[ZHANG X Z, LI X L, LIU Y Q, et al. Afterglow phosphor goes transparent [J]. The Journal of Physical Chemistry Letters, 2023, 14(44): 10003 -10011.
[2] ZHOU B, XIAO G W, YAN D P. Boosting wide-range tunable long-afterglow in 1D metal–organic halide micro/nanocrystals for space/time-resolved information photonics [J]. Advanced Materials, 2021, 33(16): 2007571.
[3] HUANG J L, PENG Y H, JIN J C, et al. Unveiling white light emission of a one -dimensional Cu(I)-based organometallic halide toward single-phase light-emitting diode applications [J]. The Journal of Physical Chemistry Letters, 2021, 12(51): 12345-12351.
[4] HAN K, QIAO J W, ZHANG S, et al. Band alignment engineering in ns 2 electrons doped metal halide perovskites [J]. Laser & Photonics Reviews, 2022, 17: 2200458.
[5] HAN K, JIN J C, SU B B, et al. Molecular dimensionality and photoluminescence of hybrid metal halides [J]. Trends in Chemistry, 2022, 4(11): 1034 -1044.
[6] HAN Y, YUE S J, CUI B B. Low-dimensional metal halide perovskite crystal materials: structure strategies and luminescence applications [J]. Advanced Science, 2021, 8(15): 2004805.
[7] LI M Z, XIA Z G. Recent progress of zero-dimensional luminescent metal halides [J]. Chemical Society Reviews, 2021, 50(4): 2626-2662.
[8] GUO J, ZHOU C, XIE S, et al. Large aromatic hydrocarbon radical cation with global aromaticity and state-associated magnetic activity [J]. Chemistry of Materials, 2020, 32(14): 5927-5936.
[9] LI B H, XU Y, ZHANG X L, et al. Zero-dimensional luminescent metal halide hybrids enabling bulk transparent medium as large-area X-ray scintillators [J]. Advanced Optical Materials, 2022, 10(10): 2102793.
[10] LI B H, JIN J C, YIN M J, et al. Sequential and reversible phase transformations in zero-dimensional organic-inorganic hybrid Sb-based halides towards multiple emissions [J]. Angewandte Chemie International Edition, 2022, 61(49): e202212741.
[11] DI J Y, CHANG J J, LIU S Z. Recent progress of two-dimensional lead halide perovskite single crystals: crystal growth, physical properties, and device applications [J]. EcoMat, 2020, 2(3): e12036.
[12] GUO Z H, LI J Z, CHEN R, et al. Advances in single crystals and thin films of chiral hybrid metal halides [J]. Progress in Quantum Electronics, 2022, 82: 100375.
[13] PENG Y, YAO Y P, LI L N, et al. White-light emission in a chiral one-dimensional organic–inorganic hybrid perovskite [J]. Journal of Materials Chemistry C, 2018, 6(22): 参考文献616033-6037.
[14] LI Q, XU B, QUAN Z W. Pressure-regulated excitonic transitions in emergent metal halides [J]. Accounts of Chemical Research, 2023, 56(22): 3282 -3291.
[15] CHEN Q, ZHANG M M, DAI F X, et al. An organic–inorganic tin halide perovskite with over 2000-hour emission stability [J]. Advanced Optical Materials, 2023, 11(5): 2202475.
[16] ZHOU C K, LIN H R, SHI H L, et al. A zero-dimensional organic seesaw-shaped tin bromide with highly efficient strongly Stokes-shifted deep-red emission [J]. Angewandte Chemie International Edition, 2018, 57(4): 1021 -1024.
[17] SU B B, JIN J C, PENG Y H, et al. Zero-dimensional organic copper(I) iodide hybrid with high anti-water stability for blue-light-excitable solid-state lighting [J]. Advanced Optical Materials, 2022, 10(12): 2102619.
[18]苏彬彬, 夏志国. 新兴零维金属卤化物的光致发光与应用研究进展 [J]. 发光学报, 2021, 42(06): 733-754.
[19] 包文雪, 彭辉, 邹炳锁. 零维有机-无机杂化金属卤化物的溶液合成、光物理性质及光电应用 [J]. 发光学报, 2023, 44(10): 1751-1769.
[20] 张利明. 含络合/有机阳离子金属卤化物的合成及发光性质研究 [D]. 哈尔滨工业大学, 2022.
[21] ZHANG L M, LUO Z S, WANG W, et al. Organic cation-directed modulation of emissions in zero-dimensional hybrid tin bromides [J]. Inorganic Chemistry, 2022, 61(37): 14857-14863.
[22] ZHOU G J, LIU Z Y, HUANG J L, et al. Unraveling the near-unity narrow-band green emission in zero-dimensional Mn2+-based metal halides: a case study of (C10H16N)2Zn1–xMnxBr4 solid solutions [J]. The Journal of Physical Chemistry Letters, 2020, 11(15): 5956-5962.
[23] WEI J H, OU W T, LUO J B, et al. Zero-dimensional Zn-based halides with ultra-long room-temperature phosphorescence for time-resolved anti-counterfeiting [J]. Angewandte Chemie International Edition, 2022, 61(33): e202207985.
[24] XIAO G W, FANG X Y, MA Y J, et al. Multi-mode and dynamic persistent luminescence from metal cytosine halides through balancing excited -state proton transfer [J]. Advanced Science, 2022, 9(16): 2200992.
[25] XU L J, PLAVIAK A, LIN X S, et al. Metal halide regulated photophysical tuning o f zero-dimensional organic metal halide hybrids: from efficient phosphorescence to ultralong afterglow [J]. Angewandte Chemie International Edition, 2020, 59(51): 23067-23071.
[26] GONG H, YU H, ZHANG Y, et al. Thermally activated long persistent luminesce nce of organic inorganic metal halides [J]. Angewandte Chemie International Edition, 2023, 62(14): e202219085.参考文献62
[27] LUO Z S, LIU Y J, LIU Y L, et al. Integrated afterglow and self-trapped exciton emissions in hybrid metal halides for anti-counterfeiting applications [J]. Advanced Materials, 2022, 34(18): 2200607.
[28] CHAI C Y, HAN X B, LIU C D, et al. Circularly polarized luminescence in zero -dimensional antimony halides: structural distortion controlled luminescence thermometer [J]. The Journal of Physical Chemistry Letters, 2023, 14(17): 4063-4070.
[29] MA J Q, FANG C, CHEN C, et al. Chiral 2D perovskites with a high degree of circularly polarized photoluminescence [J]. ACS Nano, 2019, 13(3): 3659 -3665.
[30] QIN Y, GAO F F, QIAN S H, et al. Multifunctional chiral 2D lead halide perovskites with circularly polarized photoluminescence and piezoelectric energy harvesting properties [J]. ACS Nano, 2022, 16(2): 3221-3230.
[31] MA S, AHN J, MOON J. Chiral perovskites for next-generation photonics: from chirality transfer to chiroptical activity [J]. Advanced Materials, 2021, 33(47): 2005760.
[32] MA J Q, WANG H Z, LI D H. Recent progress of chiral perovskites: materials, synthesis, and properties [J]. Advanced Materials, 2021, 33(26): 2008785.
[33] WEI Y, LI C, LI Y W, et al. Circularly polarized luminescence from zero-dimensional hybrid lead-tin bromide with near-unity photoluminescence quantum yield [J]. Angewandte Chemie International Edition, 2022, 61: e202212685.
[34] JANA M K, SONG R Y, LIU H L, et al. Organic-to-inorganic structural chirality transfer in a 2D hybrid perovskite and impact on Rashba-Dresselhaus spin-orbit coupling [J]. Nature Communications, 2020, 11(1): 4699.
[35] LIU Y L, LUO Z S, WEI Y, et al. Integrating achiral and chiral organic ligands in zero dimensional hybrid metal halides to boost circularly polarized luminescence [J]. Angewandte Chemie International Edition, 2023, 62: e202306821.
[36] MORAD V, SHYNKARENKO Y, YAKUNIN S, et al. Disphenoidal zero-dimensional lead, tin, and germanium halides: highly emissive singlet and triplet self-trapped excitons and X-ray scintillation [J]. Journal of the American Chemical Society, 2019, 141(25): 9764-9768.
[37] CHEN D, DAI F L, HAO S Q, et al. Crystal structure and luminescence properties of lead-free metal halides (C6H5CH2NH3)3MBr6 (M = Bi and Sb) [J]. Journal of Materials Chemistry C, 2020, 8(22): 7322-7329.
[38] CHEN D, HAO S Q, ZHOU G, et al. Lead-free broadband orange-emitting zero dimensional hybrid (PMA)3InBr6 with direct band gap [J]. Inorganic Chemistry, 2019, 58(22): 15602-15609.
[39] LI M Z, LI Y W, MOLOKEEV M S, et al. Halogen substitution in zero -dimensional mixed metal halides toward photoluminescence modulation and enhanced quantum yield [J]. Advanced Optical Materials, 2020, 8(16): 2000418.参考文献63
[40] ZHOU G J, LIU Z Y, MOLOKEEV M S, et al. Manipulation of Cl/Br transmutation in zero-dimensional Mn2+-based metal halides toward tunable photoluminescence and thermal quenching behaviors [J]. Journal of Materials Chemistry C, 2021, 9(6): 2047 -2053.
[41] AHN J, MA S, KIM J Y, et al. Chiral 2D organic inorganic hybrid perovskite with circular dichroism tunable over wide wavelength range [J]. Journal of the American Chemical Society, 2020, 142(9): 4206-4212.
[42] GAO Y L, WEI Q L, CHANG T, et al. Highly efficient warm white light emission in Sb3+-doped (NH4)4CdCl6 metal halides through A-site Rb-alloying regulation [J]. Journal of Materials Chemistry C, 2023, 11(25): 8486-8494.
[43] ZHOU G J, JIANG X X, MOLOKEEV M, et al. Optically modulated ultra -broad-band warm white emission in Mn2+-doped (C6H18N2O2)PbBr4 hybrid metal halide phosphor [J]. Chemistry of Materials, 2019, 31(15): 5788-5795.
[44] SONG G M, LI M Z, ZHANG S Z, et al. Enhancing photoluminescence quantum yield in 0D metal halides by introducing water molecules [J]. Advanced Functional Materials, 2020, 30(32): 2002468.
[45] LI D Y, SONG J H, XU Z Y, et al. Reversible triple-mode switching in photoluminescence from 0D hybrid antimony halides [J]. Chemistry of Materials, 2022, 34(15): 6985-6995.
[46] CHEN W B, ZHANG X J, ZHOU J X, et al. Glass-ceramics with thermally stable blue red emission for high-power horticultural LED applications [J]. Journal of Materials Chemistry C, 2020, 8(12): 3996-4002.
[47] MA W B, JIANG T M, YANG Z, et al. Highly resolved and robust dynamic X-ray imaging using perovskite glass-ceramic scintillator with reduced light scattering [J]. Advanced Science, 2021, 8(15): 2003728.
[48] XU Y S, ZHAO X D, XIA M L, et al. Perovskite nanocrystal doped all-inorganic glass for X-ray scintillators [J]. Journal of Materials Chemistry C, 2021, 9(16): 5452 -5459.
[49] HUANG X J, GUO Q Y, KANG S L, et al. Three-dimensional laser-assisted patterning of blue-emissive metal halide perovskite nanocrystals inside a glass with switchable photoluminescence [J]. ACS Nano, 2020, 14(3): 3150-3158.
[50] CHEN Q P, HUANG X J, YANG D D, et al. Three-dimensional laser writing aligned perovskite quantum dots in glass for polarization-sensitive anti-counterfeiting [J]. Advanced Optical Materials, 2023, 11(10): 2300090.
[51] OUYANG M, ZHANG H, LI M J, et al. 3D printing of luminescent glass with controlled distribution of emission colors for multi-dimensional optical anti counterfeiting [J]. Laser & Photonics Reviews, 2023, 17(8): 2300068.
[52] KU K, JOUNG J F, PARK H, et al. Fluorescent organic glass with unique optical and mechanical properties [J]. Advanced Functional Materials, 2018, 28(39): 1801394.参考文献64
[53] NIE F, YAN D P. Macroscopic assembly of chiral hydrogen-bonded metal-free supramolecular glasses for enhanced color-tunable ultralong room temperature phosphorescence [J]. Angewandte Chemie International Edition, 2023, 62: e202302751.
[54] DU Q, LIU X J, FAN H Y, et al. Reentrant glass transition leading to ultrastable metallic glass [J]. Materials Today, 2020, 34: 66-77.
[55] SUN B A, WANG W H. The fracture of bulk metallic glasses [J]. Progress in Materials Science, 2015, 74: 211-307.
[56] UMEYAMA D, HORIKE S, INUKAI M, et al. Reversible solid-to-liquid phase transition of coordination polymer crystals [J]. Journal of the American Chemical Society, 2015, 137(2): 864-870.
[57] DAS C, NISHIGUCHI T, FAN Z Y, et al. Crystallization kinetics of a liquid -forming 2D coordination polymer [J]. Nano Letters, 2022, 22(23): 9372 -9379.
[58] NAGARKAR S S, KURASHO H, DUONG N T, et al. Crystal melting and glass formation in copper thiocyanate based coordination polymers [J]. Chemical Communications, 2019, 55(38): 5455-5458.
[59] BENNETT T D, GOODWIN A L, DOVE M T, et al. Structure and properties of an amorphous metal-organic framework [J]. Physical Review Letters, 2010, 104(11): 115503.
[60] NOZARI V, SMIRNOVA O, TUFFNELL J M, et al. Low-temperature melting and glass formation of the zeolitic imidazolate frameworks ZIF-62 and ZIF-76 through ionic liquid incorporation [J]. Advanced Materials Technologies, 2022, 7(11): 2200343.
[61] TUFFNELL J M, ASHLING C W, HOU J W, et al. Novel metal–organic framework materials: blends, liquids, glasses and crystal–glass composites [J]. Chemical Communications, 2019, 55(60): 8705-8715.
[62] YIN Z, ZHANG Y B, YU H B, et al. How to create MOF glasses and take advantage of emerging opportunities [J]. Science Bulletin, 2020, 65(17): 1432 -1435.
[63] LEóN-ALCAIDE L, CHRISTENSEN R S, KEEN D A, et al. Meltable, glass-forming, iron zeolitic imidazolate frameworks [J]. Journal of the American Chemical Society, 2023, 145(20): 11258-11264.
[64] BENNETT T D, TAN J C, YUE Y Z, et al. Hybrid glasses from strong and fragile metal-organic framework liquids [J]. Nature Communications, 2015, 6(1): 8079.
[65] MITZI D B, MEDEIROS D R, DEHAVEN P W. Low-temperature melt processing of organic−inorganic hybrid films [J]. Chemistry of Materials, 2002, 14(7): 2839 -2841.
[66] SMEDSKJAER M M, SøRENSEN S S. A glass act [J]. Nature Chemistry, 2021, 13(8): 723-724.
[67] BENNETT T D, YUE Y Z, LI P, et al. Melt-quenched glasses of metal–organic frameworks [J]. Journal of the American Chemical Society, 2016, 138(10): 3484 -3492.参考文献65
[68] LI T Y, DUNLAP SHOHL W A, REINHEIMER E W, et al. Melting temperature suppression of layered hybrid lead halide perovskites via organic ammonium cation branching [J]. Chemical Science, 2019, 10(4): 1168-1175.
[69] SINGH A, JANA M K, MITZI D B. Reversible crystal–glass transition in a metal halide perovskite [J]. Advanced Materials, 2021, 33(3): 2005868.
[70] SHAW B K, HUGHES A R, DUCAMP M, et al. Melting of hybrid organic–inorganic perovskites [J]. Nature Chemistry, 2021, 13(8): 778-785.
[71] SHAW B K, CASTILLO BLAS C, THORNE M F, et al. Principles of melting in hybrid organic–inorganic perovskite and polymorphic ABX3 structures [J]. Chemical Science, 2022, 13(7): 2033-2042.
[72] MA N, HORIKE S. Metal–organic network-forming glasses [J]. Chemical Reviews, 2022, 122(3): 4163-4203.
[73] CHEN W Q, HORIKE S, UMEYAMA D, et al. Glass formation of a coordination polymer crystal for enhanced proton conductivity and material flexibility [J]. Angewandte Chemie International Edition, 2016, 55(17): 5195 -5200.
[74] WIDMER R N, LAMPRONTI G I, ANZELLINI S, et al. Pressure promoted low temperature melting of metal–organic frameworks [J]. Nature Materials, 2019, 18(4): 370-376.
[75] WANG Y G, Lü X J, YANG W G, et al. Pressure-induced phase transformation, reversible amorphization, and anomalous visible light response in organolead bromide perovskite [J]. Journal of the American Chemical Society, 2015, 137(34): 11144-11149.
[76] NIE F, WANG K Z, YAN D P. Supramolecular glasses with color-tunable circularly polarized afterglow through evaporation-induced self-assembly of chiral metal–organic complexes [J]. Nature Communications, 2023, 14(1): 1654.
[77] ZHOU B, QI Z H, YAN D P. Highly efficient and direct ultralong all-phosphorescence from metal–organic framework photonic glasses [J]. Angewandte Chemie International Edition, 2022, 61(39): e202208735.
[78] ALI M A, WINTERS W M W, MOHAMED M A, et al. Fabrication of super-sized metal inorganic-organic hybrid glass with supramolecular network via crystallization -suppressing approach [J]. Angewandte Chemie International Edition, 2023, 62(14): e202218094.
[79] ALI M A, LIU X F, XU B B, et al. Vitrification and luminescence properties of metal–organic complexes [J]. ACS Materials Letters, 2022, 4(12): 2613 -2621.
[80] ALI M A, LIU X F, SUN H T, et al. Metal inorganic–organic complex glass and fiber for photonic applications [J]. Chemistry of Materials, 2022, 34(5): 2476-2483.
[81] ZHANG Z Z, HE Z L, LUO J B, et al. Organic–inorganic hybrid Mn-based transparent glass for curved X-ray scintillation imaging [J]. Advanced Optical Materials, 2023: 2302434.参考文献66
[82] XU Y K, LI Z H, PENG G Q, et al. Organic cation design of manganese halide hybrids glass toward low-temperature integrated efficient, scaling, and reproducible X-ray detector [J]. Advanced Optical Materials, 2023, 11: 2300216.
[83] LUO J B, WEI J H, ZHANG Z Z, et al. A melt-quenched luminescent glass of an organic–inorganic manganese halide as a large-area scintillator for radiation detection [J]. Angewandte Chemie International Edition, 2022, 135: e202216504.
[84] ZHANG R Q, XIE H D, LIU W, et al. High-efficiency narrow-band green-emitting manganese(II) halide for multifunctional applications [J]. ACS Applied Materials & Interfaces, 2023, 15(40): 47238-47249.
[85] SU B B, JIN J C, HAN K, et al. Ceramic wafer scintillation screen by utilizing near unity blue-emitting lead-free metal halide (C8H20N)2Cu2Br4 [J]. Advanced Functional Materials, 2023, 33(5): 2210735.
[86] JU D X, ZHOU M, RAN P, et al. Melt-processable and thermally driven self-healing luminescent Cu(I) hybrid metal halides [J]. ACS Materials Letters, 2023, 5(11): 297 8-2986.
[87] WANG W, LIU C D, HAN X B, et al. Photoluminescence switching and non-volatile memory in hybrid metal-halide phase-change materials [J]. ACS Materials Letters, 2023: 203-211.
[88] YIN M J, LI B H, YI Z S, et al. Crystal-glass phase transition enabling reversible fluorescence switching in zero-dimensional antimony halides [J]. Chemical Communications, 2023, 59(76): 11361-11364.
[89] XU Z W, LI N, YAN X Y, et al. Transparent 0D antimony halides glassy wafer with near-unity photoluminescence quantum yield for high spatial resolution X-ray imaging [J]. Advanced Optical Materials, 2023, 12: 2301477.
[90] ZHANG Y, ZHANG Y G, ZHAO Y Y, et al. Crystal-liquid-glass transition and near unity photoluminescence quantum yield in low melting point hybrid metal halides [J]. Journal of the American Chemical Society, 2023, 145(22): 12360–12369.
[91] LI B H, JIN J C, YIN M J, et al. In situ recrystallization of zero -dimensional hybrid metal halide glass-ceramics toward improved scintillation performance [J]. Chemical Science, 2023, 14(43): 12238-12245.
[92] ZHOU B, YAN D P. Color-tunable persistent luminescence in 1D zinc–organic halide microcrystals for single-component white light and temperature-gating optical waveguides [J]. Chemical Science, 2022, 13(25): 7429-7436.
[93] DIAS F B, BOURDAKOS K N, JANKUS V, et al. Triplet harvesting with 100% efficiency by way of thermally activated delayed fluorescence in charge transfer OLED emitters [J]. Advanced Materials, 2013, 25(27): 3707-3714.
[94] JIN S L, YUAN H, PANG T, et al. Boosting STE and Nd3+ NIR luminescence in Cs2AgInCl6 double perovskite via Na+/Bi3+-induced local structure engineering [J]. 参考文献67Advanced Functional Materials, 2023, 33(50): 2304577.
[95] QIAO J W, ZHOU G J, ZHOU Y Y, et al. Divalent europium-doped near-infrared emitting phosphor for light-emitting diodes [J]. Nature Communications, 2019, 10(1): 5267.
[96] ZHANG G Y, WANG D Y, LOU B B, et al. Efficient broadband near-infrared emission from lead-free halide double perovskite single crystal [J]. Angewandte Chemie International Edition, 2022, 61(33): e202207454.
[97] SU B B, GENG S N, XIAO Z W, et al. Highly distorted antimony(III) chloride [Sb2Cl8]2− dimers for near-infrared luminescence up to 1070 nm [J]. Angewandte Chemie International Edition, 2022, 61(33): e202208881.
[98] ZHANG G Y, WANG D Y, REN J J, et al. Highly efficient broadband near-infrared emission from Sn2+ alloyed lead-free cesium zinc halides [J]. Laser & Photonics Reviews, 2023, 17(10): 2300158.
[99] QIAO A, BENNETT T D, TAO H Z, et al. A metal-organic framework with ultrahigh glass-forming ability [J]. Science Advances, 2018, 4(3): eaao6827.
[100] ALI M A, MOHAMED M A, LIU X F, et al. Reversible structural transformation of supramolecular inorganic–organic hybrid glasses and zeolitic-imidazolate frameworks [J]. Materials Chemistry Frontiers, 2023, 7(24): 6236 -6246.
[101] WANG S X, POPOVIĆ J, BURAZER S, et al. Strongly luminescent Dion–Jacobson tin bromide perovskite microcrystals induced by molecular proton donors chloroform and dichloromethane [J]. Advanced Functional Materials, 2021, 31(28): 2102182.
[102] PRABHAKARAN A, DHANABALAN B, ANDRUSENKO I, et al. Stable Sn based hybrid perovskite-related structures with tunable color coordinates via organic cations in low-temperature synthesis [J]. ACS Energy Letters, 2023, 8(6): 2630-2640.
[103] ALFARAIDI A M, SCHAAB J, MCCLURE E T, et al. Temperature dependence of radiative and non-radiative decay in the luminescence of one-dimensional pyridinium lead halide hybrids [J]. Physical Chemistry Chemical Physics, 2023, 25(33): 21993-22001.
[104] AMERLING E, ZHAI Y X, LARSON B W, et al. Charge transfer states and carrier generation in 1D organolead iodide semiconductors [J]. Journal of Materials Chemistry A, 2021, 9(26): 14977-14990.
[105] LI C, LUO Z S, LIU Y L, et al. Self-trapped exciton emission with high thermal stability in antimony-doped hybrid manganese chloride [J]. Advanced Optical Materials, 2022, 10(12): 2102746.
[106] ZHOU S, ZHOU L, CHEN Y, et al. Boosting Blue Emission of Organic Cations in a Sn(IV)-Based Perovskite by Constructing Intermolecular Interactions [J]. The Journal of Physical Chemistry Letters, 2022, 13(37): 8717 -8724.参考文献68
[107] QI S M, CHENG P X, HAN X, et al. Organic–inorganic hybrid antimony(III) halides for second harmonic generation [J]. Crystal Growth & Design, 2022, 22(11): 6545-6553.
[108] MADSEN R S K, QIAO A, SEN J, et al. Ultrahigh-field 67Zn NMR reveals short range disorder in zeolitic imidazolate framework glasses [J]. Science, 2020, 367(6485): 1473-1476.
[109] XIE J Z, EWING S, BOYN J N, et al. Intrinsic glassy-metallic transport in an amorphous coordination polymer [J]. Nature, 2022, 611(7936): 479 -484.
[110] MA Y J, QI Z H, XIAO G W, et al. Metal-halide coordination polymers with excitation wavelength- and time-dependent ultralong room-temperature phosphorescence [J]. Inorganic Chemistry, 2022, 61(41): 16477 -16483.
[111] MU Y, CAO F Y, FANG X Y, et al. Tunable full-color room temperature phosphorescence of two single-component zinc(II)-based coordination polymers [J]. Advanced Optical Materials, 2023, 11(5): 2202402.
[112] GAO R, KODAIMATI M S, YAN D P. Recent advances in persistent luminescence based on molecular hybrid materials [J]. Chemical Society Reviews, 2021, 50(9): 5564-5589.
[113] ZHANG B B, CHEN J K, MA J P, et al. Antithermal quenching of luminescence in zero-dimensional hybrid metal halide solids [J]. The Journal of Physical Chemistry Letters, 2020, 11(8): 2902-2909.
[114] CHEN T H, MA Y J, YAN D P. Single-component 0D metal–organic halides with color-variable long-afterglow toward multi-level information security and white-light LED [J]. Advanced Functional Materials, 2023, 33: 2214962.
[115] SUN H T, HU Z B, ZHONG C, et al. Impact of dielectric constant on the singlet –triplet gap in thermally activated delayed fluorescence materials [J]. The Journal of Physical Chemistry Letters, 2017, 8(11): 2393-2398.
[116] UOYAMA H, GOUSHI K, SHIZU K, et al. Highly efficient organic light-emitting diodes from delayed fluorescence [J]. Nature, 2012, 492(7428): 234 -238.
[117] ZHANG F, ZHOU Y C, CHEN Z P, et al. Thermally activated delayed fluorescence zirconium-based perovskites for large-area and ultraflexible X-ray scintillator screens [J]. Advanced Materials, 2022, 34(43): 2204801.
[118] TANG M C, LEUNG M Y, LAI S L, et al. Realization of thermally stimulated delayed phosphorescence in arylgold(III) complexes and efficient gold(III) based blue -emitting organic light-emitting devices [J]. Journal of the American Chemical Society, 2018, 140(40): 13115-13124.
[119] ZHANG L M, LUO Z S, WEI Y, et al. Zero-dimensional hybrid binuclear manganese chloride with thermally stable yellow emission [J]. Chemical Communications, 2022, 58(49): 6926-6929.
[120] LIU Q, PENG H, QI J C, et al. A photoluminescent chiral lead-free hybrid ferroelastic semiconductor with switchable second-harmonic generation [J]. Chemical Communications, 2023, 59(13): 1793-1796
修改评论