中文版 | English
题名

基于均值-方差模型和违约风险的最优再保险设计

其他题名
OPTIMAL REINSURANCE DESIGN BASED ON MEAN-VARIANCE MODEL AND DEFAULT RISK
姓名
姓名拼音
LI Yitian
学号
12232865
学位类型
硕士
学位专业
0701 数学
学科门类/专业学位类别
07 理学
导师
张艺赢
导师单位
数学系
论文答辩日期
2024-05-20
论文提交日期
2024-06-20
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

本文以保险公司最终财富的均值-方差效用最大化为目标,研究了在违约风险下的最优再保险设计问题。本文使用广义均值-方差保费准则,并假设违约因子与保险公司的总损失独立。本文通过构造法证明了在上述设定下的最优再保险形式为变换损失形式或变换损失与违约因子乘积的对偶形式。进一步,当保费准则中的保费附加函数单调,并且违约因子服从伯努利分布时,证明了最优再保险策略为成数再保险策略。当选择保费准则为标准差准则和期望值准则时,分别推导出了保险公司最优分出比例的表达式,发现最优分出比例与保险公司需要承担的总损失和违约因子的期望、方差,以及均值-方差模型下的风险规避系数有关。最后,基于所得到的理论研究结果,本文通过数值方法定量地计算了最优分出比例、风险规避系数和履约概率之间的关系。

研究发现,随着保险公司的风险规避系数变大,最优再保险的分出比例也变大。这说明保险公司对风险越厌恶,越倾向于分出更多风险给再保险公司共同承担。同时,保险公司信念下的履约概率越大,最优再保险的分出比例也越大。这表明保险公司对再保险公司完全赔付越有信心,越倾向于分出更多风险给再保险公司。

关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-06
参考文献列表

[1] BORCHKH. Anattempttodeterminethe optimum amount of stop loss reinsurance[J]. Transactions of the 16th international congress of actuaries, 1960.
[2] ARROWKJ. Uncertainty and the welfare economics of medical care[M]//Uncertainty in economics. Elsevier, 1978: 345-375.
[3]RAVIVA.Thedesignofanoptimalinsurancepolicy[M]//FoundationsofInsuranceEconomics: Readings in Economics and Finance. Springer, 1979: 251-263.
[4] DEPREZO,GERBERHU.Onconvexprinciplesofpremiumcalculation[J]. Insurance: Mathematics and Economics, 1985, 4(3): 179-189.
[5] YOUNGVR.OptimalinsuranceunderWang’spremiumprinciple[J]. Insurance: Mathematics and Economics, 1999, 25(2): 109-122.
[6] GAJEKL,ZAGRODNYD. Insurer’soptimal reinsurance strategies[J]. Insurance: Mathematics and Economics, 2000, 27(1): 105-112.
[7] CHI Y, ZHOUM. Optimal reinsurance design: a mean-variance approach[J]. North American Actuarial Journal, 2017, 21(1): 1-14.
[8]BOONENTJ,JIANGW.Mean–varianceinsurancedesignwithcounterpartyriskandincentive compatibility[J]. ASTIN Bulletin: The Journal of the IAA, 2022, 52(2): 645-667.
[9] HANX,LANDRIAULTD,LI D. Optimal reinsurance contract in a Stackelberg game framework: a view of social planner[J]. Scandinavian Actuarial Journal, 2024, 2024(2): 124-148.
[10] CHEN Y, CHEUNG K C, ZHANG Y. Bowley solution under the reinsurer’s default risk[J]. Insurance: Mathematics and Economics, 2024, 115: 36-61.
[11] CHIY,HUANGY,TANKS.Aninsurer’soptimalstrategytowardsanewindependentbusiness [J]. Scandinavian Actuarial Journal, 2024, 2024(1): 89-107.
[12] CUMMINS J D, MAHUL O. The demand for insurance with an upper limit on coverage[J]. Journal of Risk and Insurance, 2004, 71(2): 253-264.
[13] ZHOUC, WUC. Optimal insurance under the insurer’s risk constraint[J]. Insurance: Mathematics and Economics, 2008, 42(3): 992-999.
[14] WENGC. Optimal reinsurance designs: from an insurer’s perspective[M]. University of Waterloo, 2009.
[15] TAN KS, WENGC,ZHANGY. VaRandCTEcriteria for optimal quota-share and stop-loss reinsurance[J]. North American Actuarial Journal, 2009, 13(4): 459-482.
[16] ZHOUC,WUW,WUC.Optimalinsuranceinthepresenceofinsurer’slosslimit[J]. Insurance: Mathematics and Economics, 2010, 46(2): 300-307.
[17] 周蕊, 荣喜民, 赵慧. CIR 模型下保险公司最优投资再保险策略研究[J]. 工程数学学报, 2018, 35(3): 245-257. 47参考文献
[18] 黄娅, 王京,周杰明,等. 风险相依下再保险双方的联合最优再保险问题[J]. 运筹学学报, 2019, 23(4): 13-33.
[19] CHIY,LINXS.Optimalreinsurancewithlimitedcededrisk: Astochasticdominanceapproach [J]. ASTIN Bulletin: The Journal of the IAA, 2014, 44(1): 103-126.
[20] CHEN Y. Optimal insurance with counterparty and additive background risk[J]. ASTIN Bulletin: The Journal of the IAA, 2024: 1-22.
[21] YUANY,LIANGZ,HANX.Robustoptimalreinsuranceinminimizingthepenalizedexpected time toreachagoal[J]. Journal of ComputationalandAppliedMathematics, 2023, 420: 114816.
[22] YUAN Y, HAN X, LIANG Z, et al. Optimal reinsurance-investment strategy with thinning dependence and delay factors under mean-variance framework[J]. European Journal of Operational Research, 2023, 311(2): 581-595.
[23] CHEUNGKC. Optimalreinsurance revisited–a geometric approach[J]. ASTIN Bulletin: The Journal of the IAA, 2010, 40(1): 221-239.
[24] CUI W, YANG J, WU L. Optimal reinsurance minimizing the distortion risk measure under general reinsurance premium principles[J]. Insurance: Mathematics and Economics, 2013, 53 (1): 74-85.
[25] CHI Y, TAN KS. Optimal reinsurance with general premium principles[J]. Insurance: Mathematics and Economics, 2013, 52(2): 180-189.
[26] DU J, LI Z, WU L. Optimal stop-loss reinsurance under the VaR and CTE risk measures: Variable transformation method[J]. Computational Economics, 2019, 53(3): 1133-1151.
[27] PUTRI AD,NURROHMAHS,FITHRIANII. Quota-share and stop-loss reinsurance combination based on Value-at-Risk (VaR) optimization[C]//Journal of Physics: Conference Series: Vol. 1725. IOP Publishing, 2021: 012097.
[28] MERT O M, SELCUK-KESTEL A S. Time dependent stop-loss reinsurance and exposure curves[J]. Journal of Computational and Applied Mathematics, 2021, 389: 113348.
[29] SYUHADAK,HAKIMA,SARIS. Thecombinedstop-lossandquota-sharereinsurance: conditional tail expectation-based optimization from the joint perspective of insurer and reinsurer [J]. Risks, 2021, 9(7): 125.
[30] DENUITM,ROBERTCY. Stop-loss protection for a large P2P insurance pool[J]. Insurance: Mathematics and Economics, 2021, 100: 210-233.
[31] 谭显中, 温利民. 混合再保险中凸风险组合的最优再保险策略[J]. 应用概率统计,2021, 037(004): 361-376.
[32] HUC,SONGH,WEIL. Optimalreinsurancewith general premium principles based on RVaR and WVaR[J]. Journal of Industrial and Management Optimization, 2023, 19(11): 8411-8428.
[33] SARIS,HAKIMA,MAGDALENAI,etal. Modelingtheoptimalcombinationofproportional and Stop-Loss reinsurance with dependent claim and stochastic insurance premium[J]. Journal of Risk and Financial Management, 2023, 16(2): 95.
[34] BERNARD C, LUDKOVSKI M. Impact of counterparty risk on the reinsurance market[J]. North American Actuarial Journal, 2012, 16(1): 87-111. 48参考文献
[35] ASIMIT AV, BADESCUAM,CHEUNGKC. Optimalreinsurance in the presence of counterparty default risk[J]. Insurance: Mathematics and Economics, 2013, 53(3): 690-697.
[36] CAIJ,LEMIEUXC,LIUF. Optimalreinsurancewith regulatory initial capital and default risk [J]. Insurance: Mathematics and Economics, 2014, 57: 13-24.
[37] DENGC,ZENGX,ZHUH. Non-zero-sum stochastic differential reinsurance and investment games with default risk[J]. European Journal of Operational Research, 2018, 264(3): 11441158.
[38] ZHANGY,ZHAOP,MAR.Robustoptimalexcess-of-lossreinsuranceandinvestmentproblem with more general dependent claim risks and defaultable risk[J]. Methodology and Computing in Applied Probability, 2022, 24(4): 2743-2777.
[39] BOONENTJ,JIANGW. Pareto-optimalreinsurance with default risk and solvency regulation [J]. Probability in the Engineering and Informational Sciences, 2023, 37(2): 518-545.
[40] 陈陶,李智明,吴黎军,等. 广义保费原理下带违约风险的最优再保险设计[J]. 应用概率统计,2023, 39(1): 101-116.
[41] OHLIN J. On a class of measures of dispersion with application to optimal reinsurance[J]. ASTIN Bulletin: The Journal of the IAA, 1969, 5(2): 249-266.

所在学位评定分委会
数学
国内图书分类号
O211.9
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765844
专题南方科技大学
理学院_数学系
推荐引用方式
GB/T 7714
李怡甜. 基于均值-方差模型和违约风险的最优再保险设计[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12232865-李怡甜-数学系.pdf(724KB)学位论文--限制开放CC BY-NC-SA请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李怡甜]的文章
百度学术
百度学术中相似的文章
[李怡甜]的文章
必应学术
必应学术中相似的文章
[李怡甜]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。