[1] GUTH A H. Inflationary universe: A possible solution to the horizon and flatness problems [J/OL]. Physical Review D, 2002: 347–356. http://dx.doi.org/10.1103/physrevd.23.347.
[2] BALLESTEROSG,CéSPEDESS,SANTONIL. Large power spectrum and primordial black holes in the effective theory of inflation[J/OL]. Journal of High Energy Physics, 2022, 2022(1). http://dx.doi.org/10.1007/JHEP01(2022)074. DOI: 10.1007/jhep01(2022)074.
[3] CARR B, KüHNEL F. Primordial Black Holes as Dark Matter: Recent Developments[J/OL]. Annual Review of Nuclear and Particle Science, 2020, 70(1): 355–394. http://dx.doi.org/10.11 46/annurev-nucl-050520-125911.
[4] KRISTIANO J, YOKOYAMA J. Ruling Out Primordial Black Hole Formation From SingleField Inflation[EB/OL]. 2022. DOI: 10.48550/arXiv.2211.03395.
[5] GREEN A M, KAVANAGH B J. Primordial black holes as a dark matter candidate[J/OL]. Journal of Physics G: Nuclear and Particle Physics, 2021, 48(4): 043001. https://dx.doi.org/10.1088/1361-6471/abc534.
[6] CARR B, KÜHNEL F, SANDSTAD M. Primordial black holes as dark matter[J/OL]. Phys. Rev. D, 2016, 94: 083504. https://link.aps.org/doi/10.1103/PhysRevD.94.083504.
[7] ARMENDARIZ-PICON C. Creating Statistically Anisotropic and Inhomogeneous Perturbations[J/OL]. Journal of Cosmology and Astroparticle Physics, 2007: 014–014. http://dx.doi.org/10.1088/1475-7516/2007/09/014.
[8] CHENX.PrimordialNon-GaussianitiesfromInflationModels[J/OL]. AdvancesinAstronomy, 2010: 1–43. http://dx.doi.org/10.1155/2010/638979.
[9] AKHSHIK M, EMAMI R, FIROUZJAHI H, et al. Statistical Anisotropies in Gravitational Waves in Solid Inflation[J/OL]. Journal of Cosmology and Astroparticle Physics, 2014: 012012. http://dx.doi.org/10.1088/1475-7516/2014/09/012.
[10] BARTOLON,MATARRESES,PELOSOM,etal. Anisotropyinsolidinflation[J/OL]. Journal of Cosmology and Astroparticle Physics, 2013: 022–022. http://dx.doi.org/10.1088/1475-7516/2013/08/022.
[11] CHEN X, HU B, HUANG M X, et al. Large Primordial Trispectra in General Single Field Inflation[J/OL]. Journal of Cosmology and Astroparticle Physics, 2009: 008–008. http://dx.doi.org/10.1088/1475-7516/2009/08/008.
[12] CHENX,HUANGMX,KACHRUS,etal. Observational Signatures and Non-Gaussianities of General Single Field Inflation[J/OL]. Journal of Cosmology and Astroparticle Physics, 2007: 002–002. http://dx.doi.org/10.1088/1475-7516/2007/01/002.
[13] MALDACENAJ. Non-Gaussianfeatures of primordial fluctuations in single field inflationary models[J/OL]. Journal of High Energy Physics, 2004: 013–013. http://dx.doi.org/10.1088/1126-6708/2003/05/013.
[14] SEERY D, LIDSEY J E. Primordial non-Gaussianities in single-field inflation[J/OL]. Journal of Cosmology and Astroparticle Physics, 2005: 003–003. http://dx.doi.org/10.1088/1475-7516/2005/06/003.
[15]Seeryd , Lidseyje and Slothms . Theinflationarytrispectrum (J/OL) . Journal of Cosmology and Astroparticle Physics , 2007 : 027 - 027 . http://dx.doi.org/10.1088/1475-7516/2007/01/ 027.
[16]Armendariz-Picon C , Damourt and Mukhanovv . k-inflation (J/OL) . Physics Letters B , 1999 : 209 - 218 . http://dx.doi.org/10.1016/s0370-2693(99)00603-6.
[17]Alishahiha M , Silverstein E and Tong D . DBI in the sky : Non-Gaussian from inflation with a speed limit (J/OL) Physical Review , D . , 2004 . http://dx.doi.org/10.1103/physrevd. 70.123505.
[18]Endlich S , Nicolis A , Wang J. Solid inflation [ J/OL ] . Journal of Cosmology and Astroparticle Physics , 2013 : 011 - 011 . http://dx.doi.org/10.1088/1475-7516/2013/10/011.
[19]Arkani-Hamedn , Creminellip , and Mukohyamas , et al. Ghostinflation (J/OL) . Jour 'sJournal of Cosmology and Astroparticle Physics , 2004 , 2004 (04) : 001 https://dx.doi.org/10.1088 /1475-7516/2004/04/001.
[20] IZUMI K, MUKOHYAMAS. Trispectrum from ghost inflation[J/OL]. Journal of Cosmology and Astroparticle Physics, 2010: 016–016. http://dx.doi.org/10.1088/1475-7516/2010/06/016.
[21] HUANGQG. Thetrispectrum in ghost inflation[J/OL]. Journal of Cosmology and Astroparticle Physics, 2010: 025–025. http://dx.doi.org/10.1088/1475-7516/2010/07/025.
[22] BERNARDEAUF,UZANJP. Non-Gaussianityinmultifieldinflation[J/OL]. PhysicalReview D, 2002. http://dx.doi.org/10.1103/physrevd.66.103506.
[23] ALLEN L E, GUPTA S, WANDS D. Non-Gaussian perturbations from multi-field inflation [J/OL]. Journal of Cosmology and Astroparticle Physics, 2006: 006–006. http://dx.doi.org/10.1088/1475-7516/2006/01/006.
[24] GARCIA-SAENZS,PINOLL,RENAUX-PETELS. Revisitingnon-Gaussianity in multifield inflation with curved field space[J/OL]. Journal of High Energy Physics, 2020, 2020(1). http://dx.doi.org/10.1007/JHEP01(2020)073. DOI: 10.1007/jhep01(2020)073.
[25]Bjorkmot, Ferreirarz, Marshmd (2003) Mildnon-Gaussian underperturbative control from rapid-turn inflation models (JOL). Journal of Cosmology and Astroparticle Physics, 2019, 2019 (12): 036 - 036. http://dx.doi.org/10.1088/1475-7516/2019/12/036.
[26]Tasinatogy. Non-gaussianities and the large|𝜂| Approach to Inflation (J/OL). Phys. Rev. D., 2024, 109:063510. https://link.aps.org/doi/10.1103/PhysRevD.109.063510.
[27]Shiraishim. Parityviolation in the CMB trispectrum from the scalar sector [J/OL]. Physical Review, D, 2016. http://dx.doi.org/10.1103/physrevd.94.083503.
[28]Capass G, Jazayeri S, Pajer E, et al. Parity violation in the scalar trispectrum: no-go theories and yes-go examples. Journal of High Energy Physics, 2023, WEB DOI is 10.1007/JHEP02 (2023) 021.
[29]Philcox and H. E Probing parity violation with the four-point correlation function of BOSS galaxies [J/OL] Phys. Rev. D, 2022, 106:063501. https://link.aps.org/doi/10.1103/PhysRevD. 106.063501.
[30] HOU J, SLEPIAN Z, CAHN R N. Measurement of parity-odd modes in the large-scale 4point correlation function of Sloan Digital Sky Survey Baryon Oscillation Spectroscopic Survey twelfth data release CMASS and LOWZ galaxies[J/OL]. Monthly Notices of the Royal Astronomical Society, 2023: 5701–5739. http://dx.doi.org/10.1093/mnras/stad1062.
[31] AGHANIM N, AKRAMI Y, ASHDOWN M, et al. Planck2018 results: VI. Cosmological parameters[J/OL]. Astronomy amp; Astrophysics, 2020, 641: A6. http://dx.doi.org/10.1051/0 004-6361/201833910.
[32] AKRAMIY,ARROJAF,ASHDOWNM,etal. Planck2018results: X.Constraintsoninflation [J/OL]. Astronomy amp; Astrophysics, 2020, 641: A10. http://dx.doi.org/10.1051/0004-6361/201833887.
[33] DUTCHERD,BALKENHOLL,ADEP,etal. Measurements of the E-mode polarization and temperature-E-mode correlation of the CMB from SPT-3G 2018 data[J/OL]. Physical Review D, 2021, 104(2). http://dx.doi.org/10.1103/PhysRevD.104.022003. DOI: 10.1103/physrevd.1 04.022003.
[34] ADEP,AHMEDZ,AMIRIM,etal. ImprovedConstraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season [J/OL]. Physical Review Letters, 2021, 127(15). http://dx.doi.org/10.1103/PhysRevLett.127.1 51301. DOI: 10.1103/physrevlett.127.151301.
[35] COLLABORATIOND,ADAMEAG,AGUILARJ,etal. DESI2024VI:CosmologicalConstraints from the Measurements of Baryon Acoustic Oscillations[A]. 2024. arXiv: 2404.03002.
[36] MARTINJ, RINGEVALC,VENNINV. Cosmic Inflation at the Crossroads[A]. 2024. arXiv: 2404.10647.
[37] MARTINJ,RINGEVALC,TROTTAR,etal. ThebestinflationarymodelsafterPlanck[J/OL]. Journal of Cosmology and Astroparticle Physics, 2014: 039–039. http://dx.doi.org/10.1088/1475-7516/2014/03/039.
[38] MARTIN J, RINGEVAL C, TROTTA R. Hunting down the best model of inflation with Bayesian evidence[J/OL]. Physical Review D, 2011. http://dx.doi.org/10.1103/physrevd.83 .063524.
[39] GRUZINOV A. Consistency relation for single scalar inflation[J/OL]. Physical Review D, 2005. http://dx.doi.org/10.1103/physrevd.71.027301.
[40] CHEUNGC,FITZPATRICKAL,KAPLANJ,etal. Ontheconsistencyrelation of the 3-point function in single field inflation[J/OL]. Journal of Cosmology and Astroparticle Physics, 2008: 021. http://dx.doi.org/10.1088/1475-7516/2008/02/021.
[41] CREMINELLI P, ZALDARRIAGA M. A single-field consistency relation for the three-point function[J/OL]. Journal of Cosmology and Astroparticle Physics, 2004, 2004(10): 006. https: //dx.doi.org/10.1088/1475-7516/2004/10/006.
[42] MARTINJ,MOTOHASHIH,SUYAMAT. UltraSlow-RollInflationandthenon-Gaussianity Consistency Relation[J/OL]. Physical Review D, 2013. http://dx.doi.org/10.1103/physrevd.87 .023514.
[43] LIM,WANGY. ConsistencyRelationsforNon-Gaussianity[J/OL]. Journal of Cosmology and Astroparticle Physics, 2008: 018. http://dx.doi.org/10.1088/1475-7516/2008/09/018.
[44] ENDLICH S, HORN B, NICOLIS A, et al. Squeezed limit of the solid inflation three-point function[J/OL]. Physical Review D, 2014. http://dx.doi.org/10.1103/physrevd.90.063506.
[45] SEERYD,SLOTHMS,VERNIZZIF. Inflationarytrispectrumfromgravitonexchange[J/OL]. Journal of Cosmology and Astroparticle Physics, 2009: 018–018. http://dx.doi.org/10.1088/1475-7516/2009/03/018.
[46] ABBOTT BP, ABBOTTR, ABBOTTTD,et al. Observation of Gravitational Waves from a Binary Black Hole Merger[J/OL]. Phys. Rev. Lett., 2016, 116: 061102. https://link.aps.org/doi/10.1103/PhysRevLett.116.061102.
[47] ABBOTT R, ABBOTT T D, ABRAHAM S, et al. GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run[J/OL]. Phys. Rev. X, 2021, 11: 021053. https://link.aps.org/doi/10.1103/PhysRevX.11.021053.
[48] ABBOTT R, ABBOTT TD,ABRAHAMS,et al. GW190521: A Binary Black Hole Merger with a Total Mass of 150 𝑀⨀[J/OL]. Phys. Rev. Lett., 2020, 125: 101102. https://link.aps.org /doi/10.1103/PhysRevLett.125.101102.
[49] AUCLAIR P, BACON D, BAKER T, et al. Cosmology with the Laser Interferometer Space Antenna[A]. 2022. arXiv: 2204.05434.
[50] CAI Y F, HE X C, MA X H, et al. Limits on scalar-induced gravitational waves from the stochastic background by pulsar timing array observations[J/OL]. Science Bulletin, 2023, 68 (23): 2929–2935. http://dx.doi.org/10.1016/j.scib.2023.10.027.
[51] AFZALA,AGAZIEG,ANUMARLAPUDIA,etal. TheNANOGrav15yrDataSet: Search for Signals from New Physics[J/OL]. The Astrophysical Journal Letters, 2023, 951(1): L11. http://dx.doi.org/10.3847/2041-8213/acdc91.
[52] GARCIA-SAENZ S, PINOL L, RENAUX-PETEL S, et al. No-go theorem for scalartrispectrum-induced gravitational waves[J/OL]. Journal of Cosmology and Astroparticle Physics, 2023, 2023(03): 057. https://dx.doi.org/10.1088/1475-7516/2023/03/057.
[53] NAKAMAT,SILK J, KAMIONKOWSKI M. Stochastic gravitational waves associated with the formation of primordial black holes[J/OL]. Physical Review D, 2017, 95(4). http://dx.doi .org/10.1103/physrevd.95.043511.
[54] GARCíA-BELLIDO J, PELOSO M, UNAL C. Gravitational wave signatures of inflationary modelsfromPrimordialBlackHoledarkmatter[J/OL]. JournalofCosmologyandAstroparticle Physics, 2017, 2017(09): 013–013. http://dx.doi.org/10.1088/1475-7516/2017/09/013.
[55] RAGAVENDRAH,SAHAP,SRIRAMKUMARL,etal.Primordialblackholesandsecondary gravitational waves from ultraslow roll and punctuated inflation[J/OL]. Physical Review D, 2021, 103(8). http://dx.doi.org/10.1103/physrevd.103.083510.
[56] DOMENECH G. Scalar Induced Gravitational Waves Review[J/OL]. Universe, 2021, 7(11):398. http://dx.doi.org/10.3390/universe7110398.
[57] PICARD R, MALIK KA. Induced gravitational waves: the effect of first order tensor perturbations[A]. 2023. arXiv: 2311.14513.
[58] ADSHEADP,LOZANOVKD,WEINERZJ. Non-Gaussianityandthe induced gravitational wave background[J/OL]. Journal of Cosmology and Astroparticle Physics, 2021: 080. http: //dx.doi.org/10.1088/1475-7516/2021/10/080.
[59] DOMèNECH G. Induced gravitational waves in a general cosmological background[J/OL]. International Journal of Modern Physics D, 2020: 2050028. http://dx.doi.org/10.1142/s021827 1820500285.
[60] CAIRG,PIS,SASAKIM.GravitationalWavesInducedbyNon-GaussianScalarPerturbations [J/OL]. Physical Review Letters, 2019. http://dx.doi.org/10.1103/physrevlett.122.201101.
[61] LIJP,WANGS,ZHAOZC,etal. Primordial non-Gaussianity fNL and anisotropies in scalarinduced gravitational waves[J/OL]. Journal of Cosmology and Astroparticle Physics, 2023, 2023(10): 056. https://dx.doi.org/10.1088/1475-7516/2023/10/056.
[62] GARCIA-SAENZS,LUY,SHUAIZ. Scalar-inducedgravitational waves from ghost inflation and parity violation[J/OL]. Phys. Rev. D, 2023, 108: 123507. https://link.aps.org/doi/10.1103 /PhysRevD.108.123507.
[63] AKRAMI Y, ARROJA F, ASHDOWN M, et al. Planck2018 results[J/OL]. Astronomy amp; Astrophysics, 2020, 641: A9. http://dx.doi.org/10.1051/0004-6361/201935891.
[64] RENAUX-PETELS. Primordialnon-Gaussianities after Planck 2015 : An introductory review [J/OL]. Comptes Rendus. Physique, 2015, 16(10): 969–985. http://dx.doi.org/10.1016/j.crhy. 2015.08.003.
[65] AGHANIM N, AKRAMI Y, ASHDOWN M, et al. Planck 2018 results. VI. Cosmological parameters[J/OL]. Astronomy amp; Astrophysics, 2020: A6. http://dx.doi.org/10.1051/0004-6 361/201833910.
[66] ADEP,AHMEDZ,AMIRIM,etal. ImprovedConstraints on Primordial Gravitational Waves using Planck , WMAP, and BICEP/ Keck Observations through the 2018 Observing Season [J/OL]. Physical Review Letters, 2021, 127(15). http://dx.doi.org/10.1103/physrevlett.127.151 301.
[67] HAMED N A, CHENG H, LUTY M, et al. Ghost Condensation and a Consistent Infrared Modification of Gravity[J/OL]. Journal of High Energy Physics, 2004: 074–074. http://dx.doi .org/10.1088/1126-6708/2004/05/074.
[68] LIU T, TONG X, WANGY, et al. Probing P and CP Violations on the Cosmological Collider [J/OL]. Journal of High Energy Physics, 2020. http://dx.doi.org/10.1007/jhep04(2020)189.
[69] KOMATSU E, SMITH K M, DUNKLEY J, et al. SEVEN-YEARWILKINSON MICROWAVE ANISOTROPY PROBE(WMAP) OBSERVATIONS: COSMOLOGICAL INTERPRETATION[J/OL]. The Astrophysical Journal Supplement Series, 2011, 192(2): 18. http://dx.doi.org/10.1088/0067-0049/192/2/18.
[70] MUKHANOVV, FELDMAN H, BRANDENBERGER R. Theory of cosmological perturbations[J/OL]. Physics Reports, 1992, 215(5): 203-333. https://www.sciencedirect.com/science/ article/pii/037015739290044Z. DOI: https://doi.org/10.1016/0370-1573(92)90044-Z.
[71] The Early Universe and Observational Cosmology[M/OL]. Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/b97189.
[72] KOHRI K, TERADA T. Semianalytic calculation of gravitational wave spectrum nonlinearly induced from primordial curvature perturbations[J/OL]. Physical Review D, 2018. http://dx.doi.org/10.1103/physrevd.97.123532.
[73] BAUMANN D, STEINHARDT P, TAKAHASHI K, et al. Gravitational Wave Spectrum Induced by Primordial Scalar Perturbations[J/OL]. Physical Review D, 2007. http://dx.doi.org/10.1103/physrevd.76.084019.
[74] ZHANGF, FENG J X, GAOX. Circularly polarized scalar induced gravitational waves from the Chern-Simons modified gravity[J/OL]. Journal of Cosmology and Astroparticle Physics, 2022, 2022(10): 054. https://dx.doi.org/10.1088/1475-7516/2022/10/054.
[75] SATO-POLITO G, KOVETZ E D, KAMIONKOWSKI M. Constraints on the primordial curvature power spectrum from primordial black holes[J/OL]. Physical Review D, 2019, 100(6). http://dx.doi.org/10.1103/physrevd.100.063521.
[76] GLUSCEVIC V, KAMIONKOWSKI M. Testing parity-violating mechanisms with cosmic microwave background experiments[J/OL]. Physical Review D, 2010, 81(12). http://dx.doi.org/10.1103/physrevd.81.123529.
[77] FUJITAT,MURATAT,OBATAI,etal. Parity-violatingscalartrispectrumfromarolling axion during inflation[A]. 2024. arXiv: 2310.03551.
[78] STEFANYSZYND,TONGX,ZHUY. CosmologicalCorrelatorsThroughtheLooking Glass: Reality, Parity, and Factorisation[A]. 2023. arXiv: 2309.07769.
[79] NIU X, RAHAT M H, SRINIVASAN K, et al. Parity-odd and even trispectrum from axion inflation[J/OL]. Journal of Cosmology and Astroparticle Physics, 2023, 2023(05): 018. http: //dx.doi.org/10.1088/1475-7516/2023/05/018.
[80] JAZAYERI S, RENAUX-PETEL S, TONG X, et al. Parity Violation from Emergent NonLocality During Inflation[A]. 2023. arXiv: 2308.11315.
修改评论