中文版 | English
题名

低维材料的生长和物理性质研究

其他题名
RESEARCH ON THE GROWTH AND PHYSICAL PROPERTIES OF LOW- DIMENSIONAL MATERIALS
姓名
姓名拼音
LIANG Yubo
学号
12132844
学位类型
硕士
学位专业
0702Z1 量子科学与工程
学科门类/专业学位类别
07 理学
导师
邓可
导师单位
量子科学与工程研究院
论文答辩日期
2024-05-08
论文提交日期
2024-06-21
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

低维材料由于具有与三维材料完全不同的物理性质和可调控的潜力,近年来受到了人们的广泛关注。在低维材料中实现诸如磁性、拓扑以及它们的共存是当前凝聚态物理的一个关注焦点。尽管在过去的三十年中,物理学界在拓扑材料和低维材料的研究中取得了诸多进展,然而受限于样品制备的困难和实验表征的挑战,目前对低维材料的研究还局限在少数几类体系。本文主要针对一系列低维拓扑材料的生长和物性进行实验研究,探索单晶样品的生长调控和能带拓扑。本文主要内容安排如下:

1. 准一维材料La3MgBi5由于能带中具有多种类型的狄拉克费米子而受到人们的关注。本文利用基于同步辐射的角分辨光电子能谱对La3MgBi5的电子结构测量,结合理论计算结果,探索该体系中的非平庸拓扑能带。我们的ARPES数据表明La3MgBi5能带中可能存在多种类型的狄拉克点。

2.准二维材料SrAg4Sb2被理论预言是拓扑绝缘体,同体系化合物EuAg4Sb2具有磁性,可以打破系统的时间反演对称性,因此生长SrAg4Sb2EuAg4Sb2将有望研究该体系中存在的拓扑相变。本文通过大量生长实验,系统性研究了这两个材料的生长条件,获得了高质量的单晶样品,并为后续揭露该体系中隐藏的拓扑性质及可能的拓扑相变提供了可能性。

3.二维材料EuCuBi被理论预言是一种具有可调节拓扑属性的狄拉克半金属。本文通过大量的生长及掺杂实验成功合成EuCuBi40%Ca掺杂的Eu0.6Ca0.4CuBi样品。EuCuBi的磁性测量表明其具有内禀反铁磁序,Neel温度约为TN≈12.22 K。而对掺杂样品Eu0.6Ca0.4CuBi的输运测量表明Eu0.6Ca0.4CuBi的反铁磁转变温度约为TN≈7.3 K,相比于EuCuBiNeel温度有着明显下降,说明Eu元素对样品中长程磁序具有明显影响。此外,对Eu0.6Ca0.4CuBi的磁阻测量表明在掺杂过后的样品中存在由手性反常而引起的磁阻行为,表明Eu0.6Ca0.4CuBi中可能仍具有拓扑性质,且掺杂过程中存在拓扑相变。目前的工作将为后续从电子结构的角度揭示这些样品中非平庸的能带拓扑结构以及掺杂对该体系材料的电子结构的调控作用提供帮助。

4. 1T-CrTe2作为具有室温铁磁转变温度(居里温度约为TC≈310 K)二维铁磁性材料而备受关注。尽管由MBE生长的1T-CrTe2薄膜已经获得了广泛的研究,然而,单晶1T-CrTe2的研究成果仍非常少。我们探索了块材1T-CrTe2的生长条件,但在大量实验后仅获得1T-CrTe2的多晶样品,尚无法得到大面积高质量的1T-CrTe2单晶样品。通过对生长方法以及生长过程的详细总结,梳理了我们在1T-CrTe2单晶生长和制备中遇到的问题和挑战。这些工作将为后续生长高质量1T-CrTe2单晶样品提供宝贵的经验。

我们的工作丰富了人们对低维材料的认知,并为进一步研究低维材料的输运性质及非平庸电子结构提供了新的思路。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-07
参考文献列表

[1] Zhao W, Yang M, Xu R, et al. Topological electronic structure and spin texture of quasi-one-dimensional higher-order topological insulator Bi4Br4[J]. Nature Communications, 2023, 14(1):8089.
[2] Neto A C, Guinea F, Peres N M, et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81(1):109.
[3] Geim A K, Grigorieva I V. Van der Waals heterostructures[J]. Nature, 2013, 499(7459):419-425.
[4] Manzeli S, Ovchinnikov D, Pasquier D, et al. 2D transition metal dichalcogenides[J]. Nature Reviews Materials, 2017, 2(8):1-15.
[5] Cai X, Luo Y, Liu B, et al. Preparation of 2D material dispersions and their applications[J]. Chemical Society Reviews, 2018, 47(16):6224-6266.
[6] Hu Z, Wu Z, Han C, et al. Two-dimensional transition metal dichalcogenides: interface and defect engineering[J]. Chemical Society Reviews, 2018, 47(9):3100-3128.
[7] Novoselov K, Mishchenko A, Carvalho A, et al. 2D materials and van der Waals heterostructures[J]. Science, 2016, 353(6298):aac9439.
[8] Wang E, Lu X, Ding S, et al. Gaps induced by inversion symmetry breaking and second-generation Dirac cones in graphene/hexagonal boron nitride[J]. Nature Physics, 2016, 12(12):1111-1115.
[9] Cao Y, Fatemi V, Fang S, et al. Unconventional superconductivity in magic-angle graphene superlattices[J]. Nature, 2018, 556(7699):43-50.
[10] Cao Y, Fatemi V, Demir A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices[J]. Nature, 2018, 556(7699):80-84.
[11] Lin M-L, Tan Q-H, Wu J-B, et al. Moiré phonons in twisted bilayer MoS2[J]. Acs Nano, 2018, 12(8):8770-8780.
[12] Yankowitz M, Chen S, Polshyn H, et al. Tuning superconductivity in twisted bilayer graphene[J]. Science, 2019, 363(6431):1059-1064.
[13] Kerelsky A, Mcgilly L J, Kennes D M, et al. Maximized electron interactions at the magic angle in twisted bilayer graphene[J]. Nature, 2019, 572(7767):95-100.
[14] Sharpe A L, Fox E J, Barnard A W, et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene[J]. Science, 2019, 365(6453):605-608.
[15] Jiang Y, Lai X, Watanabe K, et al. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene[J]. Nature, 2019, 573(7772):91-95.
[16] Wong D, Nuckolls K P, Oh M, et al. Cascade of electronic transitions in magic-angle twisted bilayer graphene[J]. Nature, 2020, 582(7811):198-202.
[17] Wang L, Shih E-M, Ghiotto A, et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides[J]. Nature Materials, 2020, 19(8):861-866.
[18] Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065):197-200.
[19] Hirohata A, Takanashi K. Future perspectives for spintronic devices[J]. Journal of Physics D: Applied Physics, 2014, 47(19):193001.
[20] Ahn E C. 2D materials for spintronic devices[J]. npj 2D Materials and Applications, 2020, 4(1):17.

[21] Bansil A, Lin H, Das T. Colloquium: Topological band theory[J]. Reviews of Modern Physics, 2016, 88(2):021004.

[22] Kosterlitz J M, Thouless D. Long range order and metastability in two dimensional solids and superfluids.(Application of dislocation theory)[J]. Journal of Physics C: Solid State Physics, 1972, 5(11):L124.

[23] Kosterlitz J M, Thouless D J. Ordering, metastability and phase transitions in two-dimensional systems[J]. J. Phys. C, 1973, 6: 1181-1203.

[24] Berezinskii V. Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group I. Classical systems[J]. Sov. Phys. JETP, 1971, 32(3):493-500.

[25] Berezinskii V. Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continuous symmetry group. II. Quantum systems[J]. Sov. Phys. JETP, 1972, 34(3):610-616.

[26] Klitzing K V, Dorda G, Pepper M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance[J]. Physical Review Letters, 1980, 45(6):494.

[27] Thouless D J, Kohmoto M, Nightingale M P, et al. Quantized Hall conductance in a two-dimensional periodic potential[J]. Physical Review Letters, 1982, 49(6):405.

[28] Lv B, Qian T, Ding H. Experimental perspective on three-dimensional topological semimetals[J]. Reviews of Modern Physics, 2021, 93(2):025002.

[29] Hasan M Z, Kane C L. Colloquium: topological insulators[J]. Reviews of Modern Physics, 2010, 82(4):3045.

[30] Kane C L, Mele E J. Quantum spin Hall effect in graphene[J]. Physical Review Letters, 2005, 95(22):226801.

[31] Bernevig B A, Zhang S-C. Quantum spin Hall effect[J]. Physical Review Letters, 2006, 96(10):106802.

[32] Konig M, Wiedmann S, Brune C, et al. Quantum spin Hall insulator state in HgTe quantum wells[J]. Science, 2007, 318(5851):766-770.

[33] Kane C L, Mele E J. Z2 topological order and the quantum spin Hall effect[J]. Physical Review Letters, 2005, 95(14):146802.

[34] Moore J E, Balents L. Topological invariants of time-reversal-invariant band structures[J]. Physical Review B, 2007, 75(12):121306.

[35] Fu L, Kane C L, Mele E J. Topological insulators in three dimensions[J]. Physical Review Letters, 2007, 98(10):106803.

[36] Roy R. Topological phases and the quantum spin Hall effect in three dimensions[J]. Physical Review B, 2009, 79(19):195322.

[37] Fu L, Kane C L. Topological insulators with inversion symmetry[J]. Physical Review B, 2007, 76(4):045302.

[38] Hsieh D, Qian D, Wray L, et al. A topological Dirac insulator in a quantum spin Hall phase[J]. Nature, 2008, 452(7190):970-974.

[39] Hsieh D, Xia Y, Wray L, et al. Observation of unconventional quantum spin textures in topological insulators[J]. Science, 2009, 323(5916):919-922.

[40] Nishide A, Taskin A A, Takeichi Y, et al. Direct mapping of the spin-filtered surface bands of a three-dimensional quantum spin Hall insulator[J]. Physical Review B, 2010, 81(4):041309.

[41] Mooser E, Pearson W. New semiconducting compounds[J]. Physical Review, 1956, 101(1):492.

[42] Black J, Conwell E, Seigle L, et al. Electrical and optical properties of some M2V-BN3VI-B semiconductors[J]. Journal of Physics and Chemistry of Solids, 1957, 2(3):240-251.

[43] Mishra S, Satpathy S, Jepsen O. Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide[J]. Journal of Physics: Condensed Matter, 1997, 9(2):461.

[44] Larson P, Greanya V, Tonjes W, et al. Electronic structure of Bi2X3 (X= S, Se, T) compounds: Comparison of theoretical calculations with photoemission studies[J]. Physical Review B, 2002, 65(8):085108.

[45] Zhang H, Liu C-X, Qi X-L, et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface[J]. Nature Physics, 2009, 5(6):438-442.

[46] Xia Y, Qian D, Hsieh D, et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface[J]. Nature Physics, 2009, 5(6):398-402.

[47] Hor Y, Richardella A, Roushan P, et al. p-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications[J]. Physical Review B, 2009, 79(19):195208.

[48] Hsieh D, Xia Y, Qian D, et al. A tunable topological insulator in the spin helical Dirac transport regime[J]. Nature, 2009, 460(7259):1101-1105.

[49] Hsieh D, Xia Y, Qian D, et al. Observation of time-reversal-protected single-Dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3[J]. Physical Review Letters, 2009, 103(14):146401.

[50] Chen Y, Analytis J G, Chu J-H, et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3[J]. Science, 2009, 325(5937):178-181.

[51] Park S, Jung W, Kim C, et al. Quasiparticle scattering and the protected nature of the topological states in a parent topological insulator Bi2Se3[J]. Physical Review B, 2010, 81(4):041405.

[52] Fu L. Topological crystalline insulators[J]. Physical Review Letters, 2011, 106(10):106802.

[53] Noguchi R, Takahashi T, Kuroda K, et al. A weak topological insulator state in quasi-one-dimensional bismuth iodide[J]. Nature, 2019, 566(7745):518-522.

[54] Ando Y, Fu L. Topological crystalline insulators and topological superconductors: From concepts to materials[J]. Annu. Rev. Condens. Matter Phys., 2015, 6(1):361-381.

[55] Hsieh T H, Lin H, Liu J, et al. Topological crystalline insulators in the SnTe material class[J]. Nature Communications, 2012, 3(1):982.

[56] Tanaka Y, Ren Z, Sato T, et al. Experimental realization of a topological crystalline insulator in SnTe[J]. Nature Physics, 2012, 8(11):800-803.

[57] Xu S-Y, Liu C, Alidoust N, et al. Observation of a topological crystalline insulator phase and topological phase transition in Pb1−xSnxTe[J]. Nature Communications, 2012, 3(1):1192.

[58] Yan C, Liu J, Zang Y, et al. Experimental observation of Dirac-like surface states and topological phase transition in Pb1−xSnxTe (111) films[J]. Physical Review Letters, 2014, 112(18):186801.

[59] Dziawa P, Kowalski B J, Dybko K, et al. Topological crystalline insulator states in Pb1−xSnxSe[J]. Nature Materials, 2012, 11(12): 1023-1027.

[60] Weng H, Dai X, Fang Z. Topological semimetals predicted from first-principles calculations[J]. Journal of Physics: Condensed Matter, 2016, 28(30):303001.

[61] Dirac P a M. The quantum theory of the electron[J]. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1928, 117(778):610-624.

[62] Murakami S. Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase[J]. New Journal of Physics, 2007, 9(9):356.

[63] Murakami S. Gap closing and universal phase diagrams in topological insulators[J]. Physica E: Low-dimensional Systems and Nanostructures, 2011, 43(3):748-754.

[64] Yan B, Felser C. Topological materials: Weyl semimetals[J]. Annual Review of Condensed Matter Physics, 2017, 8:337-354.

[65] Wang Z, Sun Y, Chen X-Q, et al. Dirac semimetal and topological phase transitions in A3Bi (A= Na, K, Rb)[J]. Physical Review B, 2012, 85(19):195320.

[66] Wang Z, Weng H, Wu Q, et al. Three-dimensional Dirac semimetal and quantum transport in Cd3As2[J]. Physical Review B, 2013, 88(12):125427.

[67] Liu Z, Zhou B, Zhang Y, et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi[J]. Science, 2014, 343(6173):864-867.

[68] Liu Z, Jiang J, Zhou B, et al. A stable three-dimensional topological Dirac semimetal Cd3As2[J]. Nature Materials, 2014, 13(7):677-681.

[69] Xu S-Y, Liu C, Kushwaha S K, et al. Observation of Fermi arc surface states in a topological metal[J]. Science, 2015, 347(6219):294-298.

[70] Soluyanov A A, Gresch D, Wang Z, et al. Type-II weyl semimetals[J]. Nature, 2015, 527(7579):495-498.

[71] Chang T-R, Xu S-Y, Sanchez D S, et al. Type-II symmetry-protected topological Dirac semimetals[J]. Physical Review Letters, 2017, 119(2):026404.

[72] Huang H, Zhou S, Duan W. Type-II Dirac fermions in the PtSe2 class of transition metal dichalcogenides[J]. Physical Review B, 2016, 94(12):121117.

[73] Yan M, Huang H, Zhang K, et al. Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2[J]. Nature Communications, 2017, 8(1):257.

[74] Zhang K, Yan M, Zhang H, et al. Experimental evidence for type-II Dirac semimetal in PtSe2[J]. Physical Review B, 2017, 96(12):125102.

[75] Noh H-J, Jeong J, Cho E-J, et al. Experimental realization of type-II Dirac fermions in a PdTe2 superconductor[J]. Physical Review Letters, 2017, 119(1):016401.

[76] Fang H-W, Liang A-J, Schröter N B, et al. Measurement of the electronic structure of a type-II topological Dirac semimetal candidate VAl3 using angle-resolved photoelectron spectroscopy[J]. Tungsten, 2023, 5(3):332-338.

[77] Nielsen H B, Ninomiya M. Absence of neutrinos on a lattice:(I). Proof by homotopy theory[J]. Nuclear Physics B, 1981, 185(1):20-40.

[78] Armitage N, Mele E, Vishwanath A. Weyl and Dirac semimetals in three-dimensional solids[J]. Reviews of Modern Physics, 2018, 90(1):015001.

[79] Chiu C-K, Schnyder A P. Classification of reflection-symmetry-protected topological semimetals and nodal superconductors[J]. Physical Review B, 2014, 90(20):205136.

[80] Yu R, Weng H, Fang Z, et al. Topological node-line semimetal and Dirac semimetal state in antiperovskite Cu3PdN[J]. Physical Review Letters, 2015, 115(3):036807.

[81] Le C, Wu X, Qin S, et al. Dirac semimetal in β-CuI without surface Fermi arcs[J]. Proceedings of the National Academy of Sciences, 2018, 115(33):8311-8315.

[82] Fang C, Lu L, Liu J, et al. Topological semimetals with helicoid surface states[J]. Nature Physics, 2016, 12(10):936-941.

[83] Wan X, Turner A M, Vishwanath A, et al. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates[J]. Physical Review B, 2011, 83(20):205101.

[84] Xu G, Weng H, Wang Z, et al. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4[J]. Physical Review Letters, 2011, 107(18):186806.

[85] Guan T, Lin C, Yang C, et al. Evidence for half-metallicity in n-type HgCr2Se4[J]. Physical Review Letters, 2015, 115(8):087002.

[86] Yang S, Li Z, Lin C, et al. Unconventional temperature dependence of the anomalous Hall effect in HgCr2Se4[J]. Physical Review Letters, 2019, 123(9):096601.

[87] Li S, Levchenko A. Temperature dependence of the anomalous hall effect from electron interactions[J]. Physical Review Letters, 2020, 124(15):156802.

[88] Tanaka H, Telegin A V, Sukhorukov Y P, et al. Semiconducting Electronic Structure of the Ferromagnetic Spinel HgCr2Se4 Revealed by Soft-X-Ray Angle-Resolved Photoemission Spectroscopy[J]. Physical Review Letters, 2023, 130(18):186402.

[89] Liu E, Sun Y, Kumar N, et al. Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal[J]. Nature Physics, 2018, 14(11):1125-1131.

[90] Weng H, Fang C, Fang Z, et al. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides[J]. Physical Review X, 2015, 5(1):011029.

[91] Lv B, Xu N, Weng H, et al. Observation of Weyl nodes in TaAs[J]. Nature Physics, 2015, 11(9):724-727.

[92] Lv B, Weng H, Fu B, et al. Experimental discovery of Weyl semimetal TaAs[J]. Physical Review X, 2015, 5(3):031013.

[93] Yang L, Liu Z, Sun Y, et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs[J]. Nature Physics, 2015, 11(9):728-732.

[94] Xu S-Y, Belopolski I, Alidoust N, et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs[J]. Science, 2015, 349(6248):613-617.

[95] Xu S-Y, Belopolski I, Sanchez D S, et al. Experimental discovery of a topological Weyl semimetal state in TaP[J]. Science Advances, 2015, 1(10):e1501092.

[96] Xu N, Weng H, Lv B, et al. Observation of Weyl nodes and Fermi arcs in tantalum phosphide[J]. Nature Communications, 2016, 7(1):11006.

[97] Min C-H, Bentmann H, Neu J N, et al. Orbital fingerprint of topological Fermi arcs in the Weyl semimetal TaP[J]. Physical Review Letters, 2019, 122(11):116402.

[98] Xu S-Y, Alidoust N, Belopolski I, et al. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide[J]. Nature Physics, 2015, 11(9):748-754.

[99] Xu N, Autès G, Matt C E, et al. Distinct evolutions of Weyl fermion quasiparticles and Fermi arcs with bulk band topology in Weyl semimetals[J]. Physical Review Letters, 2017, 118(10):106406.

[100]Xu D-F, Du Y-P, Wang Z, et al. Observation of Fermi arcs in non-centrosymmetric Weyl semi-metal candidate NbP[J]. Chinese Physics Letters, 2015, 32(10):107101.

[101]Belopolski I, Xu S-Y, Sanchez D S, et al. Criteria for directly detecting topological Fermi arcs in Weyl semimetals[J]. Physical Review Letters, 2016, 116(6):066802.

[102]Liu Z, Yang L, Sun Y, et al. Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family[J]. Nature Materials, 2016, 15(1):27-31.

[103]Wu Y, Mou D, Jo N H, et al. Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe2[J]. Physical Review B, 2016, 94(12):121113.

[104]Wang C, Zhang Y, Huang J, et al. Observation of Fermi arc and its connection with bulk states in the candidate type-II Weyl semimetal WTe2[J]. Physical Review B, 2016, 94(24):241119.

[105]Sun Y, Wu S-C, Ali M N, et al. Prediction of Weyl semimetal in orthorhombic MoTe2[J]. Physical Review B, 2015, 92(16):161107.

[106]Deng K, Wan G, Deng P, et al. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2[J]. Nature Physics, 2016, 12(12):1105-1110.

[107]Jiang J, Liu Z, Sun Y, et al. Signature of type-II Weyl semimetal phase in MoTe2[J]. Nature Communications, 2017, 8(1):13973.

[108]Yang S-Y, Yang H, Derunova E, et al. Symmetry demanded topological nodal-line materials[J]. Advances in Physics: X, 2018, 3(1):1414631.

[109]Schoop L M, Ali M N, Straßer C, et al. Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS[J]. Nature Communications, 2016, 7(1):11696.

[110]Neupane M, Belopolski I, Hosen M M, et al. Observation of topological nodal fermion semimetal phase in ZrSiS[J]. Physical Review B, 2016, 93(20):201104.

[111]Chen C, Xu X, Jiang J, et al. Dirac line nodes and effect of spin-orbit coupling in the nonsymmorphic critical semimetals MSiS (M= Hf, Zr)[J]. Physical Review B, 2017, 95(12):125126.

[112]Topp A, Queiroz R, Grüneis A, et al. Surface floating 2D bands in layered nonsymmorphic semimetals: ZrSiS and related compounds[J]. Physical Review X, 2017, 7(4):041073.

[113]Fu B-B, Yi C-J, Zhang T-T, et al. Dirac nodal surfaces and nodal lines in ZrSiS[J]. Science Advances, 2019, 5(5):eaau6459.

[114]Mermin N D, Wagner H. Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models[J]. Physical Review Letters, 1966, 17(22):1133.

[115]Gong C, Zhang X. Two-dimensional magnetic crystals and emergent heterostructure devices[J]. Science, 2019, 363(6428):eaav4450.

[116]Xu S-Y, Neupane M, Liu C, et al. Hedgehog spin texture and Berry’s phase tuning in a magnetic topological insulator[J]. Nature Physics, 2012, 8(8):616-622.

[117]Avsar A, Ciarrocchi A, Pizzochero M, et al. Defect induced, layer-modulated magnetism in ultrathin metallic PtSe2[J]. Nature Nanotechnology, 2019, 14(7):674-678.

[118]Stauber T, Peres N, Guinea F, et al. Fermi liquid theory of a Fermi ring[J]. Physical Review B, 2007, 75(11):115425.

[119]Castro E V, Peres N, Stauber T, et al. Low-density ferromagnetism in biased bilayer graphene[J]. Physical Review Letters, 2008, 100(18):186803.

[120]Cao T, Li Z, Louie S G. Tunable magnetism and half-metallicity in hole-doped monolayer GaSe[J]. Physical Review Letters, 2015, 114(23):236602.

[121]Wang Z, Tang C, Sachs R, et al. Proximity-induced ferromagnetism in graphene revealed by the anomalous Hall effect[J]. Physical Review Letters, 2015, 114(1):016603.

[122]Wei P, Lee S, Lemaitre F, et al. Strong interfacial exchange field in the graphene/EuS heterostructure[J]. Nature Materials, 2016, 15(7):711-716.

[123]Huang B, Clark G, Navarro-Moratalla E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit[J]. Nature, 2017, 546(7657):270-273.

[124]Gong C, Li L, Li Z, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals[J]. Nature, 2017, 546(7657):265-269.

[125]Otrokov M, Rusinov I P, Blanco-Rey M, et al. Unique thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi2Te4 films[J]. Physical Review Letters, 2019, 122(10):107202.

[126]Zhang D, Shi M, Zhu T, et al. Topological axion states in the magnetic insulator MnBi 2 Te 4 with the quantized magnetoelectric effect[J]. Physical Review Letters, 2019, 122(20):206401.

[127]Otrokov M M, Klimovskikh I I, Bentmann H, et al. Prediction and observation of an antiferromagnetic topological insulator[J]. Nature, 2019, 576(7787):416-422.

[128]Zeugner A, Nietschke F, Wolter A U, et al. Chemical aspects of the candidate antiferromagnetic topological insulator MnBi2Te4[J]. Chemistry of Materials, 2019, 31(8):2795-2806.

[129]Lee S H, Zhu Y, Wang Y, et al. Spin scattering and noncollinear spin structure-induced intrinsic anomalous Hall effect in antiferromagnetic topological insulator MnBi2Te4[J]. Physical Review Research, 2019, 1(1):012011.

[130]Vidal R, Bentmann H, Peixoto T, et al. Surface states and Rashba-type spin polarization in antiferromagnetic MnBi2Te4 (0001)[J]. Physical Review B, 2019, 100(12):121104.

[131]Hao Y-J, Liu P, Feng Y, et al. Gapless surface Dirac cone in antiferromagnetic topological insulator MnBi2Te4[J]. Physical Review X, 2019, 9(4):041038.

[132]Li H, Gao S-Y, Duan S-F, et al. Dirac surface states in intrinsic magnetic topological insulators EuSn2As2 and MnBi2nTe3n+1[J]. Physical Review X, 2019, 9(4):041039.

[133]Chen Y, Xu L, Li J, et al. Topological electronic structure and its temperature evolution in antiferromagnetic topological insulator MnBi2Te4[J]. Physical Review X, 2019, 9(4):041040.

[134]Swatek P, Wu Y, Wang L-L, et al. Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4[J]. Physical Review B, 2020, 101(16):161109.

[135]Yan C, Fernandez-Mulligan S, Mei R, et al. Origins of electronic bands in the antiferromagnetic topological insulator MnBi2Te4[J]. Physical Review B, 2021, 104(4):L041102.

[136]Wang Q, Xu Y, Lou R, et al. Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions[J]. Nature Communications, 2018, 9(1):3681.

[137]Nagpal V, Patnaik S. Breakdown of Ohm’s law and nontrivial Berry phase in magnetic Weyl semimetal Co3Sn2S2[J]. Journal of Physics: Condensed Matter, 2020, 32(40):405602.

[138]Xu Q, Liu E, Shi W, et al. Topological surface Fermi arcs in the magnetic Weyl semimetal Co3Sn2S2[J]. Physical Review B, 2018, 97(23):235416.

[139]Liu D, Liang A, Liu E, et al. Magnetic Weyl semimetal phase in a Kagomé crystal[J]. Science, 2019, 365(6459):1282-1285.

[140]Kim K, Seo J, Lee E, et al. Large anomalous Hall current induced by topological nodal lines in a ferromagnetic van der Waals semimetal[J]. Nature Materials, 2018, 17(9):794-799.

[141]Cho W, Kang Y-G, Cha J, et al. Singular Hall response from a correlated ferromagnetic flat nodal-line semimetal[J]. arXiv preprint arXiv:2312.12889, 2023.

[142] Deiseroth H J, Aleksandrov K, Reiner C, et al. Fe3GeTe2 and Ni3GeTe2 - Two New Layered Transition - Metal Compounds: Crystal Structures, HRTEM Investigations, and Magnetic and Electrical Properties. Wiley Online Library, 2006: 1561-1567.

[143]Fei Z, Huang B, Malinowski P, et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2[J]. Nature Materials, 2018, 17(9):778-782.

[144]May A F, Calder S, Cantoni C, et al. Magnetic structure and phase stability of the van der Waals bonded ferromagnet Fe3−xGeTe2[J]. Physical Review B, 2016, 93(1):014411.

[145]Verchenko V Y, Tsirlin A A, Sobolev A V, et al. Ferromagnetic order, strong magnetocrystalline anisotropy, and magnetocaloric effect in the layered telluride Fe3−δGeTe2[J]. Inorganic Chemistry, 2015, 54(17):8598-8607.

[146]May A F, Ovchinnikov D, Zheng Q, et al. Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe5GeTe2[J]. ACS Nano, 2019, 13(4):4436-4442.

[147]Zhang G, Guo F, Wu H, et al. Above-room-temperature strong intrinsic ferromagnetism in 2D van der Waals Fe3GaTe2 with large perpendicular magnetic anisotropy[J]. Nature Communications, 2022, 13(1):5067.

[148]Xu X, Li Y, Duan S, et al. Signature for non-Stoner ferromagnetism in the van der Waals ferromagnet Fe3GeTe2[J]. Physical Review B, 2020, 101(20):201104.

[149]Wu H, Hu C, Xie Y, et al. Spectral Evidence for Local-Moment Ferromagnetism in van der Waals Metals Fe3GaTe2 and Fe3GeTe2[J]. arXiv preprint arXiv:2307.00441, 2023.

[150]Zhang Y, Lu H, Zhu X, et al. Emergence of Kondo lattice behavior in a van der Waals itinerant ferromagnet, Fe3GeTe2[J]. Science Advances, 2018, 4(1):eaao6791.

[151]Zhao Y-F, Zhou L-J, Wang F, et al. Even–odd layer-dependent anomalous Hall effect in topological magnet MnBi2Te4 thin films[J]. Nano Letters, 2021, 21(18):7691-7698.

[152]Luo J, Tong Q, Jiang Z, et al. Exploring the epitaxial growth kinetics and anomalous Hall effect in magnetic topological insulator MnBi2Te4 films[J]. ACS Nano, 2023, 17(19):19022-19032.

[153]Yan J-Q, Huang Z, Wu W, et al. Vapor transport growth of MnBi2Te4 and related compounds[J]. Journal of Alloys and Compounds, 2022, 906:164327.

[154]1200℃高温箱式炉--KSL-1200X-M(27L) [EB/OL]. https://www.instrument.com.cn/netshow/SH102205/C241201.htm.

[155]Wang D, Luo F, Lu M, et al. Chemical vapor transport reactions for synthesizing layered materials and their 2D counterparts[J]. Small, 2019, 15(40):1804404.

[156]OTL1200-1200 双温区管式炉 [EB/OL]. http://www.cnlaibu.com/dwguanshilu/otl1200-1200sw.html.

[157]Rigaku Introduces Newest SmartLab Intelligent X-ray Diffraction (XRD) System [EB/OL]. https://www.prweb.com/releases/rigaku_introduces_newest_smartlab_intelligent_x_ray_diffraction_xrd_system/prweb15375945.htm.

[158]超高分辨场发射扫描电子显微镜Regulus系列 [EB/OL]. https://www.hitachi-hightech.com/cn/zhcn/products/microscopes/sem-tem-stem/fe-sem/regulus.html.

[159]完全无液氦综合物性测量系统-DynaCool [EB/OL]. https://www.qd-china.com/zh/pro/detail/3/1912091422155?source=bdtg&plan=QD&unit=Dept.1-QD-DynaCool-chanpin&keyword=ppms&e_matchtype=1&e_creative=40739582880&e_keywordid=159625913514&e_keywordid2=159625913514&sdclkid=AL2_15FN152Gb6D6bOg&bd_vid=8190341882095263245.

[160]Chen Y, Gu X, Li Y, et al. Recent advances in topological quantum materials by angle-resolved photoemission spectroscopy[J]. Matter, 2020, 3(4):1114-1141.

[161]Hertz H. Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung[J]. Annalen der Physik, 1887, 267(8):983-1000.

[162]Einstein A. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt[J], Collected Papers of Albert Einstein, 1989, 2: 150-166.

[163]Lv B, Qian T, Ding H. Angle-resolved photoemission spectroscopy and its application to topological materials[J]. Nature Reviews Physics, 2019, 1(10):609-626.

[164]Damascelli A, Hussain Z, Shen Z-X. Angle-resolved photoemission studies of the cuprate superconductors[J]. Reviews of Modern Physics, 2003, 75(2):473.

[165]Zhang H, Pincelli T, Jozwiak C, et al. Angle-resolved photoemission spectroscopy[J]. Nature Reviews Methods Primers, 2022, 2(1):54.

[166]Sobota J A, He Y, Shen Z-X. Angle-resolved photoemission studies of quantum materials[J]. Reviews of Modern Physics, 2021, 93(2):025006.

[167]Zouros T, Benis E. The hemispherical deflector analyser revisited. I. Motion in the ideal 1/r potential, generalized entry conditions, Kepler orbits and spectrometer basic equation[J]. Journal of Electron Spectroscopy and Related Phenomena, 2002, 125(3):221-248.

[168]https://www.ccnta.cn/show-108-6221-1.html.

[169]Cochran T A, Belopolski I, Manna K, et al. Visualizing Higher-Fold Topology in Chiral Crystals[J]. Physical Review Letters, 2023, 130(6):066402.

[170]Hu Y, Wu X, Ortiz B R, et al. Rich nature of Van Hove singularities in Kagome superconductor CsV3Sb5[J]. Nature Communications, 2022, 13(1):2220.

[171]Kim K S, Walter A L, Moreschini L, et al. Coexisting massive and massless Dirac fermions in symmetry-broken bilayer graphene[J]. Nature Materials, 2013, 12(10):887-892.

[172]Ma T-C, Hu J-N, Chen Y, et al. Coexistence of type-II and type-IV Dirac fermions in SrAgBi[J]. Modern Physics Letters B, 2021, 35(11):2150181.

[173]Pelayo I, Bergner D, Williams A J, et al. Observation of a new three-dimensional Dirac-like dispersion in the type-II Dirac semimetals PtTe2 and PdTe2[J]. arXiv preprint arXiv:2312.15371, 2023.

[174]Khoury J F, Han B, Jovanovic M, et al. A Class of Magnetic Topological Material Candidates with Hypervalent Bi Chains[J]. Journal of the American Chemical Society, 2022, 144(22):9785-9796.

[175]Khoury J F, Song X, Schoop L M. Ln3MBi5 (Ln= Pr, Nd, Sm; M= Zr, Hf): Intermetallics with Hypervalent Bismuth Chains[J]. Zeitschrift für anorganische und allgemeine Chemie, 2022, 648(15):e202200123.

[176]Han X, Pi H, Yan D, et al. Quantum oscillations and transport evidence of topological bands in La3MgBi5 single crystals[J]. Physical Review B, 2023, 108(7):075157.

[177]Yi Z-K, Guo P-J, Liang H, et al. Extremely large anomalous Hall conductivity and unusual axial diamagnetism in a quasi-1D Dirac material La3MgBi5[J]. arXiv preprint arXiv:2310.11378, 2023.

[178]Huang J, Li S, Yoon C, et al. Room-Temperature Topological Phase Transition in Quasi-One-Dimensional Material Bi4I4[J]. Physical Review X, 2021, 11(3):031042.

[179]Ang R, Tanaka Y, Ieki E, et al. Real-Space Coexistence of the Melted Mott State and Superconductivity in Fe-Substituted 1T−TaS2[J]. Physical Review Letters, 2012, 109(17):176403.

[180]Ang R, Miyata Y, Ieki E, et al. Superconductivity and bandwidth-controlled Mott metal-insulator transition in 1T-TaS2−xSex[J]. Physical Review B, 2013, 88(11):115145.

[181]Yu F, Ma D, Zhuo W, et al. Unusual competition of superconductivity and charge-density-wave state in a compressed topological kagome metal[J]. Nature Communications, 2021, 12(1):3645.

[182]Chen K, Wang N, Yin Q, et al. Double superconducting dome and triple enhancement of T c in the kagome superconductor CsV3Sb5 under high pressure[J]. Physical Review Letters, 2021, 126(24):247001.

[183]Nie L, Sun K, Ma W, et al. Charge-density-wave-driven electronic nematicity in a kagome superconductor[J]. Nature, 2022, 604(7904):59-64.

[184]Kurokawa K, Isono S, Kohama Y, et al. Unveiling phase diagram of the lightly doped high-TC cuprate superconductors with disorder removed[J]. Nature Communications, 2023, 14(1):4064.

[185]Shen B, Emmanouilidou E, Deng X, et al. Significant change in the electronic behavior associated with structural distortions in monocrystalline SrAg4As2[J]. Physical Review B, 2018, 98(23):235130.

[186]Bud'ko S L, Xiang L, Hu C, et al. Pressure tuning of structural and magnetic transitions in EuAg4As2[J]. Physical Review B, 2020, 101(19):195112.

[187]Shen B, Hu C, Cao H, et al. Structural distortion and incommensurate noncollinear magnetism in EuAg4As2[J]. Physical Review Materials, 2020, 4(6):064419.

[188]Zhu Q, Li L, Yang Z, et al. Metamagnetic transitions and anomalous magnetoresistance in EuAg4As2 crystals[J]. SCIENCE CHINA Physics, Mechanics & Astronomy, 2021, 64(2):227011.

[189]Ryan D, Bud’ko S L, Hu C, et al. Magnetic and structural transitions in EuAg4As2 studied using 151Eu Mössbauer spectroscopy[J]. AIP Advances, 2019, 9(12): 125050.

[190]Nie Y, Tu W, Yang Y, et al. Quantum oscillations and nontrivial topological properties of layered metal SrAg4Sb2[J]. Applied Physics Letters, 2023, 123(16).

[191]Morgan H W, Laderer W T, Alexandrova A N. δ‐bonding and spin‐orbit coupling make SrAg4Sb2 a topological insulator[J]. Chemistry–A European Journal, 2023:e202303679.

[192]Gerke B, Schwickert C, Stoyko S S, et al. Magnetic hyperfine field splitting in EuAg4As2 and EuAg4Sb2[J]. Solid State Sciences, 2013, 20:65-69.

[193]Nie Y, Chen Z, Wei W, et al. Linear magnetoresistance and structural distortion in layered SrCu4–xP2 single crystals[J]. Chinese Physics B, 2024, 33(1):016108.

[194]Barman C K, Mondal C, Pathak B, et al. Symmetry-driven topological phases in XAgBi (X= Ba, Sr): An ab initio hybrid functional calculation[J]. Physical Review Materials, 2020, 4(8):084201.

[195]Mardanya S, Singh B, Huang S-M, et al. Prediction of threefold fermions in a nearly ideal Dirac semimetal BaAgAs[J]. Physical Review Materials, 2019, 3(7):071201.

[196]Singh B, Mardanya S, Su C, et al. Spin-orbit coupling driven crossover from a starfruitlike nodal semimetal to Dirac and Weyl semimetal state in CaAuAs[J]. Physical Review B, 2018, 98(8):085122.

[197]Jin Y, Zeng X-T, Feng X, et al. Multiple magnetism-controlled topological states in EuAgAs[J]. Physical Review B, 2021, 104(16):165424.

[198]Wang X, Li B, Zhou L, et al. Structure, physical properties, and magnetically tunable topological phases in topological semimetal EuCuBi[J]. arXiv preprint arXiv:2303.11894, 2023.

[199]Zhang P, Dong Y, Yan D, et al. Spontaneous gap opening and potential excitonic states in an ideal Dirac semimetal Ta2Pd3Te5[J]. arXiv preprint arXiv:2312.14456, 2023.

[200]Zhang P, Ma J-Z, Ishida Y, et al. Topologically entangled rashba-split shockley states on the surface of grey arsenic[J]. Physical Review Letters, 2017, 118(4):046802.

[201]Nguyen P V, Teutsch N C, Wilson N P, et al. Visualizing electrostatic gating effects in two-dimensional heterostructures[J]. Nature, 2019, 572(7768):220-223.

[202]Muhammad Z, Zhang B, Lv H, et al. Transition from semimetal to semiconductor in ZrTe2 induced by Se substitution[J]. ACS Nano, 2019, 14(1):835-841.

[203]Wang X-B, Ma X-M, Emmanouilidou E, et al. Topological surface electronic states in candidate nodal-line semimetal CaAgAs[J]. Physical Review B, 2017, 96(16):161112.

[204]Nakayama K, Wang Z, Takane D, et al. Observation of inverted band structure in the topological Dirac semimetal candidate CaAuAs[J]. Physical Review B, 2020, 102(4):041104.

[205]Roychowdhury S, Samanta K, Yanda P, et al. Interplay between Magnetism and Topology: Large Topological Hall Effect in an Antiferromagnetic Topological Insulator, EuCuAs[J]. Journal of the American Chemical Society, 2023, 145(23): 12920-12927.

[206]Sasmal S, Mondal R, Kulkarni R, et al. Magnetotransport properties of noncentrosymmetric CaAgBi single crystal[J]. Journal of Physics: Condensed Matter, 2020, 32(33):335701.

[207]Malick S, Ghosh A, Barman C K, et al. Weak antilocalization effect and triply degenerate state in Cu-doped CaAuAs[J]. Physical Review B, 2022, 105(16):165105.

[208]Zhang C-L, Xu S-Y, Belopolski I, et al. Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal[J]. Nature Communications, 2016, 7(1):1-9.

[209]Li Y, Wang Z, Li P, et al. Negative magnetoresistance in Weyl semimetals NbAs and NbP: Intrinsic chiral anomaly and extrinsic effects[J]. Frontiers of Physics, 2017, 12:1-10.

[210]Freitas D C, Weht R, Sulpice A, et al. Ferromagnetism in layered metastable 1T-CrTe2[J]. Journal of Physics: Condensed Matter, 2015, 27(17):176002.

[211]Meng L, Zhou Z, Xu M, et al. Anomalous thickness dependence of Curie temperature in air-stable two-dimensional ferromagnetic 1T-CrTe2 grown by chemical vapor deposition[J]. Nature Communications, 2021, 12(1):809.

[212]Zhang X, Lu Q, Liu W, et al. Room-temperature intrinsic ferromagnetism in epitaxial CrTe2 ultrathin films[J]. Nature Communications, 2021, 12(1):2492.

[213]Ou Y, Yanez W, Xiao R, et al. ZrTe2/CrTe2: an epitaxial van der Waals platform for spintronics[J]. Nature Communications, 2022, 13(1):2972.

[214]Huang M, Wang S, Wang Z, et al. Colossal anomalous hall effect in ferromagnetic van der waals CrTe2[J]. ACS Nano, 2021, 15(6):9759-9763.

[215]Zhang J H, Birdwhistell T L, O'connor C J. Magnetic and electrical properties of a new chromium telluride phase: CrTe2[J]. Solid State Communications, 1990, 74(6):443-446.

[216] Narayanan S. Metal-Polymer Hybrid Materials for Flexible Transparent Conductors[D]. Carnegie Mellon University, 2014.

[217]Murphy D W, Cros C, Di Salvo F J, et al. Preparation and properties of LixVS2 (0≤x≤1)[J]. Inorganic Chemistry, 1977, 16(12):3027-3031.

[218]Van Bruggen C, Haange R, Wiegers G, et al. CrSe2, a new layered dichalcogenide[J]. Physica B+C, 1980, 99(1-4):166-172.

[219]Huang M, Ma Z, Wang S, et al. Significant perpendicular magnetic anisotropy in room-temperature layered ferromagnet of Cr-intercalated CrTe2[J]. 2D Materials, 2021, 8(3):031003.

[220]Kobayashi S, Ueda H, Michioka C, et al. Competition between the direct exchange interaction and superexchange interaction in layered compounds LiCrSe2, LiCrTe2, and NaCrTe2 with a triangular lattice[J]. Inorganic Chemistry, 2016, 55(15):7407-7413.

[221]Wang J, Deng J, Liang X, et al. Spin-flip-driven giant magnetotransport in A-type antiferromagnet NaCrTe2[J]. Physical Review Materials, 2021, 5(9):L091401.

[222]Huang J, Shi B, Pan F, et al. Anisotropic magnetic properties and tunable conductivity in two-dimensional layered NaCrX2 (X= Te, Se, S) single crystals[J]. Physical Review Materials, 2022, 6(9):094013.

所在学位评定分委会
物理学
国内图书分类号
O469
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765852
专题南方科技大学
量子科学与工程研究院
推荐引用方式
GB/T 7714
梁宇博. 低维材料的生长和物理性质研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132844-梁宇博-量子科学与工程(12987KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[梁宇博]的文章
百度学术
百度学术中相似的文章
[梁宇博]的文章
必应学术
必应学术中相似的文章
[梁宇博]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。