[1] Zhao W, Yang M, Xu R, et al. Topological electronic structure and spin texture of quasi-one-dimensional higher-order topological insulator Bi4Br4[J]. Nature Communications, 2023, 14(1):8089.
[2] Neto A C, Guinea F, Peres N M, et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81(1):109.
[3] Geim A K, Grigorieva I V. Van der Waals heterostructures[J]. Nature, 2013, 499(7459):419-425.
[4] Manzeli S, Ovchinnikov D, Pasquier D, et al. 2D transition metal dichalcogenides[J]. Nature Reviews Materials, 2017, 2(8):1-15.
[5] Cai X, Luo Y, Liu B, et al. Preparation of 2D material dispersions and their applications[J]. Chemical Society Reviews, 2018, 47(16):6224-6266.
[6] Hu Z, Wu Z, Han C, et al. Two-dimensional transition metal dichalcogenides: interface and defect engineering[J]. Chemical Society Reviews, 2018, 47(9):3100-3128.
[7] Novoselov K, Mishchenko A, Carvalho A, et al. 2D materials and van der Waals heterostructures[J]. Science, 2016, 353(6298):aac9439.
[8] Wang E, Lu X, Ding S, et al. Gaps induced by inversion symmetry breaking and second-generation Dirac cones in graphene/hexagonal boron nitride[J]. Nature Physics, 2016, 12(12):1111-1115.
[9] Cao Y, Fatemi V, Fang S, et al. Unconventional superconductivity in magic-angle graphene superlattices[J]. Nature, 2018, 556(7699):43-50.
[10] Cao Y, Fatemi V, Demir A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices[J]. Nature, 2018, 556(7699):80-84.
[11] Lin M-L, Tan Q-H, Wu J-B, et al. Moiré phonons in twisted bilayer MoS2[J]. Acs Nano, 2018, 12(8):8770-8780.
[12] Yankowitz M, Chen S, Polshyn H, et al. Tuning superconductivity in twisted bilayer graphene[J]. Science, 2019, 363(6431):1059-1064.
[13] Kerelsky A, Mcgilly L J, Kennes D M, et al. Maximized electron interactions at the magic angle in twisted bilayer graphene[J]. Nature, 2019, 572(7767):95-100.
[14] Sharpe A L, Fox E J, Barnard A W, et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene[J]. Science, 2019, 365(6453):605-608.
[15] Jiang Y, Lai X, Watanabe K, et al. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene[J]. Nature, 2019, 573(7772):91-95.
[16] Wong D, Nuckolls K P, Oh M, et al. Cascade of electronic transitions in magic-angle twisted bilayer graphene[J]. Nature, 2020, 582(7811):198-202.
[17] Wang L, Shih E-M, Ghiotto A, et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides[J]. Nature Materials, 2020, 19(8):861-866.
[18] Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065):197-200.
[19] Hirohata A, Takanashi K. Future perspectives for spintronic devices[J]. Journal of Physics D: Applied Physics, 2014, 47(19):193001.
[20] Ahn E C. 2D materials for spintronic devices[J]. npj 2D Materials and Applications, 2020, 4(1):17.
[21] Bansil A, Lin H, Das T. Colloquium: Topological band theory[J]. Reviews of Modern Physics, 2016, 88(2):021004.
[22] Kosterlitz J M, Thouless D. Long range order and metastability in two dimensional solids and superfluids.(Application of dislocation theory)[J]. Journal of Physics C: Solid State Physics, 1972, 5(11):L124.
[23] Kosterlitz J M, Thouless D J. Ordering, metastability and phase transitions in two-dimensional systems[J]. J. Phys. C, 1973, 6: 1181-1203.
[24] Berezinskii V. Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group I. Classical systems[J]. Sov. Phys. JETP, 1971, 32(3):493-500.
[25] Berezinskii V. Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continuous symmetry group. II. Quantum systems[J]. Sov. Phys. JETP, 1972, 34(3):610-616.
[26] Klitzing K V, Dorda G, Pepper M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance[J]. Physical Review Letters, 1980, 45(6):494.
[27] Thouless D J, Kohmoto M, Nightingale M P, et al. Quantized Hall conductance in a two-dimensional periodic potential[J]. Physical Review Letters, 1982, 49(6):405.
[28] Lv B, Qian T, Ding H. Experimental perspective on three-dimensional topological semimetals[J]. Reviews of Modern Physics, 2021, 93(2):025002.
[29] Hasan M Z, Kane C L. Colloquium: topological insulators[J]. Reviews of Modern Physics, 2010, 82(4):3045.
[30] Kane C L, Mele E J. Quantum spin Hall effect in graphene[J]. Physical Review Letters, 2005, 95(22):226801.
[31] Bernevig B A, Zhang S-C. Quantum spin Hall effect[J]. Physical Review Letters, 2006, 96(10):106802.
[32] Konig M, Wiedmann S, Brune C, et al. Quantum spin Hall insulator state in HgTe quantum wells[J]. Science, 2007, 318(5851):766-770.
[33] Kane C L, Mele E J. Z2 topological order and the quantum spin Hall effect[J]. Physical Review Letters, 2005, 95(14):146802.
[34] Moore J E, Balents L. Topological invariants of time-reversal-invariant band structures[J]. Physical Review B, 2007, 75(12):121306.
[35] Fu L, Kane C L, Mele E J. Topological insulators in three dimensions[J]. Physical Review Letters, 2007, 98(10):106803.
[36] Roy R. Topological phases and the quantum spin Hall effect in three dimensions[J]. Physical Review B, 2009, 79(19):195322.
[37] Fu L, Kane C L. Topological insulators with inversion symmetry[J]. Physical Review B, 2007, 76(4):045302.
[38] Hsieh D, Qian D, Wray L, et al. A topological Dirac insulator in a quantum spin Hall phase[J]. Nature, 2008, 452(7190):970-974.
[39] Hsieh D, Xia Y, Wray L, et al. Observation of unconventional quantum spin textures in topological insulators[J]. Science, 2009, 323(5916):919-922.
[40] Nishide A, Taskin A A, Takeichi Y, et al. Direct mapping of the spin-filtered surface bands of a three-dimensional quantum spin Hall insulator[J]. Physical Review B, 2010, 81(4):041309.
[41] Mooser E, Pearson W. New semiconducting compounds[J]. Physical Review, 1956, 101(1):492.
[42] Black J, Conwell E, Seigle L, et al. Electrical and optical properties of some M2V-BN3VI-B semiconductors[J]. Journal of Physics and Chemistry of Solids, 1957, 2(3):240-251.
[43] Mishra S, Satpathy S, Jepsen O. Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide[J]. Journal of Physics: Condensed Matter, 1997, 9(2):461.
[44] Larson P, Greanya V, Tonjes W, et al. Electronic structure of Bi2X3 (X= S, Se, T) compounds: Comparison of theoretical calculations with photoemission studies[J]. Physical Review B, 2002, 65(8):085108.
[45] Zhang H, Liu C-X, Qi X-L, et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface[J]. Nature Physics, 2009, 5(6):438-442.
[46] Xia Y, Qian D, Hsieh D, et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface[J]. Nature Physics, 2009, 5(6):398-402.
[47] Hor Y, Richardella A, Roushan P, et al. p-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications[J]. Physical Review B, 2009, 79(19):195208.
[48] Hsieh D, Xia Y, Qian D, et al. A tunable topological insulator in the spin helical Dirac transport regime[J]. Nature, 2009, 460(7259):1101-1105.
[49] Hsieh D, Xia Y, Qian D, et al. Observation of time-reversal-protected single-Dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3[J]. Physical Review Letters, 2009, 103(14):146401.
[50] Chen Y, Analytis J G, Chu J-H, et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3[J]. Science, 2009, 325(5937):178-181.
[51] Park S, Jung W, Kim C, et al. Quasiparticle scattering and the protected nature of the topological states in a parent topological insulator Bi2Se3[J]. Physical Review B, 2010, 81(4):041405.
[52] Fu L. Topological crystalline insulators[J]. Physical Review Letters, 2011, 106(10):106802.
[53] Noguchi R, Takahashi T, Kuroda K, et al. A weak topological insulator state in quasi-one-dimensional bismuth iodide[J]. Nature, 2019, 566(7745):518-522.
[54] Ando Y, Fu L. Topological crystalline insulators and topological superconductors: From concepts to materials[J]. Annu. Rev. Condens. Matter Phys., 2015, 6(1):361-381.
[55] Hsieh T H, Lin H, Liu J, et al. Topological crystalline insulators in the SnTe material class[J]. Nature Communications, 2012, 3(1):982.
[56] Tanaka Y, Ren Z, Sato T, et al. Experimental realization of a topological crystalline insulator in SnTe[J]. Nature Physics, 2012, 8(11):800-803.
[57] Xu S-Y, Liu C, Alidoust N, et al. Observation of a topological crystalline insulator phase and topological phase transition in Pb1−xSnxTe[J]. Nature Communications, 2012, 3(1):1192.
[58] Yan C, Liu J, Zang Y, et al. Experimental observation of Dirac-like surface states and topological phase transition in Pb1−xSnxTe (111) films[J]. Physical Review Letters, 2014, 112(18):186801.
[59] Dziawa P, Kowalski B J, Dybko K, et al. Topological crystalline insulator states in Pb1−xSnxSe[J]. Nature Materials, 2012, 11(12): 1023-1027.
[60] Weng H, Dai X, Fang Z. Topological semimetals predicted from first-principles calculations[J]. Journal of Physics: Condensed Matter, 2016, 28(30):303001.
[61] Dirac P a M. The quantum theory of the electron[J]. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1928, 117(778):610-624.
[62] Murakami S. Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase[J]. New Journal of Physics, 2007, 9(9):356.
[63] Murakami S. Gap closing and universal phase diagrams in topological insulators[J]. Physica E: Low-dimensional Systems and Nanostructures, 2011, 43(3):748-754.
[64] Yan B, Felser C. Topological materials: Weyl semimetals[J]. Annual Review of Condensed Matter Physics, 2017, 8:337-354.
[65] Wang Z, Sun Y, Chen X-Q, et al. Dirac semimetal and topological phase transitions in A3Bi (A= Na, K, Rb)[J]. Physical Review B, 2012, 85(19):195320.
[66] Wang Z, Weng H, Wu Q, et al. Three-dimensional Dirac semimetal and quantum transport in Cd3As2[J]. Physical Review B, 2013, 88(12):125427.
[67] Liu Z, Zhou B, Zhang Y, et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi[J]. Science, 2014, 343(6173):864-867.
[68] Liu Z, Jiang J, Zhou B, et al. A stable three-dimensional topological Dirac semimetal Cd3As2[J]. Nature Materials, 2014, 13(7):677-681.
[69] Xu S-Y, Liu C, Kushwaha S K, et al. Observation of Fermi arc surface states in a topological metal[J]. Science, 2015, 347(6219):294-298.
[70] Soluyanov A A, Gresch D, Wang Z, et al. Type-II weyl semimetals[J]. Nature, 2015, 527(7579):495-498.
[71] Chang T-R, Xu S-Y, Sanchez D S, et al. Type-II symmetry-protected topological Dirac semimetals[J]. Physical Review Letters, 2017, 119(2):026404.
[72] Huang H, Zhou S, Duan W. Type-II Dirac fermions in the PtSe2 class of transition metal dichalcogenides[J]. Physical Review B, 2016, 94(12):121117.
[73] Yan M, Huang H, Zhang K, et al. Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2[J]. Nature Communications, 2017, 8(1):257.
[74] Zhang K, Yan M, Zhang H, et al. Experimental evidence for type-II Dirac semimetal in PtSe2[J]. Physical Review B, 2017, 96(12):125102.
[75] Noh H-J, Jeong J, Cho E-J, et al. Experimental realization of type-II Dirac fermions in a PdTe2 superconductor[J]. Physical Review Letters, 2017, 119(1):016401.
[76] Fang H-W, Liang A-J, Schröter N B, et al. Measurement of the electronic structure of a type-II topological Dirac semimetal candidate VAl3 using angle-resolved photoelectron spectroscopy[J]. Tungsten, 2023, 5(3):332-338.
[77] Nielsen H B, Ninomiya M. Absence of neutrinos on a lattice:(I). Proof by homotopy theory[J]. Nuclear Physics B, 1981, 185(1):20-40.
[78] Armitage N, Mele E, Vishwanath A. Weyl and Dirac semimetals in three-dimensional solids[J]. Reviews of Modern Physics, 2018, 90(1):015001.
[79] Chiu C-K, Schnyder A P. Classification of reflection-symmetry-protected topological semimetals and nodal superconductors[J]. Physical Review B, 2014, 90(20):205136.
[80] Yu R, Weng H, Fang Z, et al. Topological node-line semimetal and Dirac semimetal state in antiperovskite Cu3PdN[J]. Physical Review Letters, 2015, 115(3):036807.
[81] Le C, Wu X, Qin S, et al. Dirac semimetal in β-CuI without surface Fermi arcs[J]. Proceedings of the National Academy of Sciences, 2018, 115(33):8311-8315.
[82] Fang C, Lu L, Liu J, et al. Topological semimetals with helicoid surface states[J]. Nature Physics, 2016, 12(10):936-941.
[83] Wan X, Turner A M, Vishwanath A, et al. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates[J]. Physical Review B, 2011, 83(20):205101.
[84] Xu G, Weng H, Wang Z, et al. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4[J]. Physical Review Letters, 2011, 107(18):186806.
[85] Guan T, Lin C, Yang C, et al. Evidence for half-metallicity in n-type HgCr2Se4[J]. Physical Review Letters, 2015, 115(8):087002.
[86] Yang S, Li Z, Lin C, et al. Unconventional temperature dependence of the anomalous Hall effect in HgCr2Se4[J]. Physical Review Letters, 2019, 123(9):096601.
[87] Li S, Levchenko A. Temperature dependence of the anomalous hall effect from electron interactions[J]. Physical Review Letters, 2020, 124(15):156802.
[88] Tanaka H, Telegin A V, Sukhorukov Y P, et al. Semiconducting Electronic Structure of the Ferromagnetic Spinel HgCr2Se4 Revealed by Soft-X-Ray Angle-Resolved Photoemission Spectroscopy[J]. Physical Review Letters, 2023, 130(18):186402.
[89] Liu E, Sun Y, Kumar N, et al. Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal[J]. Nature Physics, 2018, 14(11):1125-1131.
[90] Weng H, Fang C, Fang Z, et al. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides[J]. Physical Review X, 2015, 5(1):011029.
[91] Lv B, Xu N, Weng H, et al. Observation of Weyl nodes in TaAs[J]. Nature Physics, 2015, 11(9):724-727.
[92] Lv B, Weng H, Fu B, et al. Experimental discovery of Weyl semimetal TaAs[J]. Physical Review X, 2015, 5(3):031013.
[93] Yang L, Liu Z, Sun Y, et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs[J]. Nature Physics, 2015, 11(9):728-732.
[94] Xu S-Y, Belopolski I, Alidoust N, et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs[J]. Science, 2015, 349(6248):613-617.
[95] Xu S-Y, Belopolski I, Sanchez D S, et al. Experimental discovery of a topological Weyl semimetal state in TaP[J]. Science Advances, 2015, 1(10):e1501092.
[96] Xu N, Weng H, Lv B, et al. Observation of Weyl nodes and Fermi arcs in tantalum phosphide[J]. Nature Communications, 2016, 7(1):11006.
[97] Min C-H, Bentmann H, Neu J N, et al. Orbital fingerprint of topological Fermi arcs in the Weyl semimetal TaP[J]. Physical Review Letters, 2019, 122(11):116402.
[98] Xu S-Y, Alidoust N, Belopolski I, et al. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide[J]. Nature Physics, 2015, 11(9):748-754.
[99] Xu N, Autès G, Matt C E, et al. Distinct evolutions of Weyl fermion quasiparticles and Fermi arcs with bulk band topology in Weyl semimetals[J]. Physical Review Letters, 2017, 118(10):106406.
[100]Xu D-F, Du Y-P, Wang Z, et al. Observation of Fermi arcs in non-centrosymmetric Weyl semi-metal candidate NbP[J]. Chinese Physics Letters, 2015, 32(10):107101.
[101]Belopolski I, Xu S-Y, Sanchez D S, et al. Criteria for directly detecting topological Fermi arcs in Weyl semimetals[J]. Physical Review Letters, 2016, 116(6):066802.
[102]Liu Z, Yang L, Sun Y, et al. Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family[J]. Nature Materials, 2016, 15(1):27-31.
[103]Wu Y, Mou D, Jo N H, et al. Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe2[J]. Physical Review B, 2016, 94(12):121113.
[104]Wang C, Zhang Y, Huang J, et al. Observation of Fermi arc and its connection with bulk states in the candidate type-II Weyl semimetal WTe2[J]. Physical Review B, 2016, 94(24):241119.
[105]Sun Y, Wu S-C, Ali M N, et al. Prediction of Weyl semimetal in orthorhombic MoTe2[J]. Physical Review B, 2015, 92(16):161107.
[106]Deng K, Wan G, Deng P, et al. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2[J]. Nature Physics, 2016, 12(12):1105-1110.
[107]Jiang J, Liu Z, Sun Y, et al. Signature of type-II Weyl semimetal phase in MoTe2[J]. Nature Communications, 2017, 8(1):13973.
[108]Yang S-Y, Yang H, Derunova E, et al. Symmetry demanded topological nodal-line materials[J]. Advances in Physics: X, 2018, 3(1):1414631.
[109]Schoop L M, Ali M N, Straßer C, et al. Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS[J]. Nature Communications, 2016, 7(1):11696.
[110]Neupane M, Belopolski I, Hosen M M, et al. Observation of topological nodal fermion semimetal phase in ZrSiS[J]. Physical Review B, 2016, 93(20):201104.
[111]Chen C, Xu X, Jiang J, et al. Dirac line nodes and effect of spin-orbit coupling in the nonsymmorphic critical semimetals MSiS (M= Hf, Zr)[J]. Physical Review B, 2017, 95(12):125126.
[112]Topp A, Queiroz R, Grüneis A, et al. Surface floating 2D bands in layered nonsymmorphic semimetals: ZrSiS and related compounds[J]. Physical Review X, 2017, 7(4):041073.
[113]Fu B-B, Yi C-J, Zhang T-T, et al. Dirac nodal surfaces and nodal lines in ZrSiS[J]. Science Advances, 2019, 5(5):eaau6459.
[114]Mermin N D, Wagner H. Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models[J]. Physical Review Letters, 1966, 17(22):1133.
[115]Gong C, Zhang X. Two-dimensional magnetic crystals and emergent heterostructure devices[J]. Science, 2019, 363(6428):eaav4450.
[116]Xu S-Y, Neupane M, Liu C, et al. Hedgehog spin texture and Berry’s phase tuning in a magnetic topological insulator[J]. Nature Physics, 2012, 8(8):616-622.
[117]Avsar A, Ciarrocchi A, Pizzochero M, et al. Defect induced, layer-modulated magnetism in ultrathin metallic PtSe2[J]. Nature Nanotechnology, 2019, 14(7):674-678.
[118]Stauber T, Peres N, Guinea F, et al. Fermi liquid theory of a Fermi ring[J]. Physical Review B, 2007, 75(11):115425.
[119]Castro E V, Peres N, Stauber T, et al. Low-density ferromagnetism in biased bilayer graphene[J]. Physical Review Letters, 2008, 100(18):186803.
[120]Cao T, Li Z, Louie S G. Tunable magnetism and half-metallicity in hole-doped monolayer GaSe[J]. Physical Review Letters, 2015, 114(23):236602.
[121]Wang Z, Tang C, Sachs R, et al. Proximity-induced ferromagnetism in graphene revealed by the anomalous Hall effect[J]. Physical Review Letters, 2015, 114(1):016603.
[122]Wei P, Lee S, Lemaitre F, et al. Strong interfacial exchange field in the graphene/EuS heterostructure[J]. Nature Materials, 2016, 15(7):711-716.
[123]Huang B, Clark G, Navarro-Moratalla E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit[J]. Nature, 2017, 546(7657):270-273.
[124]Gong C, Li L, Li Z, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals[J]. Nature, 2017, 546(7657):265-269.
[125]Otrokov M, Rusinov I P, Blanco-Rey M, et al. Unique thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi2Te4 films[J]. Physical Review Letters, 2019, 122(10):107202.
[126]Zhang D, Shi M, Zhu T, et al. Topological axion states in the magnetic insulator MnBi 2 Te 4 with the quantized magnetoelectric effect[J]. Physical Review Letters, 2019, 122(20):206401.
[127]Otrokov M M, Klimovskikh I I, Bentmann H, et al. Prediction and observation of an antiferromagnetic topological insulator[J]. Nature, 2019, 576(7787):416-422.
[128]Zeugner A, Nietschke F, Wolter A U, et al. Chemical aspects of the candidate antiferromagnetic topological insulator MnBi2Te4[J]. Chemistry of Materials, 2019, 31(8):2795-2806.
[129]Lee S H, Zhu Y, Wang Y, et al. Spin scattering and noncollinear spin structure-induced intrinsic anomalous Hall effect in antiferromagnetic topological insulator MnBi2Te4[J]. Physical Review Research, 2019, 1(1):012011.
[130]Vidal R, Bentmann H, Peixoto T, et al. Surface states and Rashba-type spin polarization in antiferromagnetic MnBi2Te4 (0001)[J]. Physical Review B, 2019, 100(12):121104.
[131]Hao Y-J, Liu P, Feng Y, et al. Gapless surface Dirac cone in antiferromagnetic topological insulator MnBi2Te4[J]. Physical Review X, 2019, 9(4):041038.
[132]Li H, Gao S-Y, Duan S-F, et al. Dirac surface states in intrinsic magnetic topological insulators EuSn2As2 and MnBi2nTe3n+1[J]. Physical Review X, 2019, 9(4):041039.
[133]Chen Y, Xu L, Li J, et al. Topological electronic structure and its temperature evolution in antiferromagnetic topological insulator MnBi2Te4[J]. Physical Review X, 2019, 9(4):041040.
[134]Swatek P, Wu Y, Wang L-L, et al. Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4[J]. Physical Review B, 2020, 101(16):161109.
[135]Yan C, Fernandez-Mulligan S, Mei R, et al. Origins of electronic bands in the antiferromagnetic topological insulator MnBi2Te4[J]. Physical Review B, 2021, 104(4):L041102.
[136]Wang Q, Xu Y, Lou R, et al. Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions[J]. Nature Communications, 2018, 9(1):3681.
[137]Nagpal V, Patnaik S. Breakdown of Ohm’s law and nontrivial Berry phase in magnetic Weyl semimetal Co3Sn2S2[J]. Journal of Physics: Condensed Matter, 2020, 32(40):405602.
[138]Xu Q, Liu E, Shi W, et al. Topological surface Fermi arcs in the magnetic Weyl semimetal Co3Sn2S2[J]. Physical Review B, 2018, 97(23):235416.
[139]Liu D, Liang A, Liu E, et al. Magnetic Weyl semimetal phase in a Kagomé crystal[J]. Science, 2019, 365(6459):1282-1285.
[140]Kim K, Seo J, Lee E, et al. Large anomalous Hall current induced by topological nodal lines in a ferromagnetic van der Waals semimetal[J]. Nature Materials, 2018, 17(9):794-799.
[141]Cho W, Kang Y-G, Cha J, et al. Singular Hall response from a correlated ferromagnetic flat nodal-line semimetal[J]. arXiv preprint arXiv:2312.12889, 2023.
[142] Deiseroth H J, Aleksandrov K, Reiner C, et al. Fe3GeTe2 and Ni3GeTe2 - Two New Layered Transition - Metal Compounds: Crystal Structures, HRTEM Investigations, and Magnetic and Electrical Properties. Wiley Online Library, 2006: 1561-1567.
[143]Fei Z, Huang B, Malinowski P, et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2[J]. Nature Materials, 2018, 17(9):778-782.
[144]May A F, Calder S, Cantoni C, et al. Magnetic structure and phase stability of the van der Waals bonded ferromagnet Fe3−xGeTe2[J]. Physical Review B, 2016, 93(1):014411.
[145]Verchenko V Y, Tsirlin A A, Sobolev A V, et al. Ferromagnetic order, strong magnetocrystalline anisotropy, and magnetocaloric effect in the layered telluride Fe3−δGeTe2[J]. Inorganic Chemistry, 2015, 54(17):8598-8607.
[146]May A F, Ovchinnikov D, Zheng Q, et al. Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe5GeTe2[J]. ACS Nano, 2019, 13(4):4436-4442.
[147]Zhang G, Guo F, Wu H, et al. Above-room-temperature strong intrinsic ferromagnetism in 2D van der Waals Fe3GaTe2 with large perpendicular magnetic anisotropy[J]. Nature Communications, 2022, 13(1):5067.
[148]Xu X, Li Y, Duan S, et al. Signature for non-Stoner ferromagnetism in the van der Waals ferromagnet Fe3GeTe2[J]. Physical Review B, 2020, 101(20):201104.
[149]Wu H, Hu C, Xie Y, et al. Spectral Evidence for Local-Moment Ferromagnetism in van der Waals Metals Fe3GaTe2 and Fe3GeTe2[J]. arXiv preprint arXiv:2307.00441, 2023.
[150]Zhang Y, Lu H, Zhu X, et al. Emergence of Kondo lattice behavior in a van der Waals itinerant ferromagnet, Fe3GeTe2[J]. Science Advances, 2018, 4(1):eaao6791.
[151]Zhao Y-F, Zhou L-J, Wang F, et al. Even–odd layer-dependent anomalous Hall effect in topological magnet MnBi2Te4 thin films[J]. Nano Letters, 2021, 21(18):7691-7698.
[152]Luo J, Tong Q, Jiang Z, et al. Exploring the epitaxial growth kinetics and anomalous Hall effect in magnetic topological insulator MnBi2Te4 films[J]. ACS Nano, 2023, 17(19):19022-19032.
[153]Yan J-Q, Huang Z, Wu W, et al. Vapor transport growth of MnBi2Te4 and related compounds[J]. Journal of Alloys and Compounds, 2022, 906:164327.
[154]1200℃高温箱式炉--KSL-1200X-M(27L) [EB/OL]. https://www.instrument.com.cn/netshow/SH102205/C241201.htm.
[155]Wang D, Luo F, Lu M, et al. Chemical vapor transport reactions for synthesizing layered materials and their 2D counterparts[J]. Small, 2019, 15(40):1804404.
[156]OTL1200-1200 双温区管式炉 [EB/OL]. http://www.cnlaibu.com/dwguanshilu/otl1200-1200sw.html.
[157]Rigaku Introduces Newest SmartLab Intelligent X-ray Diffraction (XRD) System [EB/OL]. https://www.prweb.com/releases/rigaku_introduces_newest_smartlab_intelligent_x_ray_diffraction_xrd_system/prweb15375945.htm.
[158]超高分辨场发射扫描电子显微镜Regulus系列 [EB/OL]. https://www.hitachi-hightech.com/cn/zhcn/products/microscopes/sem-tem-stem/fe-sem/regulus.html.
[159]完全无液氦综合物性测量系统-DynaCool [EB/OL]. https://www.qd-china.com/zh/pro/detail/3/1912091422155?source=bdtg&plan=QD&unit=Dept.1-QD-DynaCool-chanpin&keyword=ppms&e_matchtype=1&e_creative=40739582880&e_keywordid=159625913514&e_keywordid2=159625913514&sdclkid=AL2_15FN152Gb6D6bOg&bd_vid=8190341882095263245.
[160]Chen Y, Gu X, Li Y, et al. Recent advances in topological quantum materials by angle-resolved photoemission spectroscopy[J]. Matter, 2020, 3(4):1114-1141.
[161]Hertz H. Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung[J]. Annalen der Physik, 1887, 267(8):983-1000.
[162]Einstein A. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt[J], Collected Papers of Albert Einstein, 1989, 2: 150-166.
[163]Lv B, Qian T, Ding H. Angle-resolved photoemission spectroscopy and its application to topological materials[J]. Nature Reviews Physics, 2019, 1(10):609-626.
[164]Damascelli A, Hussain Z, Shen Z-X. Angle-resolved photoemission studies of the cuprate superconductors[J]. Reviews of Modern Physics, 2003, 75(2):473.
[165]Zhang H, Pincelli T, Jozwiak C, et al. Angle-resolved photoemission spectroscopy[J]. Nature Reviews Methods Primers, 2022, 2(1):54.
[166]Sobota J A, He Y, Shen Z-X. Angle-resolved photoemission studies of quantum materials[J]. Reviews of Modern Physics, 2021, 93(2):025006.
[167]Zouros T, Benis E. The hemispherical deflector analyser revisited. I. Motion in the ideal 1/r potential, generalized entry conditions, Kepler orbits and spectrometer basic equation[J]. Journal of Electron Spectroscopy and Related Phenomena, 2002, 125(3):221-248.
[168]https://www.ccnta.cn/show-108-6221-1.html.
[169]Cochran T A, Belopolski I, Manna K, et al. Visualizing Higher-Fold Topology in Chiral Crystals[J]. Physical Review Letters, 2023, 130(6):066402.
[170]Hu Y, Wu X, Ortiz B R, et al. Rich nature of Van Hove singularities in Kagome superconductor CsV3Sb5[J]. Nature Communications, 2022, 13(1):2220.
[171]Kim K S, Walter A L, Moreschini L, et al. Coexisting massive and massless Dirac fermions in symmetry-broken bilayer graphene[J]. Nature Materials, 2013, 12(10):887-892.
[172]Ma T-C, Hu J-N, Chen Y, et al. Coexistence of type-II and type-IV Dirac fermions in SrAgBi[J]. Modern Physics Letters B, 2021, 35(11):2150181.
[173]Pelayo I, Bergner D, Williams A J, et al. Observation of a new three-dimensional Dirac-like dispersion in the type-II Dirac semimetals PtTe2 and PdTe2[J]. arXiv preprint arXiv:2312.15371, 2023.
[174]Khoury J F, Han B, Jovanovic M, et al. A Class of Magnetic Topological Material Candidates with Hypervalent Bi Chains[J]. Journal of the American Chemical Society, 2022, 144(22):9785-9796.
[175]Khoury J F, Song X, Schoop L M. Ln3MBi5 (Ln= Pr, Nd, Sm; M= Zr, Hf): Intermetallics with Hypervalent Bismuth Chains[J]. Zeitschrift für anorganische und allgemeine Chemie, 2022, 648(15):e202200123.
[176]Han X, Pi H, Yan D, et al. Quantum oscillations and transport evidence of topological bands in La3MgBi5 single crystals[J]. Physical Review B, 2023, 108(7):075157.
[177]Yi Z-K, Guo P-J, Liang H, et al. Extremely large anomalous Hall conductivity and unusual axial diamagnetism in a quasi-1D Dirac material La3MgBi5[J]. arXiv preprint arXiv:2310.11378, 2023.
[178]Huang J, Li S, Yoon C, et al. Room-Temperature Topological Phase Transition in Quasi-One-Dimensional Material Bi4I4[J]. Physical Review X, 2021, 11(3):031042.
[179]Ang R, Tanaka Y, Ieki E, et al. Real-Space Coexistence of the Melted Mott State and Superconductivity in Fe-Substituted 1T−TaS2[J]. Physical Review Letters, 2012, 109(17):176403.
[180]Ang R, Miyata Y, Ieki E, et al. Superconductivity and bandwidth-controlled Mott metal-insulator transition in 1T-TaS2−xSex[J]. Physical Review B, 2013, 88(11):115145.
[181]Yu F, Ma D, Zhuo W, et al. Unusual competition of superconductivity and charge-density-wave state in a compressed topological kagome metal[J]. Nature Communications, 2021, 12(1):3645.
[182]Chen K, Wang N, Yin Q, et al. Double superconducting dome and triple enhancement of T c in the kagome superconductor CsV3Sb5 under high pressure[J]. Physical Review Letters, 2021, 126(24):247001.
[183]Nie L, Sun K, Ma W, et al. Charge-density-wave-driven electronic nematicity in a kagome superconductor[J]. Nature, 2022, 604(7904):59-64.
[184]Kurokawa K, Isono S, Kohama Y, et al. Unveiling phase diagram of the lightly doped high-TC cuprate superconductors with disorder removed[J]. Nature Communications, 2023, 14(1):4064.
[185]Shen B, Emmanouilidou E, Deng X, et al. Significant change in the electronic behavior associated with structural distortions in monocrystalline SrAg4As2[J]. Physical Review B, 2018, 98(23):235130.
[186]Bud'ko S L, Xiang L, Hu C, et al. Pressure tuning of structural and magnetic transitions in EuAg4As2[J]. Physical Review B, 2020, 101(19):195112.
[187]Shen B, Hu C, Cao H, et al. Structural distortion and incommensurate noncollinear magnetism in EuAg4As2[J]. Physical Review Materials, 2020, 4(6):064419.
[188]Zhu Q, Li L, Yang Z, et al. Metamagnetic transitions and anomalous magnetoresistance in EuAg4As2 crystals[J]. SCIENCE CHINA Physics, Mechanics & Astronomy, 2021, 64(2):227011.
[189]Ryan D, Bud’ko S L, Hu C, et al. Magnetic and structural transitions in EuAg4As2 studied using 151Eu Mössbauer spectroscopy[J]. AIP Advances, 2019, 9(12): 125050.
[190]Nie Y, Tu W, Yang Y, et al. Quantum oscillations and nontrivial topological properties of layered metal SrAg4Sb2[J]. Applied Physics Letters, 2023, 123(16).
[191]Morgan H W, Laderer W T, Alexandrova A N. δ‐bonding and spin‐orbit coupling make SrAg4Sb2 a topological insulator[J]. Chemistry–A European Journal, 2023:e202303679.
[192]Gerke B, Schwickert C, Stoyko S S, et al. Magnetic hyperfine field splitting in EuAg4As2 and EuAg4Sb2[J]. Solid State Sciences, 2013, 20:65-69.
[193]Nie Y, Chen Z, Wei W, et al. Linear magnetoresistance and structural distortion in layered SrCu4–xP2 single crystals[J]. Chinese Physics B, 2024, 33(1):016108.
[194]Barman C K, Mondal C, Pathak B, et al. Symmetry-driven topological phases in XAgBi (X= Ba, Sr): An ab initio hybrid functional calculation[J]. Physical Review Materials, 2020, 4(8):084201.
[195]Mardanya S, Singh B, Huang S-M, et al. Prediction of threefold fermions in a nearly ideal Dirac semimetal BaAgAs[J]. Physical Review Materials, 2019, 3(7):071201.
[196]Singh B, Mardanya S, Su C, et al. Spin-orbit coupling driven crossover from a starfruitlike nodal semimetal to Dirac and Weyl semimetal state in CaAuAs[J]. Physical Review B, 2018, 98(8):085122.
[197]Jin Y, Zeng X-T, Feng X, et al. Multiple magnetism-controlled topological states in EuAgAs[J]. Physical Review B, 2021, 104(16):165424.
[198]Wang X, Li B, Zhou L, et al. Structure, physical properties, and magnetically tunable topological phases in topological semimetal EuCuBi[J]. arXiv preprint arXiv:2303.11894, 2023.
[199]Zhang P, Dong Y, Yan D, et al. Spontaneous gap opening and potential excitonic states in an ideal Dirac semimetal Ta2Pd3Te5[J]. arXiv preprint arXiv:2312.14456, 2023.
[200]Zhang P, Ma J-Z, Ishida Y, et al. Topologically entangled rashba-split shockley states on the surface of grey arsenic[J]. Physical Review Letters, 2017, 118(4):046802.
[201]Nguyen P V, Teutsch N C, Wilson N P, et al. Visualizing electrostatic gating effects in two-dimensional heterostructures[J]. Nature, 2019, 572(7768):220-223.
[202]Muhammad Z, Zhang B, Lv H, et al. Transition from semimetal to semiconductor in ZrTe2 induced by Se substitution[J]. ACS Nano, 2019, 14(1):835-841.
[203]Wang X-B, Ma X-M, Emmanouilidou E, et al. Topological surface electronic states in candidate nodal-line semimetal CaAgAs[J]. Physical Review B, 2017, 96(16):161112.
[204]Nakayama K, Wang Z, Takane D, et al. Observation of inverted band structure in the topological Dirac semimetal candidate CaAuAs[J]. Physical Review B, 2020, 102(4):041104.
[205]Roychowdhury S, Samanta K, Yanda P, et al. Interplay between Magnetism and Topology: Large Topological Hall Effect in an Antiferromagnetic Topological Insulator, EuCuAs[J]. Journal of the American Chemical Society, 2023, 145(23): 12920-12927.
[206]Sasmal S, Mondal R, Kulkarni R, et al. Magnetotransport properties of noncentrosymmetric CaAgBi single crystal[J]. Journal of Physics: Condensed Matter, 2020, 32(33):335701.
[207]Malick S, Ghosh A, Barman C K, et al. Weak antilocalization effect and triply degenerate state in Cu-doped CaAuAs[J]. Physical Review B, 2022, 105(16):165105.
[208]Zhang C-L, Xu S-Y, Belopolski I, et al. Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal[J]. Nature Communications, 2016, 7(1):1-9.
[209]Li Y, Wang Z, Li P, et al. Negative magnetoresistance in Weyl semimetals NbAs and NbP: Intrinsic chiral anomaly and extrinsic effects[J]. Frontiers of Physics, 2017, 12:1-10.
[210]Freitas D C, Weht R, Sulpice A, et al. Ferromagnetism in layered metastable 1T-CrTe2[J]. Journal of Physics: Condensed Matter, 2015, 27(17):176002.
[211]Meng L, Zhou Z, Xu M, et al. Anomalous thickness dependence of Curie temperature in air-stable two-dimensional ferromagnetic 1T-CrTe2 grown by chemical vapor deposition[J]. Nature Communications, 2021, 12(1):809.
[212]Zhang X, Lu Q, Liu W, et al. Room-temperature intrinsic ferromagnetism in epitaxial CrTe2 ultrathin films[J]. Nature Communications, 2021, 12(1):2492.
[213]Ou Y, Yanez W, Xiao R, et al. ZrTe2/CrTe2: an epitaxial van der Waals platform for spintronics[J]. Nature Communications, 2022, 13(1):2972.
[214]Huang M, Wang S, Wang Z, et al. Colossal anomalous hall effect in ferromagnetic van der waals CrTe2[J]. ACS Nano, 2021, 15(6):9759-9763.
[215]Zhang J H, Birdwhistell T L, O'connor C J. Magnetic and electrical properties of a new chromium telluride phase: CrTe2[J]. Solid State Communications, 1990, 74(6):443-446.
[216] Narayanan S. Metal-Polymer Hybrid Materials for Flexible Transparent Conductors[D]. Carnegie Mellon University, 2014.
[217]Murphy D W, Cros C, Di Salvo F J, et al. Preparation and properties of LixVS2 (0≤x≤1)[J]. Inorganic Chemistry, 1977, 16(12):3027-3031.
[218]Van Bruggen C, Haange R, Wiegers G, et al. CrSe2, a new layered dichalcogenide[J]. Physica B+C, 1980, 99(1-4):166-172.
[219]Huang M, Ma Z, Wang S, et al. Significant perpendicular magnetic anisotropy in room-temperature layered ferromagnet of Cr-intercalated CrTe2[J]. 2D Materials, 2021, 8(3):031003.
[220]Kobayashi S, Ueda H, Michioka C, et al. Competition between the direct exchange interaction and superexchange interaction in layered compounds LiCrSe2, LiCrTe2, and NaCrTe2 with a triangular lattice[J]. Inorganic Chemistry, 2016, 55(15):7407-7413.
[221]Wang J, Deng J, Liang X, et al. Spin-flip-driven giant magnetotransport in A-type antiferromagnet NaCrTe2[J]. Physical Review Materials, 2021, 5(9):L091401.
[222]Huang J, Shi B, Pan F, et al. Anisotropic magnetic properties and tunable conductivity in two-dimensional layered NaCrX2 (X= Te, Se, S) single crystals[J]. Physical Review Materials, 2022, 6(9):094013.
修改评论