I, LEE D, et al. Fermi level pinning at electrical metal contacts of monolayermolybdenum dichalcogenides[J]. ACS Nano, 2017, 11(2): 1588-1596.
[326] GUINEA F, CAPPELLUTI E, ROLDáN R, et al. Tight-binding model and direct-gap/indirect￾gap transition in single-layer and multilayer MoS2[J]. Physical Review B, 2013, 88(7): 075409.
[327] SHARVIN Y V. On the possible method for studying fermi surfaces[J]. Soviet physics JETP,1965, 21(1): 655–656.
[328] HU X H, WANG Y F, SHEN X D, et al. 1T phase as an efficient hole injection layer toTMDs transistors: A universal approach to achieve 𝑝-type contacts[J]. 2D Materials, 2018,5(3): 031012.
[329] KRESSE G, HAFNER J. Ab-initio molecular dynamics for liquid metals[J]. Physica B￾Condensed Matter, 1993, 47(1): 558-561.
[330] BJORKMAN T, GULANS A, KRASHENINNIKOV A V, et al. Van der Waals bonding inlayered compounds from advanced density-functional first-principles calculations[J]. PhysicalReview Letters, 2012, 108(23): 235502.135参考文献
[331] LI T. Ideal strength and phonon instability in single-layer MoS2[J]. Physical Review B, 2012,85(23): 156802.
[332] YUN W S, HAN S W, HONG S C, et al. Thickness and strain effects on electronic struc￾tures of transition metal dichalcogenides: 2H-MX2semiconductors (M=Mo, W;X=S, Se, Te)[J]. Physical Review B, 2012, 85(3): 509-514.
[333] SHI H, PAN H, ZHANG Y W, et al. Quasiparticle band structures and optical properties ofstrained monolayer MoS2and WS2[J]. Physical Review B, 2013, 87(15): 11350-11357.
[334] NEUGEBAUER J, SCHESER M. Adsorbate-substrate and adsorbate-adsorbate interactions ofNa and K adlayers on Al(111)[J]. Physica B-Condensed Matter, 1992, 46(24): 16067-16080.
[335] SAIDI W A. Influence of strain and metal thickness on metal-MoS2 contacts[J]. Journal ofChemical Physics, 2014, 141(9): 094707.
[336] FARMANBAR M, BROCKS G. Controlling the Schottky barrier at MoS2/metal contacts byinserting a BN monolayer[J]. Physical Review B, 2015, 91(16): 161304.
[337] GIOVANNETTI G, KHOMYAKOV P A, BROCKS G, et al. Doping graphene with metalcontacts[J]. Physical Review Letters, 2008, 101(2): 026803.
[338] KHOMYAKOV P A, GIOVANNETTI G, RUSU P C, et al. First-principles study of the inter￾action and charge transfer between graphene and metals[J]. Physical Review B, 2009, 79(19):195425.
[339] BOKDAM M, BROCKS G, KATSNELSON M I, et al. Schottky barriers at hexagonal boronnitride/metal interfaces: A first-principles study[J]. Physical Review B, 2014, 90(8): 085415.
[340] SAIDI W A. Trends in the adsorption and growth morphology of metals on the MoS2(001)surface[J]. Crystal Growth Design, 2015, 15(7): 3190-3200.
[341] DING X, ZHANG S, ZHAO M, et al. NbS2: A promising 𝑝-type Ohmic contact for two￾dimensional materials[J]. Physical Review Applied, 2019, 12(6): 064061.
[342] WATANABE E, CONWILL A, TSUYA D, et al. Low contact resistance metals for graphenebased devices[J]. Diamond and Related Materials, 2012, 24(1): 171-174.
[343] SCHULMAN D S, ARNOLD A J, DAS S. Contact engineering for 2D materials and devices[J]. Chemical Society Reviews, 2018, 47(9): 3037-3058.
[344] DU Z, YANG S, LI S, et al. Conversion of non-van der Waals solids to 2D transition-metalchalcogenides[J]. Nature, 2020, 577(7791): 492-496.
[345] KIM J S, KIM J, ZHAO J, et al. Electrical transport properties of polymorphic MoS2[J]. ACSNano, 2016, 10(8): 7500-7506.
[346] PAZ W S, PALACIOS J J. A theoretical study of the electrical contact between metallic andsemiconducting phases in monolayer MoS2[J]. 2D Materials, 2016, 4(1): 015014.
[347] KAPPERA R, VOIRY D, YALCIN S E, et al. Phase-engineered low-resistance contacts forultrathin MoS2transistors[J]. Nature Materials, 2014, 13(12): 1128-1134.
[348] WANG Q, DENG B, SHI X Q. A new insight for ohmic contacts to MoS2: by tuning MoS2affinity energies but not metal work-functions[J]. Physical Chemistry Chemical Physics, 2017,19(38): 26151-26157.136参考文献
[349] SU J, FENG L P, ZENG W, et al. Controlling the electronic and geometric structures of 2Dinsertions to realize high performance metal/insertion-MoS2sandwich interfaces[J]. Nanoscale,2017, 9(22): 7429-7441.
[350] ABRAHAM M, MOHNEY S E. Annealed Ag contacts to MoS2 field-effect transistors[J].Journal of Geophysical Research. Biogeosciences, 2017, 122(11): 115306.
[351] EKNAPAKUL T, KING P D C, ASAKAWA M, et al. Electronic structure of a quasi-freestandingMoS2 monolayer[J]. Nano Letters, 2014, 14(3): 1312-1316.
[352] QI H J, HAN X L, QING W S, et al. Electronic and optical properties of graphane, silicane,MoS2 homo-bilayers and hetero-bilayers[J]. Current Applied Physics, 2019, 19(11): 1222-1232.
[353] GANATRA R, ZHANG Q. Few-layer MoS2: A promising layered semiconductor[J]. ACSNano, 2014, 8(5): 4074-4099.
[354] CORTéS R, TEJEDA A, LOBO-CHECA J, et al. Competing charge ordering and Mott phasesin a correlated Sn/Ge(111) two-dimensional triangular lattice[J]. Physical Review B, 2013, 88(12): 125113.
[355] SOMOANO R B, HADEK V, REMBAUM A. Alkali metal intercalates of molybdenum disul fide[J]. The Journal of Chemical Physics, 1973, 58(2): 697-701.
[356] MORPURGO A F. Gate control of spin-valley coupling[J]. Nature Physics, 2013, 9(9): 532-533.
[357] XIAO D, LIU G B, FENG W X, et al. Coupled spin and valley physics in monolayers of MoS2and other group-VI dichalcogenides[J]. Physical Review Letters, 2012, 108(19): 196802.
[358] CAO T, WANG G, HAN W P, et al. Valley-selective circular dichroism of monolayer molyb denum disulphide[J]. Nature Communications, 2012, 3(6): 887.
[359] ZENG H L, DAI J F, YAO W, et al. Valley polarization in MoS2 monolayers by optical pumping[J]. Nature Nanotechnology, 2012, 7(8): 490-493.

所在学位评定分委会
物理学
国内图书分类号
O469
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765833
专题南方科技大学
量子科学与工程研究院
推荐引用方式
GB/T 7714
张文珺. 过渡金属硫族化合物中电荷密度波及其他物性的调控与机理[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12031190-张文珺-量子科学与工程(10395KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张文珺]的文章
百度学术
百度学术中相似的文章
[张文珺]的文章
必应学术
必应学术中相似的文章
[张文珺]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。