[1] TITS J. Ovoïdes à translations[J]. Rend. Mat. e Appl. (5), 1962, 21: 37-59.
[2] DEMBOWSKI P. Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematicsand Related Areas]: Band 44 Finite geometries[M]. Springer-Verlag, Berlin-New York, 1968:xi+375.
[3] BALL S. London Mathematical Society Student Texts: Vol. 82 Finite geometry and combinatorial applications[M/OL]. Cambridge University Press, Cambridge, 2015: xii+285. https://doi.org/10.1017/CBO9781316257449.
[4] BOSE R C. Mathematical theory of the symmetrical factorial design[J]. Sankhyā, 1947, 8:107-166.
[5] SEGRE B. Le geometrie di Galois[J/OL]. Ann. Mat. Pura Appl. (4), 1959, 48: 1-96. https://doi.org/10.1007/BF02410658.
[6] HIRSCHFELD J. Projective geometry over finite fields[J]. Oxford math. Monographs, 1979.
[7] SEIDEN E. A theorem in finite projective geometry and an application to statistics[J/OL]. Proc.Amer. Math. Soc., 1950, 1: 282-286. https://doi.org/10.2307/2031936.
[8] QVIST B. Some remarks concerning curves of the second degree in a finite plane[J]. Ann.Acad. Sci. Fennicae Ser. A. I. Math.-Phys., 1952, 1952(134): 27.
[9] BARLOTTI A. Un’estensione del teorema di Segre-Kustaanheimo[J]. Boll. Un. Mat. Ital. (3),1955, 10: 498-506.
[10] BARLOTTI A. Some topics in finite geometrical structures[R]. North Carolina State University.Dept. of Statistics, 1965.
[11] PANELLA G. Caratterizzazione delle quadriche di uno spazio (tridimensionale) lineare sopraun corpo finito.[J]. Bollettino dell’Unione Matematica Italiana, 1955, 10(4): 507-513.
[12] VAN LINT J H, WILSON R M. A course in combinatorics[M/OL]. Second ed. CambridgeUniversity Press, Cambridge, 2001: xiv+602. https://doi.org/10.1017/CBO9780511987045.
[13] SEGRE B. Ovals in a finite projective plane[J/OL]. Canadian J. Math., 1955, 7: 414-416.https://doi.org/10.4153/CJM-1955-045-x.
[14] FELLEGARA G. Gli ovaloidi in uno spazio tridimensionale di Galois di ordine 8[J]. AttiAccad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8), 1962, 32: 170-176.
[15] O’KEEFE C M, PENTTILA T. Ovoids of PG(3, 16) are elliptic quadrics[J/OL]. J. Geom.,1990, 38(1-2): 95-106. https://doi.org/10.1007/BF01222898.
[16] O’KEEFE C M, PENTTILA T. Ovoids of PG(3, 16) are elliptic quadrics. II[J/OL]. J. Geom.,1992, 44(1-2): 140-159. https://doi.org/10.1007/BF01228289.
[17] O’KEEFE C M, PENTTILA T, ROYLE G F. Classification of ovoids in PG(3, 32)[J/OL]. J.Geom., 1994, 50(1-2): 143-150. https://doi.org/10.1007/BF01222671.
[18] HIRSCHFELD J W P. Oxford Mathematical Monographs: Finite projective spaces of threedimensions[M]. The Clarendon Press, Oxford University Press, New York, 1985: x+316.
[19] SEGRE B. On complete caps and ovaloids in three-dimensional Galois spaces of characteristictwo[J/OL]. Acta Arith., 1959, 5: 315-332. https://doi.org/10.4064/aa-5-3-315-332.
[20] TITS J. Les groupes simples de Suzuki et de Ree[J]. Séminaire Bourbaki, 1960, 6: 65-82.
[21] HäRING M, HEISE W. On B. Segre’s construction of an ovaloid[J/OL]. Acta Arith., 1979, 35(2): 187-188. https://doi.org/10.4064/aa-35-2-187-188.
[22] BROWN M R. Ovoids of PG(3, 𝑞), 𝑞 even, with a conic section[J/OL]. J. London Math. Soc.(2), 2000, 62(2): 569-582. https://doi.org/10.1112/S0024610700001137.
[23] PAYNE S E, THAS J A. Research Notes in Mathematics: Vol. 110 Finite generalized quadrangles[M]. Pitman (Advanced Publishing Program), Boston, MA, 1984: vi+312.
[24] THAS J A. Ovoidal translation planes[J/OL]. Arch. Math. (Basel), 1972, 23: 110-112. https://doi.org/10.1007/BF01304851.
[25] SEGRE B. Sui 𝑘-archi nei piani finiti di caratteristica due[J]. Rev. Math. Pures Appl., 1957, 2:289-300.
[26] SEGRE B. Ovali e curve 𝜎 nei piani di Galois di caratteristica due[J]. Atti Accad. Naz. LinceiRend. Cl. Sci. Fis. Mat. Nat. (8), 1962, 32: 785-790.
[27] GLYNN D G. Two new sequences of ovals in finite Desarguesian planes of even order[M/OL]//Lecture Notes in Math.: Vol. 1036 Combinatorial mathematics, X (Adelaide, 1982). Springer,Berlin, 1983: 217-229. https://doi.org/10.1007/BFb0071521.
[28] PAYNE S E. A new infinite family of generalized quadrangles[C]//Proceedings of the sixteenthSoutheastern international conference on combinatorics, graph theory and computing (BocaRaton, Fla., 1985): Vol. 49. 1985: 115-128.
[29] CHEROWITZO W. 𝛼-flocks and hyperovals[J/OL]. Geom. Dedicata, 1998, 72(3): 221-246.https://doi.org/10.1023/A:1005022808718.
[30] CHEROWITZO W, PENTTILA T, PINNERI I, et al. Flocks and ovals[J/OL]. Geom. Dedicata,1996, 60(1): 17-37. https://doi.org/10.1007/BF00150865.
[31] PAYNE S E, PENTTILA T, PINNERI I. Isomorphisms between Subiaco 𝑞-clan geometries[J/OL]. Bull. Belg. Math. Soc. Simon Stevin, 1995, 2(2): 197-222. http://projecteuclid.org/euclid.bbms/1103408755.
[32] CHEROWITZO W E, O’KEEFE C M, PENTTILA T. A unified construction of finite geometries associated with 𝑞-clans in characteristic 2[J/OL]. Adv. Geom., 2003, 3(1): 1-21.https://doi.org/10.1515/advg.2003.002.
[33] GLYNN D G. A condition for the existence of ovals in PG(2, 𝑞), 𝑞 even[J/OL]. Geom. Dedicata,1989, 32(2): 247-252. https://doi.org/10.1007/BF00147433.
[34] CAULLERY F, SCHMIDT K U. On the classification of hyperovals[J/OL]. Adv. Math., 2015,283: 195-203. https://doi.org/10.1016/j.aim.2015.07.016.
[35] BROWN M R, O’KEEFE C M, PENTTILA T. Triads, flocks of conics and 𝑄−(5, 𝑞)[M/OL]//Vol. 18. 1999: 63-70. https://doi.org/10.1023/A:1008376900914.
[36] HIRSCHFELD J W P, THAS J A. Oxford Mathematical Monographs: General Galois geometries[M]. The Clarendon Press, Oxford University Press, New York, 1991: xiv+407.
[37] DICKSON L E. Linear groups: With an exposition of the Galois field theory: Vol. 6[M]. BGTeubner, 1901.
[38] PROHASKA O, WALKER M. A note on the Hering type of inversive planes of even order[J/OL]. Arch. Math. (Basel), 1977, 28(4): 431-432. https://doi.org/10.1007/BF01223946.
[39] GLYNN D G. The Hering classification for inversive planes of even order[J]. Simon Stevin,1984, 58(4): 319-353.
[40] PENTTILA T, PRAEGER C E. Ovoids and translation ovals[J/OL]. J. London Math. Soc. (2),1997, 56(3): 607-624. https://doi.org/10.1112/S002461079800564X.
[41] O’KEEFE C M, PENTTILA T. Ovoids with a pencil of translation ovals[J/OL]. Geom. Dedicata, 1996, 62(1): 19-34. https://doi.org/10.1007/BF00239999.
[42] O’KEEFE C M, PENTTILA T. Ovals in translation hyperovals and ovoids[J/OL]. European J.Combin., 1997, 18(6): 667-683. https://doi.org/10.1006/eujc.1996.0127.
[43] BROUWER A E, VAN MALDEGHEM H. Encyclopedia of Mathematics and its Applications:Vol. 182 Strongly regular graphs[M/OL]. Cambridge University Press, Cambridge, 2022:xvii+462. https://doi.org/10.1017/9781009057226.
修改评论