[1] SHOR P W. Algorithms for quantum computation: discrete logarithms and factoring[C]//Proceedings 35th annual symposium on foundations of computer science. IEEE, 1994: 124-134.
[2] SHOR P W. Polynomial-time algorithms for prime factorization and discrete logarithms on aquantum computer[J]. SIAM Review, 1999, 41(2): 303-332.
[3] GROVER L K. Quantum mechanics helps in searching for a needle in a haystack[J]. PhysicalReview Letters, 1997, 79(2): 325.
[4] GROVER L K. A fast quantum mechanical algorithm for database search[C]//Proceedings ofthe twenty-eighth annual ACM symposium on Theory of computing. 1996: 212-219.
[5] WANG H Y, ZHANG W Y, YAO Z, et al. Interrelated thermalization and quantum criticalityin a lattice gauge simulator[J]. Physical Review Letters, 2023, 131(5): 050401.
[6] GUO Q, CHENG C, SUN Z H, et al. Observation of energy-resolved many-body localization[J]. Nature Physics, 2021, 17(2): 234-239.
[7] XU K, SUN Z H, LIU W, et al. Probing dynamical phase transitions with a superconductingquantum simulator[J]. Science Advances, 2020, 6(25): eaba4935.
[8] BLOCH F. Nuclear induction[J]. Physical Review, 1946, 70(7-8): 460.
[9] KRANTZ P, KJAERGAARD M, YAN F, et al. A Quantum Engineer’s Guide to SuperconductingQubits[J]. Applied Physics Reviews, 2019, 6(2): 021318.
[10] KITAEV A Y. Quantum computations: algorithms and error correction[J]. Russian MathematicalSurveys, 1997, 52(6): 1191.
[11] DAWSON C, NIELSEN M. The Solovay-Kitaev algorithm[J]. Quantum Information and Computation,2006, 6(1): 81-95.
[12] KELLY J, BARENDS R, FOWLER A G, et al. State preservation by repetitive error detectionin a superconducting quantum circuit[J]. Nature, 2015, 519(7541): 66-69.
[13] KITAEV A Y. Fault-tolerant quantum computation by anyons[J]. Annals of Physics, 2003, 303(1): 2-30.
[14] SHOR P W. Fault-tolerant quantum computation[C]//Proceedings of 37th conference on foundationsof computer science. IEEE, 1996: 56-65.
[15] BRAVYI S B, KITAEV A Y. Quantum codes on a lattice with boundary[A]. 1998. arXivpreprint quant-ph/9811052.
[16] FOWLER A G, MARIANTONI M, MARTINIS J M, et al. Surface codes: Towards practicallarge-scale quantum computation[J]. Physical Review A, 2012, 86(3): 032324.
[17] KITAEV A. Anyons in an exactly solved model and beyond[J]. Annals of Physics, 2006, 321(1): 2-111.
[18] RAUSSENDORF R, HARRINGTON J. Fault-tolerant quantum computation with high threshold in two dimensions[J]. Physical Review Letters, 2007, 98(19): 190504.
[19] RAUSSENDORF R, HARRINGTON J, GOYAL K. Topological fault-tolerance in cluster statequantum computation[J]. New Journal of Physics, 2007, 9(6): 199.
[20] SANK D, CHEN Z, KHEZRI M, et al. Measurement-induced state transitions in a superconductingqubit: Beyond the rotating wave approximation[J]. Physical Review Letters, 2016, 117(19): 190503.
[21] KHEZRI M, OPREMCAK A, CHEN Z, et al. Measurement-induced state transitions in a superconductingqubit: Within the rotating-wave approximation[J]. Physical Review Applied, 2023,20(5): 054008.
[22] TINKHAM M. Introduction to superconductivity[M]. Courier Corporation, 2004.
[23] GAO Y Y, LESTER B J, CHOU K S, et al. Entanglement of bosonic modes through an engineeredexchange interaction[J]. Nature, 2019, 566(7745): 509-512.
[24] ROSENBLUM S, GAO Y Y, REINHOLD P, et al. A CNOT gate between multiphoton qubitsencoded in two cavities[J]. Nature communications, 2018, 9(1): 652.
[25] RIGETTI C, DEVORET M. Fully microwave-tunable universal gates in superconducting qubitswith linear couplings and fixed transition frequencies[J]. Physical Review B, 2010, 81(13):134507.
[26] CHOW J M, CÓRCOLES A D, GAMBETTA J M, et al. Simple all-microwave entangling gatefor fixed-frequency superconducting qubits[J]. Physical Review Letters, 2011, 107(8): 080502.
[27] MAGESAN E, GAMBETTA J M. Effective Hamiltonian models of the cross-resonance gate[J]. Physical Review A, 2020, 101(5): 052308.
[28] TRIPATHI V, KHEZRI M, KOROTKOV A N. Operation and intrinsic error budget of a twoqubitcross-resonance gate[J]. Physical Review A, 2019, 100(1): 012301.
[29] CALDWELL S A, DIDIER N, RYAN C A, et al. Parametrically Activated Entangling GatesUsing Transmon Qubits[J]. Physical Review Applied, 2018, 10(3): 034050.
[30] SETE E A, DIDIER N, CHEN A Q, et al. Parametric-resonance entangling gates with a tunablecoupler[J]. Physical Review Applied, 2021, 16(2): 024050.
[31] CHU J, LI D, YANG X, et al. Realization of superadiabatic two-qubit gates using parametricmodulation in superconducting circuits[J]. Physical Review Applied, 2020, 13(6): 064012.
[32] REAGOR M, OSBORN C B, TEZAK N, et al. Demonstration of universal parametric entanglinggates on a multi-qubit lattice[J]. Science Advances, 2018, 4(2): eaao3603.
[33] MARTINIS J M, GELLER M R. Fast adiabatic qubit gates using only 𝜎 z control[J]. PhysicalReview A, 2014, 90(2): 022307.
[34] SUNG Y, DING L, BRAUMÜLLER J, et al. Realization of high-fidelity cz and z z-free iswapgates with a tunable coupler[J]. Physical Review X, 2021, 11(2): 021058.
[35] REED M D, JOHNSON B R, HOUCK A A, et al. Fast reset and suppressing spontaneousemission of a superconducting qubit[J]. Applied Physics Letters, 2010, 96(20).
[36] SETE E A, MARTINIS J M, KOROTKOV A N. Quantum theory of a bandpass Purcell filterfor qubit readout[J]. Physical Review A, 2015, 92(1): 012325.
[37] BLAIS A, HUANG R S, WALLRAFF A, et al. Cavity quantum electrodynamics for superconductingelectrical circuits: An architecture for quantum computation[J]. Physical Review A,2004, 69(6): 062320.
[38] JEFFREY E, SANK D, MUTUS J, et al. Fast accurate state measurement with superconductingqubits[J]. Physical Review Letters, 2014, 112(19): 190504.
[39] CHEN Z. Metrology of quantum control and measurement in superconducting qubits[M]. Universityof California, Santa Barbara, 2018.
[40] MOTZOI F, GAMBETTA J M, REBENTROST P, et al. Simple pulses for elimination of leakagein weakly nonlinear qubits[J]. Physical Review Letters, 2009, 103(11): 110501.
[41] LUCERO E, KELLY J, BIALCZAK R C, et al. Reduced phase error through optimized controlof a superconducting qubit[J]. Physical Review A, 2010, 82(4): 042339.
[42] REED M. Entanglement and quantum error correction with superconducting qubits[M]. Lulu.com, 2013.
[43] EMERSON J, ALICKI R, ŻYCZKOWSKI K. Scalable noise estimation with random unitaryoperators[J]. Journal of Optics B: Quantum and Semiclassical Optics, 2005, 7(10): S347.
[44] KNILL E, LEIBFRIED D, REICHLE R, et al. Randomized benchmarking of quantum gates[J]. Physical Review A, 2008, 77(1): 012307.
[45] MAGESAN E, GAMBETTA J M, EMERSON J. Scalable and robust randomized benchmarkingof quantum processes[J]. Physical Review Letters, 2011, 106(18): 180504.
[46] DANKERT C, CLEVE R, EMERSON J, et al. Exact and approximate unitary 2-designs andtheir application to fidelity estimation[J]. Physical Review A, 2009, 80(1): 012304.
[47] BARENDS R, KELLY J, MEGRANT A, et al. Superconducting quantum circuits at the surfacecode threshold for fault tolerance[J]. Nature, 2014, 508(7497): 500-503.
[48] TERHAL B M. Quantum error correction for quantum memories[J]. Reviews of ModernPhysics, 2015, 87(2): 307.
[49] PRESKILL J. Quantum computing in the NISQ era and beyond[J]. Quantum, 2018, 2: 79.
[50] DIVINCENZO D P, IBM. The Physical Implementation of Quantum Computation[J].Fortschritte der Physik, 2000, 48(9-11): 771-783.
[51] FOWLER A G, MARIANTONI M, MARTINIS J M, et al. Surface Codes: Towards PracticalLarge-Scale Quantum Computation[J]. Physical Review A, 2012, 86(3): 032324.
[52] CHEN Z, SATZINGER K J, ATALAYA J, et al. Exponential Suppression of Bit or Phase Errorswith Cyclic Error Correction[J]. Nature, 2021, 595(7867): 383-387.
[53] KRINNER S, LACROIX N, REMM A, et al. Realizing repeated quantum error correction in adistance-three surface code[J]. Nature, 2022, 605(7911): 669-674.
[54] ZHAO Y, YE Y, HUANG H L, et al. Realization of an error-correcting surface code withsuperconducting qubits[J]. Physical Review Letters, 2022, 129(3): 030501.
[55] ACHARYA R, ALEINER I, ALLEN R, et al. Suppressing Quantum Errors by Scaling a SurfaceCode Logical Qubit[J]. Nature, 2023, 614(7949): 676-681.
[56] FOWLER A G. Coping with Qubit Leakage in Topological Codes[J]. Physical Review A, 2013,88(4): 042308.
[57] GHOSH J, FOWLER A G, MARTINIS J M, et al. Understanding the effects of leakage insuperconducting quantum-error-detection circuits[J]. Physical Review A, 2013, 88(6): 062329.
[58] MCEWEN M, KAFRI D, CHEN Z, et al. Removing Leakage-Induced Correlated Errors inSuperconducting Quantum Error Correction[J]. Nature Communications, 2021, 12(1): 1761.
[59] MIAO K C, MCEWEN M, ATALAYA J, et al. Overcoming Leakage in Quantum Error Correction[J]. Nature Physics, 2023: 1-7.
[60] BARENDS R, KELLY J, MEGRANT A, et al. Superconducting Quantum Circuits at the SurfaceCode Threshold for Fault Tolerance[J]. Nature, 2014, 508(7497): 500-503.
[61] BLUVSTEIN D, EVERED S J, GEIM A A, et al. Logical quantum processor based on reconfigurableatom arrays[J]. Nature, 2024, 626(7997): 58-65.
[62] EVERED S J, BLUVSTEIN D, KALINOWSKI M, et al. High-fidelity parallel entangling gateson a neutral-atom quantum computer[J]. Nature, 2023, 622(7982): 268-272.
[63] XUE X, RUSS M, SAMKHARADZE N, et al. Quantum logic with spin qubits crossing thesurface code threshold[J]. Nature, 2022, 601(7893): 343-347.
[64] GHOSH J, FOWLER A G. Leakage-Resilient Approach to Fault-Tolerant Quantum Computingwith Superconducting Elements[J]. Physical Review A, 2015, 91(2): 020302.
[65] BATTISTEL F, VARBANOV B, TERHAL B. Hardware-Efficient Leakage-Reduction Schemefor Quantum Error Correction with Superconducting Transmon Qubits[J]. PRX Quantum, 2021,2(3): 030314.
[66] ZHOU Y, ZHANG Z, YIN Z, et al. Rapid and Unconditional Parametric Reset Protocol forTunable Superconducting Qubits[J]. Nature Communications, 2021, 12(1): 5924.
[67] MARQUES J F, ALI H, VARBANOV B M, et al. All-Microwave Leakage Reduction Units forQuantum Error Correction with Superconducting Transmon Qubits[J]. Physical Review Letters,2023, 130(25): 250602.
[68] LACROIX N, HOFELE L, REMM A, et al. Fast Flux-Activated Leakage Reduction for SuperconductingQuantum Circuits[A]. 2023. arXiv:2309.07060.
[69] YANG X, CHU J, GUO Z, et al. Coupler-Assisted Leakage Reduction for Scalable QuantumError Correction with Superconducting Qubits[A]. 2024. arXiv:2403.16155.
[70] XU Y, CHU J, YUAN J, et al. High-fidelity, high-scalability two-qubit gate scheme for superconductingqubits[J]. Physical Review Letters, 2020, 125(24): 240503.
[71] CHU J, YAN F. Coupler-assisted controlled-phase gate with enhanced adiabaticity[J]. PhysicalReview Applied, 2021, 16(5): 054020.
修改评论