[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thincarbon films[J]. Science, 2004, 306(5696): 666-669.
[2] GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.
[3] ZHANG Y, TAN Y W, STORMER H L, et al. Experimental observation of the quantum halleffect and Berry’s phase in graphene[J]. Nature, 2005, 438(7065): 201-204.
[4] LIU H, DU Y C, DENG Y X, et al. Semiconducting black phosphorus: Synthesis, transportproperties and electronic applications[J]. Chemical Society Reviews, 2015, 44(9): 2732-2743.
[5] LIN Y, WILLIAMS T V, CONNELL J W. Soluble, exfoliated hexagonal boron nitridenanosheets[J]. Journal of Physical Chemistry Letters, 2009, 237(653): 2732-2743.
[6] LIU Y, CHEN X, WANG X, et al. Research progress of two dimensional transition metaldichalcogenides[J]. Materials Review, 2014, 28(2A): 23-27.
[7] PING J, FAN Z, SINDORO M, et al. Nanosheet sensors: Recent advances in sensing applications of two-dimensional transition metal dichalcogenide nanosheets and their composites[J].Advanced Functional Materials, 2017, 27(19): 1605817.
[8] XUE Y H, ZHANG Q, WANG W J, et al. Opening two-dimensional materials for energyconversion and storage: A concept[J]. Advanced Energy Materials, 2017, 7(19): 1602684.
[9] TAN C, CAO X, WU X J, et al. Recent advances in ultrathin two-dimensional nanomaterials[J]. Chemical Reviews, 2017, 117(9): 6225-6331.
[10] BURCH K S, MANDRUS D, PARK J G. Magnetism in two-dimensional van der Waals materials[J]. Nature, 2018, 563(7729): 47-52.
[11] MAK K F, LEE C, HONE J, et al. Atomically thin MoS2: A new direct-gap semiconductor[J].Physical Review Letters, 2010, 105(13): 136805.
[12] KAM K K, PARKINSON B A. Detailed photocurrent spectroscopy of the semiconductinggroup VIB transition metal dichalcogenides[J]. Journal of Physical Chemistry, 1982, 86(4):463-467.
[13] BöKER T, SEVERIN R, MüLLER A, et al. Band structure of MoS2, MoSe2, and α-MoTe2:Angle-resolved photoelectron spectroscopy and ab-initio calculations[J]. Physical Review B,2001, 64(23): 235305-235305.
[14] SAHIN H, TONGAY S, HORZUM S, et al. Anomalous raman spectra and thickness dependentelectronic properties of WSe2[J]. Physical Review B, 2013, 87(16): 1106-1115.
[15] ZHENG F P, CAI C Y, GE S F, et al. On the quantum spin hall gap of monolayer 1T-WTe2[J].Advanced Materials, 2016, 28(24): 4845-4851.
[16] WANG Y J, LIU E F, LIU H M, et al. Gate-tunable negative longitudinal magnetoresistance inthe predicted type-II weyl semimetal WTe2[J]. Nature Communications, 2016, 7(24): 13142.117参考文献
[17] HELLGREN M, BAGUET L, CALANDRA M, et al. Electronic structure of TiSe2from aquasi-self-consistent G0W0 approach[J]. American Physical Society, 2021, 103(7): 075101.
[18] ALEX, ZUNGER, A., et al. Band structure and lattice instability of TiSe2[J]. Physical ReviewB, 1978, 17(4): 1839-1842.
[19] SöRGEL T, NUSS J, WEDIG U, et al. A new low temperature modification of TaTe2: Comparison to the room temperature and the hypothetical 1T-TaTe2 modification[J]. Materials ResearchBulletin, 2006, 41(5): 987-1000.
[20] DOUBLET M L, REMY S, LEMOIGNO F. Density functional theory analysis of the localchemical bonds in the periodic tantalum dichalcogenides TaX2(X=S, Se, Te)[J]. Journal ofChemical Physics, 2000, 113(14): 5879-5890.
[21] DE LA BARRERA S C, SINKO M R, GOPALAN D P, et al. Tuning Ising superconductivity with layer and spin-orbit coupling in two-dimensional transition-metal dichalcogenides[J].Nature Communications, 2018, 9: 1427.
[22] WEBER F, HOTT R, HEID R, et al. Three-dimensional Fermi surface of 2H-NbSe2: Implications for the mechanism of charge density waves[J]. Physical Review B, 2018, 97(23): 235122.
[23] LV R, ROBINSON J A, SCHAAK R E, et al. Transition metal dichalcogenides and beyond:Synthesis, properties, and applications of single- and few-layer nanosheets[J]. Accounts ofChemical Research, 2015, 48(1): 56-64.
[24] LIN Y C, DUMCENCON D O, HUANG Y S, et al. Atomic mechanism of the semiconductingto-metallic phase transition in single-layered MoS2[J]. Nature Nanotechnology, 2014, 9(5):391-396.
[25] WILSON J A, YOFFE A D. Transition metal dichalcogenides discussion and interpretation ofobserved optical,optical,electrical and structural properties[J]. Advances in Physics, 1969, 18(73): 193-197.
[26] FIORI G, BONACCORSO F, IANNACCONE G, et al. Electronics based on two-dimensionalmaterials[J]. Nature Nanotechnology, 2014, 9(10): 768-779.
[27] ANG R, TANAKA Y, IEKI E, et al. Real-space coexistence of the melted Mott state and superconductivity in Fe-substituted 1T-TaS2[J]. Physical Review Letters, 2012, 109(17): 176403.
[28] WANG B S, LIU Y, LUO X, et al. Universal phase diagram of superconductivity and chargedensity wave versus high hydrostatic pressure in pure and Se-doped 1T-TaS2[J]. Physical ReviewB, 2018, 97(22): 220504.
[29] HILL H M, RIGOSI A F, RIM K T, et al. Band alignment in MoS2/WS2transition metaldichalcogenide heterostructures probed by scanning tunneling microscopy and spectroscopy[J].Nano Letters, 2016, 16(8): 4831-4837.
[30] SIPOS B, KUSMARTSEVA A F, AKRAP A, et al. From Mott state to superconductivity in1T-TaS2[J]. Nature Materials, 2008, 7(12): 960-965.
[31] KEUM D H, CHO S, KIM J H, et al. Bandgap opening in few-layered monoclinic MoTe2[J].Nature Physics, 2015, 11(6): 482-U144.
[32] ZHU X T, GUO J D, ZHANG J D, et al. Misconceptions associated with the origin of chargedensity waves[J]. Advances in Physics-X, 2017, 2(3): 622-640.118参考文献
[33] JOHANNES M D, MAZIN I I. Fermi surface nesting and the origin of charge density waves inmetals[J]. Physical Review B, 2008, 77(16): 165135.
[34] WEBER F, ROSENKRANZ S, CASTELLAN J P, et al. Extended phonon collapse and theorigin of the charge-density wave in 2H-NbSe2[J]. Physical Review Letters, 2011, 107(10):107403.
[35] ZHU X, CAO Y, ZHANG J, et al. Classification of charge density waves based on their nature[J]. Proceedings of the National Academy of Sciences, 2015, 112(8): 2367-2371.
[36] LIU Y, ANG R, LU W J, et al. Superconductivity induced by Se-doping in layered chargedensity-wave system 1T-TaS2−𝑥Se𝑥[J]. Applied Physics Letters, 2013, 102(19): 192602.
[37] CHO K, KOńCZYKOWSKI M, TEKNOWIJOYO S, et al. Using controlled disorder to probethe interplay between charge order and superconductivity in NbSe2[J]. Nature Communications,2018, 9(1): 2796.
[38] BERTHIER C, MOLINIE P, JEROME D. Evidence for a connection between charge-dencitywaves and pressure enhancement of superconductivity in 2H-NbSe2[J]. Solid State Communications, 1976, 18(9-10): 1393-1395.
[39] KATZKE H, TOLEDANO P, DEPMEIER W. Phase transitions between polytypes and intralayer superstructures in transition metal dichalcogenides[J]. Physical Review B, 2004, 69(13): 134111.
[40] KOLOBOV A V, TOMINAGA J. Two-dimensional transition-metal dichalcogenides[M]. 2016.
[41] LIN D, LI S, WEN J, et al. Patterns and driving forces of dimensionality-dependent chargedensity waves in 2H-type transition metal dichalcogenides[J]. Nature Communications, 2020,11(1): 2406.
[42] RESHAK A H, AULUCK S. Calculated optical properties of 2H-MoS2intercalated with lithium[J]. Physical Review B, 2003, 68(12): 125101.
[43] RESHAK A H, AULUCK S. Band structure and optical response of 2H-MoX2 compounds (X= S, Se, and Te)[J]. Physical Review B, 2005, 71(15): 155114.
[44] FARMANBAR M, BROCKS G. First-principles study of van der Waals interactions and latticemismatch at MoS2/metal interfaces[J]. Physical Review B, 2016, 93(8): 085304.
[45] 陈良惠. 半导体异质结及其在光电子学中的应用[J]. 物理, 2001.
[46] 翟天佑. 二维原子晶体的可控制备与光电性能研究[C]//中国化学会学术年会-第三十六分会: 纳米材料合成与组装. 2016.
[47] ALLAIN A, KANG J, BANERJEE K, et al. Electrical contacts to two-dimensional semiconductors[J]. Nature Materials, 2015, 14(12): 1195-1205.
[48] CHEN Y W, LI Y C, WU J, et al. General criterion to distinguish between Schottky and Ohmiccontacts at the metal/two-dimensional semiconductor interface[J]. Nanoscale, 2017, 9(5): 2068-2073.
[49] XU Y, CHENG C, DU S C, et al. Contacts between two- and three-dimensional materials:Ohmic, Schottky, and 𝑝 − 𝑛 heterojunctions[J]. ACS Nano, 2016, 10(5): 4895-4919.
[50] POPOV I, SEIFERT G, TOMáNEK D. Designing electrical contacts to MoS2 monolayers: Acomputational study[J]. Physical Review Letters, 2012, 108(15): 156802.119参考文献
[51] KWON J Y, LEE J Y, YU Y J, et al. Thickness-dependent Schottky barrier height of MoS2field-effect transistors[J]. Nanoscale, 2017, 9(18): 6151-6157.
[52] GONG C, COLOMBO L, WALLACE R M, et al. The unusual mechanism of partial Fermi levelpinning at metal-MoS2interfaces[J]. Nano Letters, 2014, 14(4): 1714-1720.
[53] KANG J H, LIU W, SARKAR D, et al. Computational study of metal contacts to monolayertransition-metal dichalcogenide semiconductors[J]. Physical Review X, 2014, 4(3): 031005.
[54] CHEN W, SANTOS E J G, ZHU W G, et al. Tuning the electronic and chemical properties ofmonolayer MoS2 adsorbed on transition metal substrates[J]. Nano Letters, 2013, 13(2): 509-514.
[55] WILLIAM S. On the surface states associated with a periodic potential[J]. Physical Review,1939, 56(4): 317-323.
[56] BARDEEN J. Surface states and rectification at a metal semiconductor contact[J]. PhysicalReview, 1947, 71(10): 717-727.
[57] DAS S, CHEN H Y, PENUMATCHA A V, et al. High performance multilayer MoS2transistorswith scandium contacts[J]. Nano Letters, 2013, 13(1): 100-105.
[58] TUNG R T. The physics and chemistry of the Schottky barrier height[J]. Applied PhysicsReviews, 2014, 1(1): 011304.
[59] HEINE V. Theory of surface states[J]. Physical Review, 1965, 138(6A): A1689-A1696.
[60] LOUIET S G, COHEN M L. Self-consistent pseudopotential alculaction for a metalsemiconductor interface[J]. Physical Review Letters, 1975, 35(13): 866-869.
[61] HASEGAWA H, SAWADA T. On the electrical properties of compound semiconductor interfaces in metal/insulator/semiconductor structures and the possible origin of interface states[J].Thin Solid Films, 1983, 103(1-3): 119-140.
[62] CHENG G, LUIGI C, ROBERT M W, et al. The unusual mechanism of partial Fermi levelpinning at metal-MoS2interfaces[J]. Nano Letters, 2014, 14(4): 1714-1720.
[63] GUO Y Z, LIU D M, ROBERTSON J. 3D behavior of Schottky barriers of 2D transition-metaldichalcogenides[J]. ACS Applied Materials Interfaces, 2015, 7(46): 25709-25715.
[64] LIU B, WU L J, ZHAO Y Q, et al. Tuning the Schottky barrier height of the Pd-MoS2 contactby different strains[J]. Physical Chemistry Chemical Physics, 2015, 17(40): 27088.
[65] ZHONG H X, QUHE R G, WANG Y Y, et al. Interfacial properties of monolayer and bilayerMoS2 contacts with metals: Beyond the energy band calculations[J]. Scientific Reports, 2016,6(2): 21786.
[66] PADILHA J E, FAZZIO A, DA SILVA A J. Van der Waals heterostructure of phosphorene andgraphene: Tuning the Schottky barrier and doping by electrostatic gating[J]. Physical ReviewLetters, 2015, 114(6): 066803.
[67] OZCELIK V O, AZADANI J G, YANG C, et al. Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching[J]. Physical Review B,2016, 94(3): 035125.
[68] 王倩. 金属-多层二维 MoS2 异质结的理论研究[D]. 哈尔滨工业大学, 2020.120参考文献
[69] CUI P, WEI D, JI J, et al. Planar 𝑝 − 𝑛 homojunction perovskite solar cells with efficiencyexceeding 21.3%[J]. Nature Energy, 2019, 4(2): 150-159.
[70] WU Z G, NEATON J B, GROSSMAN J C. Charge separation via strain in silicon nanowires[J]. Nano Letters, 2009, 9(6): 2418-2422.
[71] LI P, ZHOU Y, ZHAO Z Y, et al. Hexahedron prism-anchored octahedronal CeO2: Crystalfacet-based homojunction promoting efficient solar fuel synthesis[J]. Journal of the AmericanChemical Society, 2015, 137(30): 9547-9550.
[72] ZIZHENG, ZHAO, GANG, et al. Phase junction CdS: High efficient and stable photocatalystfor hydrogen generation[J]. Applied Catalysis B-Environmental, 2018, 221: 179-186.
[73] BAI Y, ZHOU Y E, ZHANG J, et al. Homophase junction for promoting spatial charge separation in photocatalytic water splitting[J]. ACS Catalysis, 2019, 9(4): 3242-3252.
[74] WANG X L, LI C. Roles of phase junction in photocatalysis and photoelectrocatalysis[J]. Journal of Physical Chemistry C, 2018, 122(37): 21083-21096.
[75] PAN Y, FöLSCH S, LIN Y C, et al. WSe2 homojunctions and quantum dots created by patternedhydrogenation of epitaxial graphene substrates[J]. 2D Materials, 2019, 6(2): 021001.
[76] LI B, WAN Z, WANG C, et al. Van der Waals epitaxial growth of air-stable CrSe2 nanosheetswith thickness-tunable magnetic order[J]. Nature Materials, 2021, 20(6): 818-821.
[77] AVSAR A, CHEON C Y, PIZZOCHERO M, et al. Probing magnetism in atomically thin semiconducting PtSe2[J]. Nature Communications, 2020, 11(1): 4806.
[78] ZHANG K, ZOU N L, REN Y R, et al. Realization of coexisting charge density wave andquantum spin/anomalous hall state in monolayer NbTe2[J]. Advanced Functional Materials,2022, 32(23): 2111675.
[79] KOPNIN N B, HEIKKILä T T, VOLOVIK G E. High-temperature surface superconductivityin topological flat-band systems[J]. Physical Review B, 2011, 83(22): 220503.
[80] GHOSH S, BAO W Z, NIKA D L, et al. Dimensional crossover of thermal transport in few-layergraphene[J]. Nature Materials, 2010, 9(7): 555-558.
[81] LEE D S, RIEDL C, BERINGER T, et al. Quantum hall effect in twisted bilayer graphene[J].Physical Review Letters, 2011, 107(21): 216602.
[82] PEIERLS R E. Quantum theory of solids[M]. Oxford University Press, 1955.
[83] 阎守胜. 固体物理基础[M]. 固体物理基础, 2011.
[84] JOHANNES M D, MAZIN I, HOWELLS C A. Fermi-surface nesting and the origin of thecharge-density wave in NbSe2[J]. Physical Review B, 2006, 73(20): 205102.
[85] DUGDALE S B. Life on the edge: A beginner’s guide to the Fermi surface[J]. Physica Scripta,2016, 91(5): 053009.
[86] BORISENKO S V, KORDYUK A A, YARESKO A N, et al. Pseudogap and charge densitywaves in two dimensions[J]. Physical Review Letters, 2008, 100(19): 196402.
[87] INOSOV D S, ZABOLOTNYY V B, EVTUSHINSKY D V, et al. Fermi surface nesting inseveral transition metal dichalcogenides[J]. New Journal of Physics, 2008, 10: 12507.121参考文献
[88] BORISENKO S V, KORDYUK A A, ZABOLOTNYY V B, et al. Two energy gaps and fermisurface “arcs”in NbSe2[J]. Physical Review Letters, 2009, 102(16).
[89] O S, A C. An electron diffraction evidence of charge density wave instability in 2H-NbSe2[J].Physics Letters A, 1976, 56(1): 63-64.
[90] MONCTON D E, AXE J D, DISALVO F J. Study of superlattice fromation in 2H-NbSe2 and2H-TaSe2 by neutron-scattering[J]. Physical Review Letters, 1975, 34(12): 734-737.
[91] MONCTON D E, AXE J D, DISALVO F J. Neutron-scattering study of charge-dencity wavetransitions in 2H-TaSe2 and Nbe2[J]. Physical Review B, 1977, 16(2): 801-819.
[92] DU C H, LIN W J, SU Y, et al. X-ray scattering studies of 2H-NbSe2, a superconductorand charge density wave material, under high external magnetic fields[J]. Journal of PhysicsCondensed Matter, 2000, 12(25): 5361-5370.
[93] SOUMYANARAYANAN A, YEE M M, HE Y, et al. Quantum phase transition from triangularto stripe charge order in NbSe2[J]. Proceedings of The National Academy of Sciences of theUnited States of America, 2013, 110(5): 1623-1627.
[94] ARGUELLO C J, CHOCKALINGAM S P, ROSENTHAL E P, et al. Visualizing the chargedensity wave transition in 2H-NbSe2in real space[J]. Physical Review B, 2014, 89(23): 235115.
[95] MONCTON D E, AXE J D, DISALVO F J. Neutron-scattering study of charge-density wavetransitions in 2H-TaS2 and 2H-NbSe2[J]. Physical Review B, 1977, 16(2): 801-819.
[96] DUVJIR G, CHOI B K, JANG I, et al. Emergence of a metal-insulator transition and hightemperature charge-density waves in VSe2 at the monolayer limit[J]. Nano Letters, 2018, 18(9):5432-5438.
[97] CHUA R, HENKE J, SAHA S, et al. Coexisting charge-ordered states with distinct drivingmechanisms in monolayer VSe2[J]. ACS Nano, 2022, 16(1): 783-791.
[98] CALANDRA M, MAZIN I, MAURI F. Effect of dimensionality on the charge-density wave infew-layer 2H-NbSe2[J]. Physical Review B, 2009, 80(24): 241108.
[99] KOGAR A, RAK M S, VIG S, et al. Signatures of exciton condensation in a transition metaldichalcogenide[J]. Science, 2017, 358(6368): 1314-1317.
[100] JEROME D, RICE T M, KOHN W. Excitonic insulator[J]. Physical Review, 1967, 158(2):462-475.
[101] SCRUBY C B, WILLIAMS P M, PARRY G S. Role of charge-density waves in structuraltransformations of 1T-TaS2[J]. Philosophical Magazine, 1975, 31(2): 255-274.
[102] TANDA S, SAMBONGI T, TANI T, et al. X-ray of charge-density waves structure in 1T-TaS2[J]. Journal of the Physical Society of Japan, 1984, 53(2): 476-479.
[103] CLERC F, BATTAGLIA C, BOVET M, et al. Lattice-distortion-enhanced electron-phononcoupling and Fermi surface nesting in 1T-TaS2[J]. Physical Review B, 2006, 74(15): 155114.
[104] RITSCHEL T, TRINCKAUF J, GARBARINO G, et al. Pressure dependence of the chargedensity wave in 1T-TaS2 and its relation to superconductivity[J]. Physical Review B, 2013, 87(12): 125135.122参考文献
[105] PERFETTI L, GLOOR T A, MILA F, et al. Unexpected periodicity in the quasi-twodimensional Mott insulator 1T-TaS2revealed by angle-resolved photoemission[J]. PhysicalReview B, 2005, 71(15): 153101.
[106] WANG Y D, YAO W L, XIN Z M, et al. Band insulator to Mott insulator transition in 1T-TaS2[J]. Nature Communications, 2020, 11(1): 4215.
[107] SVETIN D, VASKIVSKYI I, SUTAR P, et al. Transitions between photoinduced macroscopicquantum states in 1T-TaS2 controlled by substrate strain[J]. Applied Physics Express, 2014, 7(10): 103201.
[108] LEROUX M, CARIO L, BOSAK A, et al. Traces of charge density waves in NbS2[J]. PhysicalReview B, 2018, 97(19): 195140.
[109] XI X X, ZHAO L, WANG Z F, et al. Strongly enhanced charge-density-wave order in monolayerNbSe2[J]. Nature Nanotechnology, 2015, 10(9): 765-770.
[110] HORIBA K, ONO K, OH J H, et al. Charge-density wave and three-dimensional Fermi surface in1T−TaSe2studied by photoemission spectroscopy[J]. Physical Review B, 2002, 66(7): 073106.
[111] ZHANG K, SI C, LIAN C S, et al. Mottness collapse in monolayer 1T-TaSe2 with persistingcharge density wave order[J]. Journal of Materials Chemistry C, 2020, 8(28): 9742-9747.
[112] WILSON J A, DISALVO F J, MAHAJAN S. Charge-density waves and superlattices in metalliclayered transition-metal dichalcogeides[J]. Advances in Physics, 1975, 24(2): 117-201.
[113] YOSHIDA M, SUZUKI R, ZHANG Y J, et al. Memristive phase switching in two-dimensional1T-TaS2 crystals[J]. Science Advances, 2015, 1(9): e1500606.
[114] CHEN Y, RUAN W, WU M, et al. Strong correlations and orbital texture in single-layer 1TTaSe2[J]. Nature Physics, 2020, 16(2): 218-224.
[115] NAKATA Y, SUGAWARA K, CHAINANI A, et al. Robust charge-density wave strengthenedby electron correlations in monolayer 1T-TaSe2 and 1T-NbSe2[J]. Nature Communications,2021, 12(1): 5873.
[116] NAKATA Y, SUGAWARA K, SHIMIZU R, et al. Monolayer 1T-NbSe2 as a Mott insulator[J].NPG Asia Materials, 2016, 8(11): e321-e321.
[117] CALANDRA M. Phonon-assisted magnetic Mott-insulating state in the charge density wavephase of single-layer 1T-NbSe2[J]. Physical Review Letters, 2018, 121(2): 026401.
[118] WANG W, WANG B, GAO Z, et al. Charge density wave instability and pressure-inducedsuperconductivity in bulk 1T−NbS2[J]. Physical Review B, 2020, 102(15): 155115.
[119] TRESCA C, CALANDRA M. Charge density wave and spin 1/2 insulating state in single layer1T-NbS2[J]. 2D Materials, 2019, 6(3): 035041.
[120] CASTRO NETO A H. Charge density wave, superconductivity, and anomalous metallic behavior in 2D transition metal dichalcogenides[J]. Physical Review Letters, 2001, 86(19): 4382-4385.
[121] LEROUX M, TACON M L, CALANDRA M, et al. Anharmonic suppression of charge densitywave in 2H-NbS2[J]. Physical Review B, 2012, 86(15): 155125-155125.123参考文献
[122] LIN H, HUANG W, ZHAO K, et al. Growth of atomically thick transition metal sulfide filmsongraphene/6H-SiC(0001) by molecular beam epitaxy[J]. Nano Research, 2018, 11(9): 4722-4727.
[123] STAN R M, MAHATHA S K, BIANCHI M, et al. Epitaxial single-layer NbS2 on Au(111): Synthesis, structure, and electronic properties[J]. Physical Review Materials, 2019, 3(4): 044003.
[124] LIAN C S, HEIL C, LIU X, et al. Coexistence of superconductivity with enhanced chargedensity wave order in the two-dimensional limit of TaSe2[J]. Journal of Physical ChemistryLetters, 2019, 10(14): 4076-4081.
[125] NAVARRO-MORATALLA E, ISLAND J O, MAñAS-VALERO S, et al. Enhanced superconductivity in atomically thin TaS2[J]. Nature Communications, 2016, 7.
[126] WAGNER K E, MOROSAN E, HOR Y S, et al. Tuning the charge density wave and superconductivity in Cu𝑥TaS2[J]. Physical Review B, 2008, 78(10): 104520.
[127] HARPER J M E, GEBALLE T H, DISALVO F J. Thermal properties of layered transitionmetal dichalcogendides at charge-density wave transitions[J]. Physical Review B, 1977, 15(6):2943-2951.
[128] HEIL C, PONCé S, LAMBERT H, et al. Origin of superconductivity and latent charge densitywave in NbS2[J]. Physical Review Letters, 2017, 119(8): 087003.
[129] BIN SUBHAN M K, SULEMAN A, MOORE G, et al. Charge density waves in electron-dopedmolybdenum disulfide[J]. Nano Letters, 2021, 21(13): 5516-5521.
[130] HUBBARD J. Electron correlations in narrow energy bands[J]. Proceedings of the Royal Society of London Series a Mathematical and Physical Sciences, 1963, 276(1364): 238-257.
[131] MOTT N F. Metal-insulator transition[J]. Reviews of Modern Physics, 1968, 40: 677-683.
[132] 冯瑞, 金国钧. 凝聚态物理学[M]. 高等教育出版社, 2003.
[133] WILSON J A, DISALVO F J, MAHAJAN S. Charge-density waves in metallic, layered,transition-metal dichalcogenides[J]. Physical Review Letters, 1974, 32(16): 882-885.
[134] MEYER S F, HOWARD R E, STEWART G R, et al. Properties of intercalated 2H-NbSe2,4Hb-TaS2, and 1T-TaS2[J]. Journal of Chemical Physics, 1975, 62(11): 4411-4419.
[135] YU Y J, YANG F Y, LU X F, et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2[J].Nature Nanotechnology, 2015, 10(3): 270-276.
[136] QIAO S, LI X T, WANG N Z, et al. Mottness collapse in 1T-TaS2−𝑥Se𝑥 transition-metaldichalcogenide: An interplay between localized and itinerant orbitals[J]. Physical Review X,2017, 7(4): 041054.
[137] LIU G X, DEBNATH B, POPE T R, et al. A charge density wave oscillator based on an integrated tantalum disulfide boron nitride graphene device operating at room temperature[J].Nature Nanotechnology, 2016, 11(10): 844-850.
[138] BUTLER C J, YOSHIDA M, HANAGURI T, et al. Mottness versus unitcell doubling as thedriver of the insulating state in 1T-TaS2[J]. Nat Commun, 2020, 11(1): 2477.
[139] MARTINO E, PISONI A, ĆIRIć L, et al. Preferential out-of-plane conduction and quasi-onedimensional electronic states in layered 1T-TaS2[J]. npj 2D Materials and Applications, 2020,4(1): 7.124参考文献
[140] DARANCET P, MILLIS A J, MARIANETTI C A. Three-dimensional metallic and twodimensional insulating behavior in octahedral tantalum dichalcogenides[J]. Physical ReviewB, 2014, 90(4): 045134.
[141] LIN H, HUANG W, ZHAO K, et al. Scanning tunneling spectroscopic study of monolayer1T-TaS2 and 1T-TaSe2[J]. Nano Research, 2019, 13(1): 133-137.
[142] KANCHARLA S S, OKAMOTO S. Band insulator to Mott insulator transition in a bilayerHubbard model[J]. Physical Review B, 2007, 75(19): 193103.
[143] TAYLOR A W B. Microscopic theory superconductivity[J]. Contemporary Physics, 1968, 9(6): 549-556.
[144] 张裕恒, 李玉芝. 超导物理[M]. 超导物理, 1992.
[145] MOLINIE P, JEROME D, GRANT A J. Pressure-enhanced superconductivity and superlatticestructures in transition-metal dichalcogenide layer crystals[J]. Philosophical Magazine, 1974,30(5): 1091-1103.
[146] SHAO D F, XIAO R C, LU W J, et al. Manipulating charge density waves in 1T−TaS2 bycharge-carrier doping: A first-principles investigation[J]. Physical Review B, 2016, 94(12):125126.
[147] SHI J, CHEN X, ZHAO L, et al. Chemical vapor deposition grown wafer-scale 2D tantalum diselenide with robust charge-density-wave order[J]. Advanced Materials, 2018, 30(44): e1804616.
[148] WU Y, HE J, LIU J, et al. Dimensional reduction and ionic gating induced enhancement ofsuperconductivity in atomically thin crystals of 2H-TaSe2[J]. Nanotechnology, 2019, 30(3):035702.
[149] LIAN C S, SI C, DUAN W. Unveiling charge-density wave, superconductivity, and their competitive nature in two-dimensional NbSe2[J]. Nano Letters, 2018, 18(5): 2924-2929.
[150] FANG Y, PAN J, HE J, et al. Structure re-determination and superconductivity observation ofbulk 1T MoS2[J]. Angewandte Chemie-International Edition, 2018, 57(5): 1232-1235.
[151] HEINE T. Transition metal chalcogenides: Ultrathin inorganic materials with tunable electronicproperties[J]. Accounts of Chemical Research, 2015, 48(1): 65-72.
[152] WOOLLAM J A, SOMOANO R B. Physics and chemistry of MoS2intercalation compounds[J]. Materials Science and Engineering, 1977, 31(9): 289-295.
[153] YE J T, ZHANG Y J, AKASHI R, et al. Superconducting dome in a gate-tuned band insulator[J]. Science, 2012, 338(6111): 1193-1196.
[154] SHI W, YE J, ZHANG Y, et al. Superconductivity series in transition metal dichalcogenides byionic gating[J]. Scientific Reports, 2015, 5: 12534.
[155] RAO G V S, SHAFER M W, KAWARAZA.S, et al. Superconductivity in alkaline-earth metaland Yb intercalated group VI layed dichalcogenides[J]. Journal of Solid State Chemistry, 1974,9(4): 323-329.
[156] FENG J, SUN X, WU C Z, et al. Metallic few-layered VS2 ultrathin nanosheets: High twodimensional conductivity for in-plane supercapacitors[J]. Journal of the American ChemicalSociety, 2011, 133(44): 17832-17838.125参考文献
[157] HUANG Y H, CHEN R S, ZHANG J R, et al. Electronic transport in NbSe2two-dimensionalnanostructures: Semiconducting characteristics and photoconductivity[J]. Nanoscale, 2015, 7(45): 18964-18970.
[158] WU M C, AZIZ A, WITT J D S, et al. Structural and functional analysis of nanopillar spinelectronic devices fabricated by 3D focused ion beam lithography[J]. Nanotechnology, 2008,19(48): 485305.
[159] MRAZ A, VASKIVSKYI I, VENTURINI R, et al. Charge configuration memory (CCM) device- a novel approach to memory[J]. Informacije Midem-Journal of Microelectronics ElectronicComponents and Materials, 2021, 51(3): 157-167.
[160] VASKIVSKYI I, MIHAILOVIC I A, BRAZOVSKII S, et al. Fast electronic resistance switchinginvolving hidden charge density wave states[J]. Nature Communications, 2016, 7(10): 11442.
[161] PáSZTOR A, SCARFATO A, SPERA M, et al. Multiband charge density wave exposed in atransition metal dichalcogenide[J]. Nature Communications, 2021, 12(1): 6037.
[162] GYE G, OH E, YEOM H W. Topological landscape of competing charge density waves in2H-NbSe2[J]. Physical Review Letters, 2019, 122(1): 016403.
[163] WANG J, GUO C, GUO W L, et al. Tunable 2H-TaSe2room-temperature terahertz photodetector[J]. Chinese Physics B, 2019, 28(4): 046802.
[164] FENG H F, XU Z F, ZHUANG J C, et al. Role of charge density wave in monatomic assemblyin transition metal dichalcogenides[J]. Advanced Functional Materials, 2019, 29(15): 1900367.
[165] ZHANG Q Z, HUANG Z P, HOU Y H, et al. Tuning molecular superlattice by charge-densitywave patterns in two-dimensional monolayer crystals[J]. Journal of Physical Chemistry Letters,2021, 12(14): 3545-3551.
[166] TULLY J C. Perspective on zur quantentheorie der molekeln[J]. Theoretical Chemistry Accounts, 2000, 103(3-4): 173-176.
[167] ESSéN H. The physics of the Born-Oppenheimer approximation[J]. International Journal ofQuantum Chemistry, 1977, 12(4): 721-735.
[168] GRIBOV L A. Calculation of the potential energy surface of a polyatomic molecule in anadiabatic approximation[J]. Journal of Structural Chemistry, 1995, 36(6): 1046-1048.
[169] HARTREE D R. The wave mechanics of an atom with a non-coulomb central field part I theoryand methods[J]. Proceedings of the Cambridge Philosophical Society, 1928, 24: 89-110.
[170] HARTREE D R. The wave mechanics of an atom with a non-coulomb central field part IIsome results and discussion[J]. Proceedings of The Cambridge Philosophical Society, 1928,24: 111-132.
[171] FOCK V. Näherungs methode zur Lösung des quanten mechanischen mehrkörper problems[J].Zeitschrift fur Medizinische Physik, 1930, 61(1-2): 126-148.
[172] STRATMANN R E, SCUSERIA G E, FRISCH M J. An efficient implementation of timedependent density-functional theory for the calculation of excitation energies of large molecules[J]. Journal of Chemical Physics, 1998, 109(19): 8218-8224.
[173] 谢希德. 固体能带理论[M]. 固体能带理论, 1998.126参考文献
[174] 徐光宪, 黎乐民, 王德民. 量子化学基本原理和从头计算法[M]. 量子化学基本原理和从头计算法, 1985.
[175] HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Physical Review B, 1964, 136(3B): B864-B870.
[176] KOHN W, SHAM L J. Self-consisten equations including exchange and corrlation effects[J].Physical Review, 1965, 140(4A): 1133-1138.
[177] DREIZLER R, GROSS E. Density functional theory: An approach to the quantum many bodyproblem[M]. Springer Science Business Media, 2012.
[178] KOHN W. Nobel lecture: Electronic structure of matter-wave functions and density functionals[J]. Reviews of Modern Physics, 1999, 71(5): 1253-1266.
[179] 曾瑾言. 量子力学导论[M]. 量子力学导论, 1998.
[180] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
[181] LIECHTENSTEIN A I, ANISIMOV V I, ZAANEN J. Density-functional theory and stronginteractions-orbital ordering in Mott-Hubbard insulators[J]. Physical Review B, 1995, 52(8):R5467-R5470.
[182] DUDAREV S L, BOTTON G A, SAVRASOV S Y, et al. Electron-energy-loss spectra and thestructural stability of nickel oxide: An LSDA+U study[J]. Physical Review B, 1998, 57(3):1505-1509.
[183] ARYASETIAWAN F, GUNNARSSON O. The GW method[J]. Reports on Progress in Physics,1998, 61(3): 237-312.
[184] GEORGES A, KOTLIAR G, KRAUTH W, et al. Dynamical mean-field theory of stronglycorrelated fermion systems and the limit of infinite dimensions[J]. Reviews of Modern Physics,1996, 68(1): 13-125.
[185] PERDEW J P, WANG Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Physical Review B, 1992, 45(23): 13244-13249.
[186] SHI J M, PEETERS F M, HAI G Q, et al. Donor transition energy in gaas superlattices in amagnetic-field along the growth axis[J]. Physical Review B, 1991, 44(11): 5692-5702.
[187] BECKE A D, JOHNSON E R. A simple effective potential for exchange[J]. Journal of ChemicalPhysics, 2006, 124(22): 221101.
[188] TRAN F, BLAHA P. Accurate band gaps of semiconductors and insulators with a semilocalexchange-correlation potential[J]. Physical Review Letters, 2009, 102(22): 226401.
[189] PAIER J, MARSMAN M, HUMMER K, et al. Screened hybrid density functionals applied tosolids[J]. Journal of Chemical Physics, 2006, 125(24): 249901.
[190] HEYD J, SCUSERIA G E, ERNZERHOF M. Hybrid functionals based on a screened coulombpotential[J]. Journal of Chemical Physics, 2003, 118(18): 8207-8215.
[191] BLOCHL P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24): 17953-17979.
[192] SCHLUTER M, HAMANN D R, CHIANG C. Norm-conserving pseudopotentials[J]. Bulletinof the American Physical Society, 1980, 25(3): 394-394.127参考文献
[193] VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B, 1990, 41(11): 7892-7895.
[194] HERNáNDEZ-TRUJILLO J, CORTéS-GUZMáN F, FANG D C, et al. Forces in molecules[J].Faraday Discussions, 2007, 135: 79-95.
[195] PARLINSKI K, LI Z Q, KAWAZOE Y. First-principles determination of the soft mode in cubicZrO2[J]. Physical Review Letters, 1997, 78(21): 4063-4066.
[196] GIANNOZZI P, ANDREUSSI O, BRUMME T, et al. Advanced capabilities for materials modelling with QUANTUM ESPRESSO[J]. Journal of Physics-Condensed Matter, 2017, 29(46):465901.
[197] BUDAI J D, HONG J W, MANLEY M E, et al. Metallization of vanadium dioxide driven bylarge phonon entropy[J]. Nature, 2014, 515(7528): 535-542.
[198] ROMERO A H, GROSS E K U, VERSTRAETE M J, et al. Thermal conductivity in PbTe fromfirst principles[J]. Physical Review B, 2015, 91(21): 214310.
[199] CAR R, PARRINELLO M. Unified for molecular-dynamics and density-functional theory[J].Physical Review Letters, 1985, 55(22): 2471-2474.
[200] ERIKSSON F, FRANSSON E, ERHART P. The Hiphive package for the extraction of highodrer force constants by machine learning[J]. Advanced Theory and Simulations, 2019, 2(5):1800184.
[201] ADA T E, ADEM D, NIGUSSA K N, et al. The amplitudons of dynamical as well as stablebinary cubic crystals for hot-electron cooling and enhanced thermoelectric effect[J]. Physica B:Condensed Matter, 2023, 666: 415091.
[202] ALLEN P B, DYNES R C. Transition-temperature of strong-coupled superconductors reanalyzed[J]. Physical Review B, 1975, 12(3): 905-922.
[203] MARQUES M A L, LüDERS M, LATHIOTAKIS N N, et al. Ab initio theory of superconductivity II: application to elemental metals[J]. Physical Review B, 2005, 72(2): 024546.
[204] LüDERS M, MARQUES M A L, LATHIOTAKIS N N, et al. Ab initio theory of superconductivity I: density functional formalism and approximate functionals[J]. Physical Review B, 2005,72(2): 024545.
[205] AKASHI R, KAWAMURA M, TSUNEYUKI S, et al. First-principles study of the pressureand crystal-structure dependences of the superconducting transition temperature in compressedsulfur hydrides[J]. Physical Review B, 2015, 91(22): 518-525.
[206] PROBERT M. Electronic structure: Basic theory and practical methods[J]. ContemporaryPhysics, 2020, 61(4): 312-312.
[207] KORTUS J, MAZIN I, BELASHCHENKO K D, et al. Superconductivity of metallic boron inMgB2[J]. Physical Review Letters, 2001, 86(20): 4656-4659.
[208] CALANDRA M, MAURI F. Charge-density wave and superconducting dome in TiSe2fromelectron-phonon interaction[J]. Physical Review Letters, 2011, 106(19): 196406.
[209] ZHENG F P, LI X B, LIN Y P, et al. Emergent superconductivity in two-dimensional NiTe2crystals[J]. Physical Review B, 2020, 101(10): 100505.128参考文献
[210] KRESSE G, FURTHMULLER J. Efficient iterative schemes for ab-initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186.
[211] KRESSE G, HAFNER J. Norm-conserving and ultrasoft pseudopotentials for first-row andtransition-elements[J]. Journal of Physics Condensed Matter, 1994, 6(40): 8245-8257.
[212] SAMIN A, LI X, ZHANG J S, et al. Ab initio molecular dynamics study of the properties ofcerium in liquid sodium at 1000 K temperature[J]. Journal of Applied Physics, 2015, 118(23):234902.
[213] GONZE X. Adiabatic density-functional perturbation-theory[J]. Physical Review A, 1995, 52(2): 1096-1114.
[214] BARONI S, DE GIRONCOLI S, DAL CORSO A, et al. Phonons and related crystal propertiesfrom density-functional perturbation theory[J]. Reviews of Modern Physics, 2001, 73(2): 515-562.
[215] GONZE X. Adiabatic density-functional perturbation theory[J]. Physical Review A, 1996, 54(5): 4591-4591.
[216] HAJIYEV P, CONG C X, QIU C Y, et al. Contrast and raman spectroscopy study of single- andfew-layered charge density wave material: 2H-TaSe2[J]. Scientific Reports, 2013, 3: 2593.
[217] UGEDA M M, BRADLEY A J, ZHANG Y, et al. Characterization of collective ground statesin single-layer NbSe2[J]. Nature Physics, 2015, 12(1): 92-97.
[218] CHEN P, CHAN Y H, FANG X Y, et al. Charge density wave transition in single-layer titaniumdiselenide[J]. Nature Communications, 2015, 6: 8943.
[219] SUGAWARA K, NAKATA Y, SHIMIZU R, et al. Unconventional charge-density-wave transition in monolayer 1T-TiSe2[J]. ACS Nano, 2016, 10(1): 1341-1345.
[220] RYU H, CHEN Y, KIM H, et al. Persistent charge-density-wave order in single-layer TaSe2[J].Nano Letters, 2018, 18(2): 689-694.
[221] FU W, CHEN Y, LIN J, et al. Controlled synthesis of atomically thin 1T-TaS2for tunable chargedensity wave phase transitions[J]. Chemistry of Materials, 2016, 28(21): 7613-7618.
[222] WANG H, CHEN Y, DUCHAMP M, et al. Large-area atomic layers of the charge-density-waveconductor TiSe2[J]. Advanced Materials, 2018, 30(8): 1704382.
[223] YANG Y F, FANG S, FATEMI V, et al. Enhanced superconductivity upon weakening of chargedensity wave transport in 2H-TaS2in the two-dimensional limit[J]. Physical Review B, 2018,98(3): 035203.
[224] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wavemethod[J]. Physical Review B, 1999, 59(3): 1758-1775.
[225] TOGO A, TANAKA I. First principles phonon calculations in materials science[J]. ScriptaMaterialia, 2015, 108(28): 1-5.
[226] VERSTRAETE M J, TORRENT M, JOLLET F, et al. Density functional perturbation theorywith spin-orbit coupling: Phonon band structure of lead[J]. Physical Review B, 2008, 78(4).
[227] CHIS V, SKLYADNEVA I Y, KOKH K A, et al. Vibrations in binary and ternary topologicalinsulators: First-principles calculations and Raman spectroscopy measurements[J]. PhysicalReview B, 2012, 86(17).129参考文献
[228] BIANCO R, MONACELLI L, CALANDRA M, et al. Weak dimensionality dependence anddominant role of ionic fluctuations in the charge-density-wave transition of NbSe2[J]. PhysicalReview Letters, 2020, 125(10): 106101.
[229] BIANCO R, ERREA I, MONACELLI L, et al. Quantum enhancement of charge density wavein NbS2in the two-dimensional limit[J]. Nano Letters, 2019, 19(5): 3098-3103.
[230] CHEN C, SINGH B, LIN H, et al. Reproduction of the charge density wave phase diagram in1T-TiSe2 exposes its excitonic character[J]. Physical Review Letters, 2018, 121(22): 226602.
[231] DUONG D L, RYU G, HOYER A, et al. Raman characterization of the charge density wavephase of 1T-TiSe2: From bulk to atomically thin layers[J]. ACS Nano, 2017, 11(1): 1034-1040.
[232] DUONG D L, BURGHARD M, SCHöN J C. Ab initio computation of the transition temperatureof the charge density wave transition in TiSe2[J]. Physical Review B, 2015, 92(24): 245131.
[233] LEROUX M, ERREA I, LE TACON M, et al. Strong anharmonicity induces quantum melting ofcharge density wave in 2H−NbSe2 under pressure[J]. Physical Review B, 2015, 92(14): 140303.
[234] ZHOU J Q S, MONACELLI L, BIANCO R, et al. Anharmonicity and doping melt the chargedensity wave in single-layer TiSe2[J]. Nano Letters, 2020, 20(7): 4809-4815.
[235] RIBEIRO G A S, PAULATTO L, BIANCO R, et al. Strong anharmonicity in the phonon spectraof PbTe and SnTe from first principles[J]. Physical Review B, 2018, 97(1): 014306.
[236] ASEGINOLAZA U, BIANCO R, MONACELLI L, et al. Strong anharmonicity and high ther moelectric efficiency in high-temperature SnS from first principles[J]. Physical Review B, 2019,100(21): 214307.
[237] FISHER W G, SIENKO M J. Stoichiometry, structure, and physical-properties of niobiumdisulfied[J]. Inorganic Chemistry, 1980, 19(1): 39-43.
[238] ZHENG F, FENG J. Electron-phonon coupling and the coexistence of superconductivity andcharge-Density wave in monolayer NbSe2[J]. Physical Review B, 2019, 99(16): 161119.
[239] HINSCHE N F, THYGESEN K S. Electron-phonon interaction and transport properties ofmetallic bulk and monolayer transition metal dichalcogenide TaS2[J]. 2D Materials, 2018, 5(1): 015009.
[240] VAN LOON E, RöSNER M, SCHöNHOFF G, et al. Competing coulomb and electron-phononinteractions in NbS2[J]. Npj Quantum Materials, 2018, 3(2): 32.
[241] GONG C, LI L, LI Z, et al. Discovery of intrinsic ferromagnetism in two-dimensional van derWaals crystals[J]. Nature, 2017, 546(7657): 265-269.
[242] NOVOSELOV K S, MISHCHENKO A, CARVALHO A, et al. 2D materials and van der Waalsheterostructures[J]. Science, 2016, 353(6298): aac9439.
[243] BARNES N. Van der Waals heterostructures[J]. Nature Reviews Methods Primers, 2022, 2(1):541-549.
[244] LU X B, STEPANOV P, YANG W, et al. Superconductors, orbital magnets and correlated statesin magic-angle bilayer graphene[J]. Nature, 2019, 574(7780): 653-661.
[245] YANKOWITZ M, CHEN S W, POLSHYN H, et al. Tuning superconductivity in twisted bilayergraphene[J]. Science, 2019, 363(6431): 1059-1064.
[246] ZHANG W J, WANG Q, HU L, et al. Electrical contacts to few-layer MoS2 with phaseengineering and metal intercalation for tuning the contact performance[J]. Journal of ChemicalPhysics, 2021, 154(18): 184705.
[247] SHARPE A L, FOX E J, BARNARD A W, et al. Emergent ferromagnetism near three-quartersfilling in twisted bilayer graphene[J]. Science, 2019, 365(6453): 605-608.
[248] WANG W, SI C, LEI W, et al. Stacking order and coulomb correlation effect in the layeredcharge density wave phase of 1T−NbS2[J]. Physical Review B, 2022, 105(3): 035119.
[249] GIVENS F, FREDERICKS G. Thermal expansion op NbSe2 and TaS2[J]. Journal of Physicsand Chemistry of Solids, 1977, 38(12): 1363-1365.
[250] CARMALT C J, MANNING T D, PARKIN I P, et al. Formation of a new (1T) trigonal NbS2polytype via atmospheric pressure chemical vapour deposition[J]. Journal of Materials Chemistry, 2004, 14(3): 290-291.
[251] ZHANG Q Y, GAN L Y, CHENG Y C, et al. Spin polarization driven by a charge-density wavein monolayer 1T-TaS2[J]. Physical Review B, 2014, 90(8): 081103.
[252] FAZEKAS P, TOSATTI E. Charge carrier localization in pure and doped 1T-TaS2[J]. PhysicaB+C, 1980, 99(1-4): 183-187.
[253] JIANG T, HU T, ZHAO G D, et al. Two-dimensional charge density waves in TaX2(X=S, Se,Te) from first principles[J]. Physical Review B, 2021, 104(7): 075147.
[254] PASQUIER D, YAZYEV O V. Charge density wave phase, mottness, and ferromagnetism inmonolayer 1T−NbSe2[J]. Physical Review B, 2018, 98(4): 045114.
[255] LEE S H, GOH J S, CHO D. Origin of the insulating phase and first-order metal-insulatortransition in 1T-TaS2[J]. Physical Review Letters, 2019, 122(10): 106404.
[256] RITSCHEL T, TRINCKAUF J, KOEPERNIK K, et al. Orbital textures and charge density wavesin transition metal dichalcogenides[J]. Nature Physics, 2015, 11(4): 328-331.
[257] YU X L, LIU D Y, QUAN Y M, et al. Electronic correlation effects and orbital density wave inthe layered compound 1T-TaS2[J]. Physical Review B, 2017, 96(12): 125138.
[258] VON WITTE G, KIßLINGER T, HORSTMANN J G, et al. Surface structure and stackingof the commensurate(13×13)R13.9ff charge density wave phase of 1T−TaS2(0001)[J]. PhysicalReview B, 2019, 100(15): 155407.
[259] HOVDEN R, TSEN A W, LIU P, et al. Atomic lattice disorder in charge-density-wave phasesof exfoliated dichalcogenides (1T-TaS2)[J]. Proceedings of the National Academy of Sciencesof the United States of America, 2016, 113(41): 11420-11424.
[260] CHO D, CHEON S, KIM K S, et al. Nanoscale manipulation of the Mott insulating state coupledto charge order in 1T-TaS2[J]. Nature Communications, 2016, 7: 10453.
[261] MA L, YE C, YU Y, et al. A metallic mosaic phase and the origin of Mott-insulating state in1T-TaS2[J]. Nature Communications, 2016, 7(1): 10956.
[262] STAHL Q, KUSCH M, HEINSCH F, et al. Collapse of layer dimerization in the photo-inducedhidden state of 1T-TaS2[J]. Nature Communications, 2020, 11(1): 1247.131参考文献
[263] GERASIMENKO Y A, KARPOV P, VASKIVSKYI I, et al. Intertwined chiral charge orders andtopological stabilization of the light-induced state of a prototypical transition metal dichalcogenide[J]. npj Quantum Materials, 2019, 4(1): 32.
[264] RIBAK A, SILBER I, BAINES C, et al. Gapless excitations in the ground state of 1T−TaS2[J].Physical Review B, 2017, 96(19): 195131.
[265] MAñAS-VALERO S, HUDDART B M, LANCASTER T, et al. Quantum phases and spin liquidproperties of 1T-TaS2[J]. npj Quantum Materials, 2021, 6(1): 69.
[266] LI C K, YAO X P, LIU J, et al. Fractionalization on the surface: Is type-II terminated 1T-TaS2surface an anomalously realized spin liquid?[J]. Physical Review letters, 2022, 129(1): 017202.
[267] WANG W, ZHAO B, MING X, et al. Multiple quantum states induced in 1T‐TaSe2 by controlling the stacking order of charge density waves[J]. Advanced Functional Materials, 2023, 33(20): 2214583.
[268] WANG W, ZHAO B, MING X, et al. Multiple quantum states induced in 1T-TaSe2 by controlling the stacking order of charge density waves[J]. Advanced Functional Materials, 2023, 33(20): 2214583.
[269] DION M, RYDBERG H, SCHRODER E, et al. Van der Waals density functional for generalgeometries[J]. Physical Review Letters, 2004, 92(24): 246401.
[270] KLIMES J, BOWLER D R, MICHAELIDES A. Van der Waals density functionals applied tosolids[J]. Physical Review B, 2011, 83(19): 195131.
[271] CLERC F, BATTAGLIA C, CERCELLIER H, et al. Fermi surface of layered compoundsand bulk charge density wave systems[J]. Journal of Physics-Condensed Matter, 2007, 19(35):355002.
[272] BOVET M, POPOVIC D, CLERC F, et al. Pseudogapped fermi surfaces of 1T-TaS2 and 1TTaSe2: A charge density wave effect[J]. Physical Review B, 2004, 69(12): 125117.
[273] WOOLLEY A M, WEXLER G. Band structures and Fermi surfaces for 1T-TaS2, 1T-TaSe2,1T-TaSe2 and 1T-VSe2[J]. Journal of Physics C-Solid State Physics, 1977, 10(14): 2601-2616.
[274] ROSSNAGEL K. On the origin of charge-density waves in select layered transition-metaldichalcogenides[J]. Journal of Physics-Condensed Matter, 2011, 23(21): 213001.
[275] GE Y, LIU A Y. First-principles investigation of the charge-density-wave instability in 1T-TaSe2[J]. Physical Review B, 2010, 82(15): 155133.
[276] SHANG C J, XU B, LEI X L, et al. Bandgap tuning in MoSSe bilayers: Synergistic effects ofdipole moment and interlayer distance[J]. Physical Chemistry Chemical Physics, 2018, 20(32):20919-20926.
[277] LIU L, YANG H, HUANG Y, et al. Direct identification of Mott Hubbard band pattern beyondcharge density wave superlattice in monolayer 1T-NbSe2[J]. Nature Communications, 2021, 12(1): 1978.
[278] RITSCHEL T, BERGER H, GECK J. Stacking-driven gap formation in layered 1T-TaS2[J].Physical Review B, 2018, 98(19): 195134.
[279] FUHRMANN A, HEILMANN D, MONIEN H. From Mott insulator to band insulator: Adynamical mean-field theory study[J]. Physical Review B, 2006, 73(24): 245118.132参考文献
[280] CHEN W O, SUN Z Y, WANG Z J, et al. Direct observation of van der Waals stacking-dependentinterlayer magnetism[J]. Science, 2019, 366(6468): 983-987.
[281] FEI Z, ZHAO W, PALOMAKI T A, et al. Ferroelectric switching of a two-dimensional metal[J]. Nature, 2018, 560(7718): 336-339.
[282] ELLIS J K, LUCERO M J, SCUSERIA G E. The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory[J]. Applied PhysicsLetters, 2011, 99(26): 261908.
[283] VAN WEZEL J, NAHAI-WILLIAMSON P, SAXENA S S. Exciton-phonon interactions andsuperconductivity bordering charge order in TiSe2[J]. Physical Review B, 2011, 83(2): 024502.
[284] KUC A, ZIBOUCHE N, HEINE T. Influence of quantum confinement on the electronic structureof the transition metal sulfide TS2[J]. Physical Review B, 2011, 83(24): 245213.
[285] KADANTSEV E S, HAWRYLAK P. Electronic structure of a single MoS2 monolayer[J]. SolidState Communications, 2012, 152(10): 909-913.
[286] GIANNOZZI P, BARONI S, BONINI N, et al. Quantum Espresso: A modular and open-sourcesoftware project for quantum simulations of materials[J]. Journal of Physics-Condensed Matter,2009, 21(39): 395502.
[287] GIANNOZZI P, ANDREUSSI O, BRUMME T, et al. Advanced capabilities for materials modelling with QUANTUM ESPRESSO[J]. Journal of Physics-Condensed Matter, 2017, 29(46):465901.
[288] SOHIER T, CALANDRA M, MAURI F. Density functional perturbation theory for gated twodimensional heterostructures: Theoretical developments and application to flexural phonons ingraphene[J]. Physical Review B, 2017, 96(7): 075448.
[289] HUANG G Q, XING Z W, XING D Y. Dynamical stability and superconductivity of Liintercalated bilayer MoS2: A first-principles prediction[J]. Physical Review B, 2016, 93(10):104511.
[290] ZHANG J J, GAO B, DONG S. Strain-enhanced superconductivity of MoX2(X=S or Se)bilayers with Na intercalation[J]. Physical Review B, 2016, 93(15): 155430.
[291] LIAN C S, SI C, WU J, et al. First-principless study of Na-intercalated bilayer NbSe2: Suppressed charge-density wave and strain-enhanced superconductivity[J]. Physical Review B,2017, 96(23): 235426.
[292] RöSNER M, HAAS S, WEHLING T O. Phase diagram of electron-doped dichalcogenides[J].Physical Review B, 2014, 90(24): 245105.
[293] KAWAMURA M. FermiSurfer: Fermi-surface viewer providing multiple representationschemes[J]. Computer Physics Communications, 2019, 239(1): 197-203.
[294] ZHU Z Y, CHENG Y C, SCHWINGENSCHLöGL U. Giant spin-orbit-induced spin splitting intwo-dimensional transition-metal dichalcogenide semiconductors[J]. Physical Review B, 2011,84(15): 153402.
[295] KOSMIDER K, GONZáLEZ J W, FERNáNDEZ-ROSSIER J. Large spin splitting in the conduction band of transition metal dichalcogenide monolayers[J]. Physical Review B, 2013, 88(24): 245436.133参考文献
[296] FU Y J, LIU E F, YUAN H T, et al. Gated tuned superconductivity and phonon softening inmonolayer and bilayer MoS2[J]. npj Quantum Materials, 2017, 2(1): 52.
[297] ZENG S M, ZHAO Y C, LI G, et al. Strongly enhanced superconductivity in doped monolayerMoS2 by strain[J]. Physical Review B, 2016, 94(2): 024501.
[298] DONG L, WANG G Y, ZHU Z, et al. Charge density wave states in 2H-MoTe2revealed byscanning tunneling microscopy[J]. Chinese Physics Letters, 2018, 35(6): 066801.
[299] MARINI G, CALANDRA M. Light-tunable charge density wave orders in MoTe2 and WTe2single layers[J]. Physical Review Letters, 2016, 127(25): 257401.
[300] LU J M, ZHELIUK O, LEERMAKERS I, et al. Evidence for two-dimensional ising superconductivity in gated MoS2[J]. Science, 2015, 350(6266): 1353-1357.
[301] SAITO Y, NAKAMURA Y, BAHRAMY M S, et al. Superconductivity protected by spin-valleylocking in ion-gated MoS2[J]. Nature Physics, 2016, 12(2): 144-150.
[302] GE Y, LIU A Y. Phonon-mediated superconductivity in electron-doped single-layer MoS2: Afirst-principles prediction[J]. Physical Review B, 2013, 87(24): 241408.
[303] HUANG G Q, XING Z W, XING D Y. Prediction of superconductivity in Li-intercalated bilayerphosphorene[J]. Applied Physics Letters, 2015, 106(11): 113107.
[304] XUE M, CHEN G, YANG H, et al. Superconductivity in potassium-doped few-layer graphene[J]. Journal of the American Chemical Society, 2012, 134(15): 6536-6539.
[305] TANIGUCHI K, MATSUMOTO A, SHIMOTANI H, et al. Electric-field-induced superconductivity at 9.4K in a layered transition metal disulphide MoS2[J]. Applied Physics Letters,2012, 101(4): 042603.
[306] JIN X L, CHEN X J, CUI T, et al. Crossover from metal to insulator in dense lithium-richcompound CLi4[J]. Proceedings of the National Academy of Sciences of the United States ofAmerica, 2016, 113(9): 2366-2369.
[307] ZHUANG Q, JIN X L, CUI T, et al. Effect of electrons scattered by optical phonons on superconductivity in MH3(M = S, Ti, V, Se)[J]. Physical Review B, 2018, 98(2): 024514.
[308] ULLAH S, DENIS P A, MENEZES M G, et al. Tunable optoelectronic properties in h-BP/hBAs bilayers: The effect of an external electrical field[J]. Applied Surface Science, 2019, 493(1): 308-319.
[309] GUINEA F, KATSNELSON M I, GEIM A K. Energy gaps and a zero-field quantum hall effectin graphene by strain engineering[J]. Nature Physics, 2009, 6(1): 30-33.
[310] WOOLLAM J A, SOMOANO R B. Superconducting critical fields of alkali and alkaline-earthintercalates of MoS2[J]. Physical Review B, 1976, 13(9): 3843-3853.
[311] PY M A, HAERING R R. Structural destabilization induced by lithium intercalation in MoS2and related-compounds[J]. Canadian Journal of Physics, 1983, 61(1): 76-84.
[312] GUO G H, HONG J H, CONG C J, et al. Molybdenum disulfide synthesized by hydrothermalmethod as anode for lithium rechargeable batteries[J]. Journal of Materials Science, 2005, 40(9): 2557-2559.
[313] ZHUANG H L, JOHANNES M D, SINGH A K, et al. Doping-controlled phase transitions insingle-layer MoS2[J]. Physical Review B, 2017, 96(16): 165305.134参考文献
[314] JENA D, KONAR A. Enhancement of carrier mobility in semiconductor nanostructures bydielectric engineering[J]. Physical Review Letters, 2007, 98(13): 136805.
[315] DUMCENCO D, OVCHINNIKOV D, MARINOV K, et al. Large-area epitaxial monolayerMoS2[J]. ACS Nano, 2015, 9(4): 4611-4620.
[316] YOON Y, GANAPATHI K, SALAHUDDIN S. How good can monolayer MoS2transistors be?[J]. Nano Letters, 2011, 11(9): 3768-3773.
[317] LUI C H, MAK K F, SHAN J, et al. Ultrafast photoluminescence from graphene[J]. PhysicalReview Letters, 2010, 105(12): 127404.
[318] RAI A, VALSARAJ A, MOVVA H C, et al. Air stable doping and intrinsic mobility enhancement in monolayer molybdenum disulfide by amorphous titanium suboxide encapsulation[J].Nano Letters, 2015, 15(7): 4329-4336.
[319] CHUANG H J, CHAMLAGAIN B P, KOEHLER M, et al. Low-resistance 2D/2D Ohmic contacts: A universal approach to high-performance WSe2, MoS2, and MoSe2transistors[J]. NanoLetters, 2016, 16(3): 1896-1902.
[320] JENA D, BANERJEE K, XING G H. 2D crystal semiconductors intimate contacts[J]. NatureMaterials, 2014, 13(12): 1076-1078.
[321] WANG N. Ohmic contacts for atomically-thin transition metal dichalcogenide semiconductors[J]. Journal of Semiconductors, 2020, 41(7): 070401.
[322] LIU Y, STRADINS P, WEI S H. Van der Waals metal-semiconductor junction: weak fermilevel pinning enables effective tuning of Schottky barrier[J]. Science Advances, 2016, 2(4):e1600069.
[323] LIU Y, GUO J, ZHU E, et al. Approaching the Schottky-Mott limit in van der Waals metalsemiconductor junctions[J]. Nature, 2018, 557(7707): 696-700.
[324] WANG Q, SHAO Y F, GONGA P L, et al. Metal–2D multilayered semiconductor junctions:Layer-number dependent Fermi level pinning[J]. Journal of Materials Chemistry C, 2020, 8(9):3113-3119.
[325] KIM C, MOON I, LEE D, et al. Fermi level pinning at electrical metal contacts of monolayermolybdenum dichalcogenides[J]. ACS Nano, 2017, 11(2): 1588-1596.
[326] GUINEA F, CAPPELLUTI E, ROLDáN R, et al. Tight-binding model and direct-gap/indirectgap transition in single-layer and multilayer MoS2[J]. Physical Review B, 2013, 88(7): 075409.
[327] SHARVIN Y V. On the possible method for studying fermi surfaces[J]. Soviet physics JETP,1965, 21(1): 655–656.
[328] HU X H, WANG Y F, SHEN X D, et al. 1T phase as an efficient hole injection layer toTMDs transistors: A universal approach to achieve 𝑝-type contacts[J]. 2D Materials, 2018,5(3): 031012.
[329] KRESSE G, HAFNER J. Ab-initio molecular dynamics for liquid metals[J]. Physica BCondensed Matter, 1993, 47(1): 558-561.
[330] BJORKMAN T, GULANS A, KRASHENINNIKOV A V, et al. Van der Waals bonding inlayered compounds from advanced density-functional first-principles calculations[J]. PhysicalReview Letters, 2012, 108(23): 235502.135参考文献
[331] LI T. Ideal strength and phonon instability in single-layer MoS2[J]. Physical Review B, 2012,85(23): 156802.
[332] YUN W S, HAN S W, HONG S C, et al. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2semiconductors (M=Mo, W;X=S, Se, Te)[J]. Physical Review B, 2012, 85(3): 509-514.
[333] SHI H, PAN H, ZHANG Y W, et al. Quasiparticle band structures and optical properties ofstrained monolayer MoS2and WS2[J]. Physical Review B, 2013, 87(15): 11350-11357.
[334] NEUGEBAUER J, SCHESER M. Adsorbate-substrate and adsorbate-adsorbate interactions ofNa and K adlayers on Al(111)[J]. Physica B-Condensed Matter, 1992, 46(24): 16067-16080.
[335] SAIDI W A. Influence of strain and metal thickness on metal-MoS2 contacts[J]. Journal ofChemical Physics, 2014, 141(9): 094707.
[336] FARMANBAR M, BROCKS G. Controlling the Schottky barrier at MoS2/metal contacts byinserting a BN monolayer[J]. Physical Review B, 2015, 91(16): 161304.
[337] GIOVANNETTI G, KHOMYAKOV P A, BROCKS G, et al. Doping graphene with metalcontacts[J]. Physical Review Letters, 2008, 101(2): 026803.
[338] KHOMYAKOV P A, GIOVANNETTI G, RUSU P C, et al. First-principles study of the interaction and charge transfer between graphene and metals[J]. Physical Review B, 2009, 79(19):195425.
[339] BOKDAM M, BROCKS G, KATSNELSON M I, et al. Schottky barriers at hexagonal boronnitride/metal interfaces: A first-principles study[J]. Physical Review B, 2014, 90(8): 085415.
[340] SAIDI W A. Trends in the adsorption and growth morphology of metals on the MoS2(001)surface[J]. Crystal Growth Design, 2015, 15(7): 3190-3200.
[341] DING X, ZHANG S, ZHAO M, et al. NbS2: A promising 𝑝-type Ohmic contact for twodimensional materials[J]. Physical Review Applied, 2019, 12(6): 064061.
[342] WATANABE E, CONWILL A, TSUYA D, et al. Low contact resistance metals for graphenebased devices[J]. Diamond and Related Materials, 2012, 24(1): 171-174.
[343] SCHULMAN D S, ARNOLD A J, DAS S. Contact engineering for 2D materials and devices[J]. Chemical Society Reviews, 2018, 47(9): 3037-3058.
[344] DU Z, YANG S, LI S, et al. Conversion of non-van der Waals solids to 2D transition-metalchalcogenides[J]. Nature, 2020, 577(7791): 492-496.
[345] KIM J S, KIM J, ZHAO J, et al. Electrical transport properties of polymorphic MoS2[J]. ACSNano, 2016, 10(8): 7500-7506.
[346] PAZ W S, PALACIOS J J. A theoretical study of the electrical contact between metallic andsemiconducting phases in monolayer MoS2[J]. 2D Materials, 2016, 4(1): 015014.
[347] KAPPERA R, VOIRY D, YALCIN S E, et al. Phase-engineered low-resistance contacts forultrathin MoS2transistors[J]. Nature Materials, 2014, 13(12): 1128-1134.
[348] WANG Q, DENG B, SHI X Q. A new insight for ohmic contacts to MoS2: by tuning MoS2affinity energies but not metal work-functions[J]. Physical Chemistry Chemical Physics, 2017,19(38): 26151-26157.136参考文献
[349] SU J, FENG L P, ZENG W, et al. Controlling the electronic and geometric structures of 2Dinsertions to realize high performance metal/insertion-MoS2sandwich interfaces[J]. Nanoscale,2017, 9(22): 7429-7441.
[350] ABRAHAM M, MOHNEY S E. Annealed Ag contacts to MoS2 field-effect transistors[J].Journal of Geophysical Research. Biogeosciences, 2017, 122(11): 115306.
[351] EKNAPAKUL T, KING P D C, ASAKAWA M, et al. Electronic structure of a quasi-freestandingMoS2 monolayer[J]. Nano Letters, 2014, 14(3): 1312-1316.
[352] QI H J, HAN X L, QING W S, et al. Electronic and optical properties of graphane, silicane,MoS2 homo-bilayers and hetero-bilayers[J]. Current Applied Physics, 2019, 19(11): 1222-1232.
[353] GANATRA R, ZHANG Q. Few-layer MoS2: A promising layered semiconductor[J]. ACSNano, 2014, 8(5): 4074-4099.
[354] CORTéS R, TEJEDA A, LOBO-CHECA J, et al. Competing charge ordering and Mott phasesin a correlated Sn/Ge(111) two-dimensional triangular lattice[J]. Physical Review B, 2013, 88(12): 125113.
[355] SOMOANO R B, HADEK V, REMBAUM A. Alkali metal intercalates of molybdenum disul fide[J]. The Journal of Chemical Physics, 1973, 58(2): 697-701.
[356] MORPURGO A F. Gate control of spin-valley coupling[J]. Nature Physics, 2013, 9(9): 532-533.
[357] XIAO D, LIU G B, FENG W X, et al. Coupled spin and valley physics in monolayers of MoS2and other group-VI dichalcogenides[J]. Physical Review Letters, 2012, 108(19): 196802.
[358] CAO T, WANG G, HAN W P, et al. Valley-selective circular dichroism of monolayer molyb denum disulphide[J]. Nature Communications, 2012, 3(6): 887.
[359] ZENG H L, DAI J F, YAO W, et al. Valley polarization in MoS2 monolayers by optical pumping[J]. Nature Nanotechnology, 2012, 7(8): 490-493.
修改评论