中文版 | English
题名

Ovoids of PG(3,q)

其他题名
PG(3,q)中的卵形体
姓名
姓名拼音
HU Shuanyang
学号
12232853
学位类型
硕士
学位专业
070101 基础数学
学科门类/专业学位类别
07 理学
导师
QING XIANG
导师单位
数学系
论文答辩日期
2024-05-21
论文提交日期
2024-06-22
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
In this paper, we review some known examples of ovoids in 𝑃𝐺(3, 𝑞), consisting of the two known infinite families, elliptic quadrics and Tits ovoids. We introduce the characterization of ovoids in 𝑃𝐺(3, 𝑞) with 𝑞 odd, which was proved by Barlotti and independently by Panella.

We survey the best known classification results by using the secant plane sections, which was proved by Brown. Brown proved that if every secant plane section of a given ovoid in 𝑃𝐺(3, 𝑞) with 𝑞 even is a conic, then the ovoid must be an elliptic quadric. The theorem is proved by applying the generalized quadrangles 𝑇2(𝒞) (𝒞 a conic) constructed by Tits, 𝑊(𝑞) and the isomorphism between them to show that every secant plane section of the ovoid admitting a conic secant plane section must be a conic. Such result follows from a well-known theorem of Barlotti.

We introduce another version of classification problem of ovoids in 𝑃𝐺(3, 𝑞) with 𝑞 even. Due to the work of Segre and Thas, the problem can be transformed into classifying the ovoids of the generalized quadrangle 𝑊(𝑞) and we can apply some results about strongly regular graphs to the collinearity graph of 𝑊(𝑞). Finally, we discuss some properties of the collinearity graph and analyze the necessary conclusions of the method.

关键词
语种
英语
培养类别
独立培养
入学年份
2022
学位授予年份
2024-06
参考文献列表

[1] TITS J. Ovoïdes à translations[J]. Rend. Mat. e Appl. (5), 1962, 21: 37-59.
[2] DEMBOWSKI P. Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematicsand Related Areas]: Band 44 Finite geometries[M]. Springer-Verlag, Berlin-New York, 1968:xi+375.
[3] BALL S. London Mathematical Society Student Texts: Vol. 82 Finite geometry and combinatorial applications[M/OL]. Cambridge University Press, Cambridge, 2015: xii+285. https://doi.org/10.1017/CBO9781316257449.
[4] BOSE R C. Mathematical theory of the symmetrical factorial design[J]. Sankhyā, 1947, 8:107-166.
[5] SEGRE B. Le geometrie di Galois[J/OL]. Ann. Mat. Pura Appl. (4), 1959, 48: 1-96. https://doi.org/10.1007/BF02410658.
[6] HIRSCHFELD J. Projective geometry over finite fields[J]. Oxford math. Monographs, 1979.
[7] SEIDEN E. A theorem in finite projective geometry and an application to statistics[J/OL]. Proc.Amer. Math. Soc., 1950, 1: 282-286. https://doi.org/10.2307/2031936.
[8] QVIST B. Some remarks concerning curves of the second degree in a finite plane[J]. Ann.Acad. Sci. Fennicae Ser. A. I. Math.-Phys., 1952, 1952(134): 27.
[9] BARLOTTI A. Un’estensione del teorema di Segre-Kustaanheimo[J]. Boll. Un. Mat. Ital. (3),1955, 10: 498-506.
[10] BARLOTTI A. Some topics in finite geometrical structures[R]. North Carolina State University.Dept. of Statistics, 1965.
[11] PANELLA G. Caratterizzazione delle quadriche di uno spazio (tridimensionale) lineare sopraun corpo finito.[J]. Bollettino dell’Unione Matematica Italiana, 1955, 10(4): 507-513.
[12] VAN LINT J H, WILSON R M. A course in combinatorics[M/OL]. Second ed. CambridgeUniversity Press, Cambridge, 2001: xiv+602. https://doi.org/10.1017/CBO9780511987045.
[13] SEGRE B. Ovals in a finite projective plane[J/OL]. Canadian J. Math., 1955, 7: 414-416.https://doi.org/10.4153/CJM-1955-045-x.
[14] FELLEGARA G. Gli ovaloidi in uno spazio tridimensionale di Galois di ordine 8[J]. AttiAccad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8), 1962, 32: 170-176.
[15] O’KEEFE C M, PENTTILA T. Ovoids of PG(3, 16) are elliptic quadrics[J/OL]. J. Geom.,1990, 38(1-2): 95-106. https://doi.org/10.1007/BF01222898.
[16] O’KEEFE C M, PENTTILA T. Ovoids of PG(3, 16) are elliptic quadrics. II[J/OL]. J. Geom.,1992, 44(1-2): 140-159. https://doi.org/10.1007/BF01228289.
[17] O’KEEFE C M, PENTTILA T, ROYLE G F. Classification of ovoids in PG(3, 32)[J/OL]. J.Geom., 1994, 50(1-2): 143-150. https://doi.org/10.1007/BF01222671.
[18] HIRSCHFELD J W P. Oxford Mathematical Monographs: Finite projective spaces of threedimensions[M]. The Clarendon Press, Oxford University Press, New York, 1985: x+316.
[19] SEGRE B. On complete caps and ovaloids in three-dimensional Galois spaces of characteristictwo[J/OL]. Acta Arith., 1959, 5: 315-332. https://doi.org/10.4064/aa-5-3-315-332.
[20] TITS J. Les groupes simples de Suzuki et de Ree[J]. Séminaire Bourbaki, 1960, 6: 65-82.
[21] HäRING M, HEISE W. On B. Segre’s construction of an ovaloid[J/OL]. Acta Arith., 1979, 35(2): 187-188. https://doi.org/10.4064/aa-35-2-187-188.
[22] BROWN M R. Ovoids of PG(3, 𝑞), 𝑞 even, with a conic section[J/OL]. J. London Math. Soc.(2), 2000, 62(2): 569-582. https://doi.org/10.1112/S0024610700001137.
[23] PAYNE S E, THAS J A. Research Notes in Mathematics: Vol. 110 Finite generalized quadrangles[M]. Pitman (Advanced Publishing Program), Boston, MA, 1984: vi+312.
[24] THAS J A. Ovoidal translation planes[J/OL]. Arch. Math. (Basel), 1972, 23: 110-112. https://doi.org/10.1007/BF01304851.
[25] SEGRE B. Sui 𝑘-archi nei piani finiti di caratteristica due[J]. Rev. Math. Pures Appl., 1957, 2:289-300.
[26] SEGRE B. Ovali e curve 𝜎 nei piani di Galois di caratteristica due[J]. Atti Accad. Naz. LinceiRend. Cl. Sci. Fis. Mat. Nat. (8), 1962, 32: 785-790.
[27] GLYNN D G. Two new sequences of ovals in finite Desarguesian planes of even order[M/OL]//Lecture Notes in Math.: Vol. 1036 Combinatorial mathematics, X (Adelaide, 1982). Springer,Berlin, 1983: 217-229. https://doi.org/10.1007/BFb0071521.
[28] PAYNE S E. A new infinite family of generalized quadrangles[C]//Proceedings of the sixteenthSoutheastern international conference on combinatorics, graph theory and computing (BocaRaton, Fla., 1985): Vol. 49. 1985: 115-128.
[29] CHEROWITZO W. 𝛼-flocks and hyperovals[J/OL]. Geom. Dedicata, 1998, 72(3): 221-246.https://doi.org/10.1023/A:1005022808718.
[30] CHEROWITZO W, PENTTILA T, PINNERI I, et al. Flocks and ovals[J/OL]. Geom. Dedicata,1996, 60(1): 17-37. https://doi.org/10.1007/BF00150865.
[31] PAYNE S E, PENTTILA T, PINNERI I. Isomorphisms between Subiaco 𝑞-clan geometries[J/OL]. Bull. Belg. Math. Soc. Simon Stevin, 1995, 2(2): 197-222. http://projecteuclid.org/euclid.bbms/1103408755.
[32] CHEROWITZO W E, O’KEEFE C M, PENTTILA T. A unified construction of finite geometries associated with 𝑞-clans in characteristic 2[J/OL]. Adv. Geom., 2003, 3(1): 1-21.https://doi.org/10.1515/advg.2003.002.
[33] GLYNN D G. A condition for the existence of ovals in PG(2, 𝑞), 𝑞 even[J/OL]. Geom. Dedicata,1989, 32(2): 247-252. https://doi.org/10.1007/BF00147433.
[34] CAULLERY F, SCHMIDT K U. On the classification of hyperovals[J/OL]. Adv. Math., 2015,283: 195-203. https://doi.org/10.1016/j.aim.2015.07.016.
[35] BROWN M R, O’KEEFE C M, PENTTILA T. Triads, flocks of conics and 𝑄−(5, 𝑞)[M/OL]//Vol. 18. 1999: 63-70. https://doi.org/10.1023/A:1008376900914.
[36] HIRSCHFELD J W P, THAS J A. Oxford Mathematical Monographs: General Galois geometries[M]. The Clarendon Press, Oxford University Press, New York, 1991: xiv+407.
[37] DICKSON L E. Linear groups: With an exposition of the Galois field theory: Vol. 6[M]. BGTeubner, 1901.
[38] PROHASKA O, WALKER M. A note on the Hering type of inversive planes of even order[J/OL]. Arch. Math. (Basel), 1977, 28(4): 431-432. https://doi.org/10.1007/BF01223946.
[39] GLYNN D G. The Hering classification for inversive planes of even order[J]. Simon Stevin,1984, 58(4): 319-353.
[40] PENTTILA T, PRAEGER C E. Ovoids and translation ovals[J/OL]. J. London Math. Soc. (2),1997, 56(3): 607-624. https://doi.org/10.1112/S002461079800564X.
[41] O’KEEFE C M, PENTTILA T. Ovoids with a pencil of translation ovals[J/OL]. Geom. Dedicata, 1996, 62(1): 19-34. https://doi.org/10.1007/BF00239999.
[42] O’KEEFE C M, PENTTILA T. Ovals in translation hyperovals and ovoids[J/OL]. European J.Combin., 1997, 18(6): 667-683. https://doi.org/10.1006/eujc.1996.0127.
[43] BROUWER A E, VAN MALDEGHEM H. Encyclopedia of Mathematics and its Applications:Vol. 182 Strongly regular graphs[M/OL]. Cambridge University Press, Cambridge, 2022:xvii+462. https://doi.org/10.1017/9781009057226.

所在学位评定分委会
数学
国内图书分类号
O157.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765842
专题南方科技大学
理学院_数学系
推荐引用方式
GB/T 7714
Hu SY. Ovoids of PG(3,q)[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12232853-胡栓阳-数学系.pdf(1078KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[胡栓阳]的文章
百度学术
百度学术中相似的文章
[胡栓阳]的文章
必应学术
必应学术中相似的文章
[胡栓阳]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。