中文版 | English
题名

次扩散方程L2方法的舍入误差问题及H1范数误差估计

其他题名
ROUNDOFF ERROR PROBLEM AND 𝐻1 NORM ERROR ESTIMATION OF THE L2 METHODS FOR THE SUBDIFFUSION EQUATION
姓名
姓名拼音
WANG Shijie
学号
12232866
学位类型
硕士
学位专业
0701 数学
学科门类/专业学位类别
07 理学
导师
杨将
导师单位
数学系
外机构导师
权超禹
外机构导师单位
香港中文大学(深圳)
论文答辩日期
2024-05-23
论文提交日期
2024-06-23
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

次扩散方程描述了物质在复杂介质中的扩散过程,呈现出具有记忆性的扩散行为。次扩散方程的特性可以很好地被分数阶导数描述,然而求含分数阶导数方程的解析解十分困难,这促使研究者研究分数阶导数的数值近似方法,如多项式插值逼近求解次扩散方程的数值算法。本文主要研究基于二次 Lagrange 插值多项式的 L2 方法,以逼近分数阶 Caputo 导数。致力于解决 L2 方法系数计算中的舍入误差问题和变步长 L2 方法的 𝐻1范数误差估计。

首先,本文提出一个基于阈值条件和 Taylor 展开(TCTE)的高效处理方法。当阈值条件满足时,直接使用显式公式即可精确计算 L2 方法的系数;当阈值条件不满足时,采用 Taylor 展开的前几项进行近似,即可达到机器误差精度的近似。本文严格给出了相应的舍入误差分析,该技术和分析同样可推广到 L1 和 L2-1𝜎 方法中。通过数值实验对比,本文验证了 TCTE 方法的可行性和高效性。

此外,本文严格给出了在步长比限制和某些单调性条件下,变步长 L2 方法求
解次扩散方程的 𝐻 1 范数误差估计。本文采用“平移”变换技巧,将原L2
逼近形式,变换为系数为正的新 L2 逼近形式,从而给出了变步长 L2 方法的 𝐻1
范数误差估计。
关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-06
参考文献列表

[1] EINSTEIN A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)][J]. Annalen der Physik, 2005, 14(S1 1): 182-193.
[2] VON SMOLUCHOWSKI M. Zur kinetischen theorie der brownschen molekularbewegung undder suspensionen[J]. Annalen der Physik, 1906, 326(14): 756-780.
[3] SAXTON M J. Anomalous diffusion due to obstacles: a Monte Carlo study[J]. Biophysical Journal, 1994, 66(2): 394-401.
[4] SAXTON M J. A biological interpretation of transient anomalous subdiffusion. I. Qualitative model[J]. Biophysical Journal, 2007, 92(4): 1178-1191.
[5] REGNER B M, VUČINIĆ D, DOMNISORU C, et al. Anomalous diffusion of single particles in cytoplasm[J]. Biophysical Journal, 2013, 104(8): 1652-1660.
[6] BRONSTEIN I, ISRAEL Y, KEPTEN E, et al. Transient anomalous diffusion of telomeres in the nucleus of mammalian cells[J]. Physical Review Letters, 2009, 103(1): 018102.
[7] ZSCHOKKE I. Optical spectroscopy of glasses: volume 1[M]. Springer Science & Business Media, 2012.
[8] HUGHES B D. Random walks and random environments[M]. Oxford University Press, 1996.
[9] METZLER R, KLAFTER J. The random walk’s guide to anomalous diffusion: a fractional dynamics approach[J]. Physics Reports, 2000, 339(1): 1-77.
[10] BRUNO L, LEVI V, BRUNSTEIN M, et al. Transition to superdiffusive behavior in intracellular actin-based transport mediated by molecular motors[J]. Physical Review E, 2009, 80(1): 011912.
[11] METZLER R, JEON J H, CHERSTVY A G, et al. Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking [J]. Physical Chemistry Chemical Physics, 2014, 16(44): 24128-24164.
[12] METZLER R, TEJEDOR V, JEON J H, et al. Analysis of single particle trajectories: from normal to anomalous diffusion.[J]. Acta Physica Polonica B, 2009, 40(5).
[13] NEUMAN S P, TARTAKOVSKY D M. Perspective on theories of non-Fickian transport in heterogeneous media[J]. Advances in Water Resources, 2009, 32(5): 670-680.
[14] BERKOWITZ B, CORTIS A, DENTZ M, et al. Modeling non-Fickian transport in geologicalformations as a continuous time random walk[J]. Reviews of Geophysics, 2006,44(2).
[15] BARKAI E. Fractional Fokker-Planck equation, solution, and application[J]. Physical Review E, 2001, 63(4): 046118.
[16] MEERSCHAERT M M, SCALAS E. Coupled continuous time random walks in finance[J]. Physica A: Statistical Mechanics and its Applications, 2006, 370(1): 114-118.
[17] YAN H, LAZARIAN A. Cosmic-ray propagation: nonlinear diffusion parallel and perpendicular to mean magnetic field[J]. The Astrophysical Journal, 2008, 673(2): 942.
[18] KLAFTER J, SHLESINGER M F, ZUMOFEN G. Beyond brownian motion[J]. Physics Today, 1996, 49(2): 33-39.
[19] PFISTER G, SCHER H. Dispersive (non-Gaussian) transient transport in disordered solids[J]. Advances in Physics, 1978, 27(5): 747-798.
[20] BERKOWITZ B, SCHER H. Theory of anomalous chemical transport in random fracture networks[J]. Physical Review E, 1998, 57(5): 5858.
[21] KUBO R, TODA M, HASHITSUME N. Statistical physics II: nonequilibrium statistical mechanics: volume 31[M]. Springer Science & Business Media, 2012.
[22] MURALIDHAR R, RAMKRISHNA D, NAKANISHI H, et al. Anomalous diffusion: a dynamic perspective[J]. Physica A: Statistical Mechanics and its Applications, 1990, 167(2): 539-559.
[23] WANG K, DONG L, WU X, et al. Correlation effects, generalized Brownian motion and anomalous diffusion[J]. Physica A: Statistical Mechanics and its Applications, 1994, 203(1): 53-60.
[24] WANG K, TOKUYAMA M. Nonequilibrium statistical description of anomalous diffusion[J]. Physica A: Statistical Mechanics and its Applications, 1999, 265(3-4): 341-351.
[25] WYSS W. The fractional diffusion equation[J]. Journal of Mathematical Physics, 1986, 27(11): 2782-2785.
[26] SCHNEIDER W R, WYSS W. Fractional diffusion and wave equations[J]. Journal of Mathematical Physics, 1989, 30(1): 134-144.
[27] METZLER R, NONNENMACHER T. Fractional diffusion: exact representations of spectral functions[J]. Journal of Physics A: Mathematical and General, 1997, 30(4): 1089.
[28] METZLER R, GLÖCKLE W G, NONNENMACHER T F. Fractional model equation for anomalous diffusion[J]. Physica A: Statistical Mechanics and its Applications, 1994, 211(1): 13-24.
[29] GIONA M, ROMAN H E. Fractional diffusion equation for transport phenomena in random media[J]. Physica A: Statistical Mechanics and its Applications, 1992, 185(1-4): 87-97.
[30] GORENFLO R, MAINARDI F, MORETTI D, et al. Time fractional diffusion: a discrete random walk approach[J]. Nonlinear Dynamics, 2002, 29: 129-143.
[31] PODLUBNY I. Fractional differential equations, mathematics in science and engineering[M]. Academic press New York, 1999.
[32] LAGRANGE J L. Théorie des fonctions analytiques[M]. Imprimerie de la République, 1797.
[33] LUBICH C. Discretized fractional calculus[J]. SIAM Journal on Mathematical Analysis, 1986, 17(3): 704-719.
[34] LUBICH C. Convolution quadrature and discretized operational calculus. I[J]. Numerische Mathematik, 1988, 52(2): 129-145.
[35] LUBICH C. Convolution quadrature revisited[J]. BIT Numerical Mathematics, 2004, 44: 503- 514.
[36] DENG W, HESTHAVEN J S. Local discontinuous Galerkin methods for fractional ordinary differential equations[J]. BIT Numerical Mathematics, 2015, 55(4): 967-985.
[37] MUSTAPHA K. Time-stepping discontinuous Galerkin methods for fractional diffusion problems[J]. Numerische Mathematik, 2015, 130(3): 497-516.
[38] STYNES M, O’RIORDAN E, GRACIA J L. Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation[J]. SIAM Journal on Numerical Analysis, 2017, 55(2): 1057-1079.
[39] KOPTEVA N, MENG X. Error analysis for a fractional-derivative parabolic problem on quasi graded meshes using barrier functions[J]. SIAM Journal on Numerical Analysis, 2020, 58(2): 1217-1238.
[40] KOPTEVA N. Error analysis of an L2-type method on graded meshes for a fractional-order parabolic problem[J]. Mathematics of Computation, 2021, 90(327): 19-40.
[41] LV C, XU C. Error analysis of a high order method for time-fractional diffusion equations[J]. SIAM Journal on Scientific Computing, 2016, 38(5): A2699-A2724.
[42] LIAO H L, MCLEAN W, ZHANG J. A discrete Gronwall inequality with applications to numerical schemes for subdiffusion problems[J]. SIAM Journal on Numerical Analysis, 2019, 57 (1): 218-237.
[43] CHEN H, STYNES M. Error analysis of a second-order method on fitted meshes for a time fractional diffusion problem[J]. Journal of Scientific Computing, 2019, 79: 624-647.
[44] LIAO H L, MCLEAN W, ZHANG J. A second-order scheme with nonuniform time steps for a linear reaction-sudiffusion problem[A]. 2018.
[45] WANG Y M. A high-order compact finite difference method on nonuniform time meshes for variable coefficient reaction–subdiffusion problems with a weak initial singularity[J]. BIT Numerical Mathematics, 2021, 61(3): 1023-1059.
[46] FRANZ S, KOPTEVA N. Pointwise-in-time a posteriori error control for higher-order discretizations of time-fractional parabolic equations[J]. Journal of Computational and Applied Mathematics, 2023, 427: 115122.
[47] JIANG S, ZHANG J, ZHANG Q, et al. Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations[J]. Communications in Computational Physics, 2017, 21(3): 650-678.
[48] LANGLANDS T, HENRY B I. The accuracy and stability of an implicit solution method for the fractional diffusion equation[J]. Journal of Computational Physics, 2005, 205(2): 719-736.
[49] SUN Z Z, WU X. A fully discrete difference scheme for a diffusion-wave system[J]. Applied Numerical Mathematics, 2006, 56(2): 193-209.
[50] LIN Y, XU C. Finite difference/spectral approximations for the time-fractional diffusion equation[J]. Journal of Computational Physics, 2007, 225(2): 1533-1552.
[51] GAO G H, SUN Z Z, ZHANG H W. A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications[J]. Journal of Computational Physics, 2014, 259: 33-50.
[52] ALIKHANOV A A. A new difference scheme for the time fractional diffusion equation[J]. Journal of Computational Physics, 2015, 280: 424-438.
[53] ALIKHANOV A A, HUANG C. A high-order L2 type difference scheme for the time-fractional diffusion equation[J]. Applied Mathematics and Computation, 2021, 411: 126545.
[54] KOPTEVA N. Error analysis of the L1 method on graded and uniform meshes for a fractional derivative problem in two and three dimensions[J]. Mathematics of Computation, 2019, 88 (319): 2135-2155.
[55] LIAO H L, LI D, ZHANG J. Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations[J]. SIAM Journal on Numerical Analysis, 2018, 56(2): 1112- 1133.
[56] QUAN C, WU X. H1-norm stability and convergence of an L2-type method on nonuniform meshes for subdiffusion equation[J]. SIAM Journal on Numerical Analysis, 2023, 61(5): 2106-2132.
[57] QUAN C, TANG T, YANG J. How to define dissipation-preserving energy for time-fractional phase-field equations[A]. 2020.
[58] JIN B, LI B, ZHOU Z. Correction of high-order BDF convolution quadrature for fractional evolution equations[J]. SIAM Journal on Scientific Computing, 2017, 39(6): A3129-A3152.
[59] JIN B, LI B, ZHOU Z. Subdiffusion with time-dependent coefficients: improved regularity and second-order time stepping[J]. Numerische Mathematik, 2020, 145(4): 883-913.
[60] JIN B, LAZAROV R, ZHOU Z. Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data[J]. SIAM Journal on Scientific Computing, 2016, 38(1): A146-A170.
[61] MULLER J M, BRISEBARRE N, DE DINECHIN F, et al. Handbook of floating-point arithmetic[M]. Springer, 2018.
[62] GOLDBERG D. What every computer scientist should know about floating-point arithmetic[J]. ACM Computing Surveys (CSUR), 1991, 23(1): 5-48.
[63] QUAN C, WU X. Global-in-time H1-Stability of L2-1σ method on general nonuniform meshes for subdiffusion equation[J]. Journal of Scientific Computing, 2023, 95(2): 594.
[64] QUAN C, WU X, YANG J. Long time H1-stability of fast L2-1σ method on general nonuniform meshes for subdiffusion equations[J]. Journal of Computational and Applied Mathematics, 2024, 440: 115647.
[65] TREFETHEN L N. Spectral methods in MATLAB[M]. SIAM, 2000.
[66] SHEN J, TANG T, WANG L L. Spectral methods: algorithms, analysis and applications: volume 41[M]. Springer Science & Business Media, 2011.

所在学位评定分委会
数学
国内图书分类号
O241.8
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765836
专题南方科技大学
理学院_数学系
推荐引用方式
GB/T 7714
王世洁. 次扩散方程L2方法的舍入误差问题及H1范数误差估计[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12232866-王世洁-数学系.pdf(2147KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王世洁]的文章
百度学术
百度学术中相似的文章
[王世洁]的文章
必应学术
必应学术中相似的文章
[王世洁]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。