中文版 | English
题名

Non-gaussianity and scalar-induced gravitational waves from ghost inflation

其他题名
GHOST暴涨模型中的非高斯性和诱导引力波
姓名
姓名拼音
SHUAI Zhiming
学号
12132939
学位类型
硕士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
SEBASTIAN GARCIA SAENZ
导师单位
物理系
论文答辩日期
2024-05-15
论文提交日期
2024-06-22
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

    In this thesis, we calculate and analyze the non-Gaussianity and the power spectrum of scalar-induced gravitational waves in the theory of Ghost Inflation. Ghost inflation predicts almost scale-invariant primordial cosmological perturbations with relatively large non-Gaussianity. The study of non-Gaussianity and induced gravitational waves is of great significance to the evolution of the universe. The non-Gaussianity could provide valuable information to distinguish different inflationary models, and through the non-Gaussianity we can understand the inflation is driven by which field naturally. The scalar induced gravitational wave provides the information of the small scale of the universe, and can constrain the inflationary models.
    We consider the scalar sector as the source for the parity-violation. Due to the isotropy of our universe, the parity-violating information in the scalar sector can not be obtained in the 2-point and 3-point, and therefore 4-point correlation function is the lowest-order for the scalar sector parity-violation. In terms of parity symmetry, there are two types of 4-point functions, which is the parity-even and parity-odd 4-point correlation function. In ghost inflation we can get the parity-odd quartic operators. We calculate these two types of trispectrum under the in-in formalism. Due to the parity-odd quartic action contains odd number of derivative with respect to the spatial coordinate. So different with the parity-even trispetrum, the parity-odd trispectrum is a purely imaginary function. In this thesis, we specifically calculate these two types of trispectrum, and calculate the corresponding scalar-induced gravitational wave energy density in the theory of Ghost Inflation. For the trispectrum, we consider some different configurations of momentum. The first is the equilateral limit, where we analyze and plot the shape functions. We also consider the configurations of momenta in the case of some particular limit, including the squeezed limit where one of the four momenta is much smaller than others and the folded limit where two pairs of the four momenta have the same length and opposite directions. We also verify the consistency relations using these two configurations. For the scalar-induced gravitational wave, we numerically calculate both the power spectrum- and trispectrum-induced contributions. We specifically calculate and analyze the right- and left-hand polarizations of GW for the chiral polarizations. For the parity-even trispectrum-induced power spectra of gravitational waves, the left- and right-hand power spectrum is identical. However, the parity-odd trispectrum makes the power spectrum of right- and left-hand polarizations different. We also calculate the chirality parameter to quantify the degree of parity-violation.

其他摘要

    在本文中,我们计算并分析了Ghost暴涨模型中产生的非高斯性以及诱导引力波的功率谱。 Ghost 暴涨模型预测了尺度不变的原初扰动的功率谱和相对较大的非高斯性。 研究非高斯性和诱导引力波对探测早期宇宙的演化有着重要的意义。对非高斯型的研究有助于区分不同的暴涨模型,即通过对此的研究可以让我们了解到究竟是何种场驱动了宇宙的暴涨。对诱导引力波的研究可以为小尺度的宇宙演化提供信息, 并且能够为暴涨模型提供约束。我们考虑标量扰动部分作为宇宙中宇称破缺信号的来源。由于宇宙的各向同性和均匀性,宇宙破缺的信号不能在二点和三点关联函数之中,因此标量的四点关联函数是最低阶的宇称破缺的来源。按照宇称来说,我们考虑了两类四点关联函数,分别是具有偶宇称的四点关联函数和具有奇宇称的四点关联函数。在Ghost 暴涨模型中我们可以得到具有奇宇称的四阶相互作用量。 在 In-In 框架之下我们计算了这两类四点关联函数。由于具有奇宇称的四阶相互作用量中含有奇数个对空间坐标的导数,也就是说,如果我们翻转空间坐标,那么相对应的哈密顿量将会有一个负号的产生。 因此,不同于具有偶宇称的四点关联函数,具有奇宇称的四点关联函数是一个纯虚的函数。在文章中我们具体的计算了这两类四点关联函数和相应的诱导引力波的功率谱。之后我们计算了不同的动量配置,我们考虑了等边的四动量结构,并且绘制了四点关联函数在这些结构下的曲面图。 我们也考虑了两种不同的动量极限形式,一是挤压极限,即某一个动量的长度趋向于0,一是折叠极限,即四个动量中有两对长度相同但方向相反的动量。在这两种极限形式下,我们验证了四点关联函数和三点关联函数之间的一致性关系。 对于诱导引力波,我们具体的分析了在手性坐标系下的诱导引力波的功率谱,并计算了了四点关联函数和两点关联函数诱导的引力波的功率谱。对于偶宇称的四点关联函数诱导的引力波的功率谱来说,左旋和右旋的功率谱是相同的。然而,对于奇宇称的四点关联函数诱导的引力波的功率谱,其左旋引力波和右旋引力波的功率谱不是相同的,我们计算了两者之间的差值 。 并且按照此差值, 我们计算了chirality 参数来衡量宇称破缺的大小。

关键词
其他关键词
语种
英语
培养类别
独立培养
入学年份
2021
学位授予年份
2024-07
参考文献列表

[1] GUTH A H. Inflationary universe: A possible solution to the horizon and flatness problems [J/OL]. Physical Review D, 2002: 347–356. http://dx.doi.org/10.1103/physrevd.23.347.
[2] BALLESTEROSG,CéSPEDESS,SANTONIL. Large power spectrum and primordial black holes in the effective theory of inflation[J/OL]. Journal of High Energy Physics, 2022, 2022(1). http://dx.doi.org/10.1007/JHEP01(2022)074. DOI: 10.1007/jhep01(2022)074.
[3] CARR B, KüHNEL F. Primordial Black Holes as Dark Matter: Recent Developments[J/OL]. Annual Review of Nuclear and Particle Science, 2020, 70(1): 355–394. http://dx.doi.org/10.11 46/annurev-nucl-050520-125911.
[4] KRISTIANO J, YOKOYAMA J. Ruling Out Primordial Black Hole Formation From SingleField Inflation[EB/OL]. 2022. DOI: 10.48550/arXiv.2211.03395.
[5] GREEN A M, KAVANAGH B J. Primordial black holes as a dark matter candidate[J/OL]. Journal of Physics G: Nuclear and Particle Physics, 2021, 48(4): 043001. https://dx.doi.org/10.1088/1361-6471/abc534.
[6] CARR B, KÜHNEL F, SANDSTAD M. Primordial black holes as dark matter[J/OL]. Phys. Rev. D, 2016, 94: 083504. https://link.aps.org/doi/10.1103/PhysRevD.94.083504.
[7] ARMENDARIZ-PICON C. Creating Statistically Anisotropic and Inhomogeneous Perturbations[J/OL]. Journal of Cosmology and Astroparticle Physics, 2007: 014–014. http://dx.doi.org/10.1088/1475-7516/2007/09/014.
[8] CHENX.PrimordialNon-GaussianitiesfromInflationModels[J/OL]. AdvancesinAstronomy, 2010: 1–43. http://dx.doi.org/10.1155/2010/638979.
[9] AKHSHIK M, EMAMI R, FIROUZJAHI H, et al. Statistical Anisotropies in Gravitational Waves in Solid Inflation[J/OL]. Journal of Cosmology and Astroparticle Physics, 2014: 012012. http://dx.doi.org/10.1088/1475-7516/2014/09/012.
[10] BARTOLON,MATARRESES,PELOSOM,etal. Anisotropyinsolidinflation[J/OL]. Journal of Cosmology and Astroparticle Physics, 2013: 022–022. http://dx.doi.org/10.1088/1475-7516/2013/08/022.
[11] CHEN X, HU B, HUANG M X, et al. Large Primordial Trispectra in General Single Field Inflation[J/OL]. Journal of Cosmology and Astroparticle Physics, 2009: 008–008. http://dx.doi.org/10.1088/1475-7516/2009/08/008.
[12] CHENX,HUANGMX,KACHRUS,etal. Observational Signatures and Non-Gaussianities of General Single Field Inflation[J/OL]. Journal of Cosmology and Astroparticle Physics, 2007: 002–002. http://dx.doi.org/10.1088/1475-7516/2007/01/002.
[13] MALDACENAJ. Non-Gaussianfeatures of primordial fluctuations in single field inflationary models[J/OL]. Journal of High Energy Physics, 2004: 013–013. http://dx.doi.org/10.1088/1126-6708/2003/05/013.
[14] SEERY D, LIDSEY J E. Primordial non-Gaussianities in single-field inflation[J/OL]. Journal of Cosmology and Astroparticle Physics, 2005: 003–003. http://dx.doi.org/10.1088/1475-7516/2005/06/003.
[15]Seeryd , Lidseyje and Slothms . Theinflationarytrispectrum (J/OL) . Journal of Cosmology and Astroparticle Physics , 2007 : 027 - 027 . http://dx.doi.org/10.1088/1475-7516/2007/01/ 027.
[16]Armendariz-Picon C , Damourt and Mukhanovv . k-inflation (J/OL) . Physics Letters B , 1999 : 209 - 218 . http://dx.doi.org/10.1016/s0370-2693(99)00603-6.
[17]Alishahiha M , Silverstein E and Tong D . DBI in the sky : Non-Gaussian from inflation with a speed limit (J/OL) Physical Review , D . , 2004 . http://dx.doi.org/10.1103/physrevd. 70.123505.
[18]Endlich S , Nicolis A , Wang J. Solid inflation [ J/OL ] . Journal of Cosmology and Astroparticle Physics , 2013 : 011 - 011 . http://dx.doi.org/10.1088/1475-7516/2013/10/011.
[19]Arkani-Hamedn , Creminellip , and Mukohyamas , et al. Ghostinflation (J/OL) . Jour 'sJournal of Cosmology and Astroparticle Physics , 2004 , 2004 (04) : 001 https://dx.doi.org/10.1088 /1475-7516/2004/04/001.
[20] IZUMI K, MUKOHYAMAS. Trispectrum from ghost inflation[J/OL]. Journal of Cosmology and Astroparticle Physics, 2010: 016–016. http://dx.doi.org/10.1088/1475-7516/2010/06/016.
[21] HUANGQG. Thetrispectrum in ghost inflation[J/OL]. Journal of Cosmology and Astroparticle Physics, 2010: 025–025. http://dx.doi.org/10.1088/1475-7516/2010/07/025.
[22] BERNARDEAUF,UZANJP. Non-Gaussianityinmultifieldinflation[J/OL]. PhysicalReview D, 2002. http://dx.doi.org/10.1103/physrevd.66.103506.
[23] ALLEN L E, GUPTA S, WANDS D. Non-Gaussian perturbations from multi-field inflation [J/OL]. Journal of Cosmology and Astroparticle Physics, 2006: 006–006. http://dx.doi.org/10.1088/1475-7516/2006/01/006.
[24] GARCIA-SAENZS,PINOLL,RENAUX-PETELS. Revisitingnon-Gaussianity in multifield inflation with curved field space[J/OL]. Journal of High Energy Physics, 2020, 2020(1). http://dx.doi.org/10.1007/JHEP01(2020)073. DOI: 10.1007/jhep01(2020)073.
[25]Bjorkmot, Ferreirarz, Marshmd (2003) Mildnon-Gaussian underperturbative control from rapid-turn inflation models (JOL). Journal of Cosmology and Astroparticle Physics, 2019, 2019 (12): 036 - 036. http://dx.doi.org/10.1088/1475-7516/2019/12/036.
[26]Tasinatogy. Non-gaussianities and the large|𝜂| Approach to Inflation (J/OL). Phys. Rev. D., 2024, 109:063510. https://link.aps.org/doi/10.1103/PhysRevD.109.063510.
[27]Shiraishim. Parityviolation in the CMB trispectrum from the scalar sector [J/OL]. Physical Review, D, 2016. http://dx.doi.org/10.1103/physrevd.94.083503.
[28]Capass G, Jazayeri S, Pajer E, et al. Parity violation in the scalar trispectrum: no-go theories and yes-go examples. Journal of High Energy Physics, 2023, WEB DOI is 10.1007/JHEP02 (2023) 021.
[29]Philcox and H. E Probing parity violation with the four-point correlation function of BOSS galaxies [J/OL] Phys. Rev. D, 2022, 106:063501. https://link.aps.org/doi/10.1103/PhysRevD. 106.063501.
[30] HOU J, SLEPIAN Z, CAHN R N. Measurement of parity-odd modes in the large-scale 4point correlation function of Sloan Digital Sky Survey Baryon Oscillation Spectroscopic Survey twelfth data release CMASS and LOWZ galaxies[J/OL]. Monthly Notices of the Royal Astronomical Society, 2023: 5701–5739. http://dx.doi.org/10.1093/mnras/stad1062.
[31] AGHANIM N, AKRAMI Y, ASHDOWN M, et al. Planck2018 results: VI. Cosmological parameters[J/OL]. Astronomy amp; Astrophysics, 2020, 641: A6. http://dx.doi.org/10.1051/0 004-6361/201833910.
[32] AKRAMIY,ARROJAF,ASHDOWNM,etal. Planck2018results: X.Constraintsoninflation [J/OL]. Astronomy amp; Astrophysics, 2020, 641: A10. http://dx.doi.org/10.1051/0004-6361/201833887.
[33] DUTCHERD,BALKENHOLL,ADEP,etal. Measurements of the E-mode polarization and temperature-E-mode correlation of the CMB from SPT-3G 2018 data[J/OL]. Physical Review D, 2021, 104(2). http://dx.doi.org/10.1103/PhysRevD.104.022003. DOI: 10.1103/physrevd.1 04.022003.
[34] ADEP,AHMEDZ,AMIRIM,etal. ImprovedConstraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season [J/OL]. Physical Review Letters, 2021, 127(15). http://dx.doi.org/10.1103/PhysRevLett.127.1 51301. DOI: 10.1103/physrevlett.127.151301.
[35] COLLABORATIOND,ADAMEAG,AGUILARJ,etal. DESI2024VI:CosmologicalConstraints from the Measurements of Baryon Acoustic Oscillations[A]. 2024. arXiv: 2404.03002.
[36] MARTINJ, RINGEVALC,VENNINV. Cosmic Inflation at the Crossroads[A]. 2024. arXiv: 2404.10647.
[37] MARTINJ,RINGEVALC,TROTTAR,etal. ThebestinflationarymodelsafterPlanck[J/OL]. Journal of Cosmology and Astroparticle Physics, 2014: 039–039. http://dx.doi.org/10.1088/1475-7516/2014/03/039.
[38] MARTIN J, RINGEVAL C, TROTTA R. Hunting down the best model of inflation with Bayesian evidence[J/OL]. Physical Review D, 2011. http://dx.doi.org/10.1103/physrevd.83 .063524.
[39] GRUZINOV A. Consistency relation for single scalar inflation[J/OL]. Physical Review D, 2005. http://dx.doi.org/10.1103/physrevd.71.027301.
[40] CHEUNGC,FITZPATRICKAL,KAPLANJ,etal. Ontheconsistencyrelation of the 3-point function in single field inflation[J/OL]. Journal of Cosmology and Astroparticle Physics, 2008: 021. http://dx.doi.org/10.1088/1475-7516/2008/02/021.
[41] CREMINELLI P, ZALDARRIAGA M. A single-field consistency relation for the three-point function[J/OL]. Journal of Cosmology and Astroparticle Physics, 2004, 2004(10): 006. https: //dx.doi.org/10.1088/1475-7516/2004/10/006.
[42] MARTINJ,MOTOHASHIH,SUYAMAT. UltraSlow-RollInflationandthenon-Gaussianity Consistency Relation[J/OL]. Physical Review D, 2013. http://dx.doi.org/10.1103/physrevd.87 .023514.
[43] LIM,WANGY. ConsistencyRelationsforNon-Gaussianity[J/OL]. Journal of Cosmology and Astroparticle Physics, 2008: 018. http://dx.doi.org/10.1088/1475-7516/2008/09/018.
[44] ENDLICH S, HORN B, NICOLIS A, et al. Squeezed limit of the solid inflation three-point function[J/OL]. Physical Review D, 2014. http://dx.doi.org/10.1103/physrevd.90.063506.
[45] SEERYD,SLOTHMS,VERNIZZIF. Inflationarytrispectrumfromgravitonexchange[J/OL]. Journal of Cosmology and Astroparticle Physics, 2009: 018–018. http://dx.doi.org/10.1088/1475-7516/2009/03/018.
[46] ABBOTT BP, ABBOTTR, ABBOTTTD,et al. Observation of Gravitational Waves from a Binary Black Hole Merger[J/OL]. Phys. Rev. Lett., 2016, 116: 061102. https://link.aps.org/doi/10.1103/PhysRevLett.116.061102.
[47] ABBOTT R, ABBOTT T D, ABRAHAM S, et al. GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run[J/OL]. Phys. Rev. X, 2021, 11: 021053. https://link.aps.org/doi/10.1103/PhysRevX.11.021053.
[48] ABBOTT R, ABBOTT TD,ABRAHAMS,et al. GW190521: A Binary Black Hole Merger with a Total Mass of 150 𝑀⨀[J/OL]. Phys. Rev. Lett., 2020, 125: 101102. https://link.aps.org /doi/10.1103/PhysRevLett.125.101102.
[49] AUCLAIR P, BACON D, BAKER T, et al. Cosmology with the Laser Interferometer Space Antenna[A]. 2022. arXiv: 2204.05434.
[50] CAI Y F, HE X C, MA X H, et al. Limits on scalar-induced gravitational waves from the stochastic background by pulsar timing array observations[J/OL]. Science Bulletin, 2023, 68 (23): 2929–2935. http://dx.doi.org/10.1016/j.scib.2023.10.027.
[51] AFZALA,AGAZIEG,ANUMARLAPUDIA,etal. TheNANOGrav15yrDataSet: Search for Signals from New Physics[J/OL]. The Astrophysical Journal Letters, 2023, 951(1): L11. http://dx.doi.org/10.3847/2041-8213/acdc91.
[52] GARCIA-SAENZ S, PINOL L, RENAUX-PETEL S, et al. No-go theorem for scalartrispectrum-induced gravitational waves[J/OL]. Journal of Cosmology and Astroparticle Physics, 2023, 2023(03): 057. https://dx.doi.org/10.1088/1475-7516/2023/03/057.
[53] NAKAMAT,SILK J, KAMIONKOWSKI M. Stochastic gravitational waves associated with the formation of primordial black holes[J/OL]. Physical Review D, 2017, 95(4). http://dx.doi .org/10.1103/physrevd.95.043511.
[54] GARCíA-BELLIDO J, PELOSO M, UNAL C. Gravitational wave signatures of inflationary modelsfromPrimordialBlackHoledarkmatter[J/OL]. JournalofCosmologyandAstroparticle Physics, 2017, 2017(09): 013–013. http://dx.doi.org/10.1088/1475-7516/2017/09/013.
[55] RAGAVENDRAH,SAHAP,SRIRAMKUMARL,etal.Primordialblackholesandsecondary gravitational waves from ultraslow roll and punctuated inflation[J/OL]. Physical Review D, 2021, 103(8). http://dx.doi.org/10.1103/physrevd.103.083510.
[56] DOMENECH G. Scalar Induced Gravitational Waves Review[J/OL]. Universe, 2021, 7(11):398. http://dx.doi.org/10.3390/universe7110398.
[57] PICARD R, MALIK KA. Induced gravitational waves: the effect of first order tensor perturbations[A]. 2023. arXiv: 2311.14513.
[58] ADSHEADP,LOZANOVKD,WEINERZJ. Non-Gaussianityandthe induced gravitational wave background[J/OL]. Journal of Cosmology and Astroparticle Physics, 2021: 080. http: //dx.doi.org/10.1088/1475-7516/2021/10/080.
[59] DOMèNECH G. Induced gravitational waves in a general cosmological background[J/OL]. International Journal of Modern Physics D, 2020: 2050028. http://dx.doi.org/10.1142/s021827 1820500285.
[60] CAIRG,PIS,SASAKIM.GravitationalWavesInducedbyNon-GaussianScalarPerturbations [J/OL]. Physical Review Letters, 2019. http://dx.doi.org/10.1103/physrevlett.122.201101.
[61] LIJP,WANGS,ZHAOZC,etal. Primordial non-Gaussianity fNL and anisotropies in scalarinduced gravitational waves[J/OL]. Journal of Cosmology and Astroparticle Physics, 2023, 2023(10): 056. https://dx.doi.org/10.1088/1475-7516/2023/10/056.
[62] GARCIA-SAENZS,LUY,SHUAIZ. Scalar-inducedgravitational waves from ghost inflation and parity violation[J/OL]. Phys. Rev. D, 2023, 108: 123507. https://link.aps.org/doi/10.1103 /PhysRevD.108.123507.
[63] AKRAMI Y, ARROJA F, ASHDOWN M, et al. Planck2018 results[J/OL]. Astronomy amp; Astrophysics, 2020, 641: A9. http://dx.doi.org/10.1051/0004-6361/201935891.
[64] RENAUX-PETELS. Primordialnon-Gaussianities after Planck 2015 : An introductory review [J/OL]. Comptes Rendus. Physique, 2015, 16(10): 969–985. http://dx.doi.org/10.1016/j.crhy. 2015.08.003.
[65] AGHANIM N, AKRAMI Y, ASHDOWN M, et al. Planck 2018 results. VI. Cosmological parameters[J/OL]. Astronomy amp; Astrophysics, 2020: A6. http://dx.doi.org/10.1051/0004-6 361/201833910.
[66] ADEP,AHMEDZ,AMIRIM,etal. ImprovedConstraints on Primordial Gravitational Waves using Planck , WMAP, and BICEP/ Keck Observations through the 2018 Observing Season [J/OL]. Physical Review Letters, 2021, 127(15). http://dx.doi.org/10.1103/physrevlett.127.151 301.
[67] HAMED N A, CHENG H, LUTY M, et al. Ghost Condensation and a Consistent Infrared Modification of Gravity[J/OL]. Journal of High Energy Physics, 2004: 074–074. http://dx.doi .org/10.1088/1126-6708/2004/05/074.
[68] LIU T, TONG X, WANGY, et al. Probing P and CP Violations on the Cosmological Collider [J/OL]. Journal of High Energy Physics, 2020. http://dx.doi.org/10.1007/jhep04(2020)189.
[69] KOMATSU E, SMITH K M, DUNKLEY J, et al. SEVEN-YEARWILKINSON MICROWAVE ANISOTROPY PROBE(WMAP) OBSERVATIONS: COSMOLOGICAL INTERPRETATION[J/OL]. The Astrophysical Journal Supplement Series, 2011, 192(2): 18. http://dx.doi.org/10.1088/0067-0049/192/2/18.
[70] MUKHANOVV, FELDMAN H, BRANDENBERGER R. Theory of cosmological perturbations[J/OL]. Physics Reports, 1992, 215(5): 203-333. https://www.sciencedirect.com/science/ article/pii/037015739290044Z. DOI: https://doi.org/10.1016/0370-1573(92)90044-Z.
[71] The Early Universe and Observational Cosmology[M/OL]. Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/b97189.
[72] KOHRI K, TERADA T. Semianalytic calculation of gravitational wave spectrum nonlinearly induced from primordial curvature perturbations[J/OL]. Physical Review D, 2018. http://dx.doi.org/10.1103/physrevd.97.123532.
[73] BAUMANN D, STEINHARDT P, TAKAHASHI K, et al. Gravitational Wave Spectrum Induced by Primordial Scalar Perturbations[J/OL]. Physical Review D, 2007. http://dx.doi.org/10.1103/physrevd.76.084019.
[74] ZHANGF, FENG J X, GAOX. Circularly polarized scalar induced gravitational waves from the Chern-Simons modified gravity[J/OL]. Journal of Cosmology and Astroparticle Physics, 2022, 2022(10): 054. https://dx.doi.org/10.1088/1475-7516/2022/10/054.
[75] SATO-POLITO G, KOVETZ E D, KAMIONKOWSKI M. Constraints on the primordial curvature power spectrum from primordial black holes[J/OL]. Physical Review D, 2019, 100(6). http://dx.doi.org/10.1103/physrevd.100.063521.
[76] GLUSCEVIC V, KAMIONKOWSKI M. Testing parity-violating mechanisms with cosmic microwave background experiments[J/OL]. Physical Review D, 2010, 81(12). http://dx.doi.org/10.1103/physrevd.81.123529.
[77] FUJITAT,MURATAT,OBATAI,etal. Parity-violatingscalartrispectrumfromarolling axion during inflation[A]. 2024. arXiv: 2310.03551.
[78] STEFANYSZYND,TONGX,ZHUY. CosmologicalCorrelatorsThroughtheLooking Glass: Reality, Parity, and Factorisation[A]. 2023. arXiv: 2309.07769.
[79] NIU X, RAHAT M H, SRINIVASAN K, et al. Parity-odd and even trispectrum from axion inflation[J/OL]. Journal of Cosmology and Astroparticle Physics, 2023, 2023(05): 018. http: //dx.doi.org/10.1088/1475-7516/2023/05/018.
[80] JAZAYERI S, RENAUX-PETEL S, TONG X, et al. Parity Violation from Emergent NonLocality During Inflation[A]. 2023. arXiv: 2308.11315.

所在学位评定分委会
物理学
国内图书分类号
P159.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765841
专题南方科技大学
理学院_物理系
推荐引用方式
GB/T 7714
Shuai ZM. Non-gaussianity and scalar-induced gravitational waves from ghost inflation[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132939-帅志明-物理系.pdf(1954KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[帅志明]的文章
百度学术
百度学术中相似的文章
[帅志明]的文章
必应学术
必应学术中相似的文章
[帅志明]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。