中文版 | English
题名

低迟滞、强粘接超弹胶的力学设计与应用

其他题名
MECHANICS DESIGN AND APPLICATIONS OF HYPERELASTIC ADHESIVES OF LOW HYSTERESIS AND STRONG ADHESION
姓名
姓名拼音
ZHANG Ping
学号
12031101
学位类型
博士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
杨灿辉
导师单位
力学与航空航天工程系
论文答辩日期
2024-05-20
论文提交日期
2024-06-23
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

柔性可拉伸高分子基胶粘剂在工程中具有广泛的应用。然而,高分子软材料固有的粘弹性导致的迟滞与疲劳问题限制了其在高新技术领域中的应用,如柔性电子、可穿戴设备、软体机器人等。本文从软材料力学基本原理出发,解析高分子软胶粘剂宏观的粘弹性和粘接力学行为与微观的高分子网络之间的构效关系,提出了基于异质网络结构超弹胶的力学设计准则;在材料力学的指导下,借助材料化学手段制备出了兼具低迟滞与强粘接的超弹胶;实现了材料在静态与循环疲劳载荷作用下保持稳定的力学性能;并验证了超弹胶在柔性折叠屏等领域的应用。本文的主要工作包括:

1超弹胶的力学设计。通过解析软材料本体的力学行为与界面的粘接行为,理清超弹性和强粘接与高分子网络结构之间的构效关系,提出了通过构建异质高分子网络结构,解耦软材料超弹性与强粘接实现兼具低迟滞与强粘接超弹胶的策略,提出了单轴拉伸和简单剪切下超弹胶的通用力学设计准则。

2基于表面原位嫁接制备超弹胶。在超弹胶力学原理的指导下,发展了一种在超弹性软材料表面原位嫁接粘弹性粘接层制备超弹胶的两步法制备技术;以聚丙烯酸酯软材料为模型材料,通过调控超弹性本体与粘弹性粘接层的力学、几何参数,制备出低迟滞、强粘接,同时具备低玻璃化转变温度、高光学透明性和热稳定性的超弹胶。

3基于氧气阻聚一步制备超弹胶。利用氧气阻聚原理,发展了一种可直接在空气中快速合成超弹胶的一步制备技术;通过解析自由基聚合动力学、氧气扩散和自由基猝灭动力学之间的竞争关系,构建了超弹胶的聚合相图,建立了粘弹胶向超弹胶过渡的幂律判据;并揭示了具有异质结构超弹胶粘接能与厚度之间的非线性关系。

4简单剪切下超弹胶的力学行为。基于简单剪切下超弹胶的力学设计原理,实验验证了超弹性本体厚度与粘弹性粘接层的厚度比、粘接层剪切模量与超弹胶整体剪切模量之比与超弹胶剪切迟滞之间的关系,开展了剪切变形下的蠕变-回复测试,阐明了材料力学、几何参数对超弹胶回复性能的影响规律。

5超弹胶的应用。通过动态和静态疲劳载荷下材料的疲劳、松弛与蠕变行为以及界面粘接的抗疲劳行为测试展示了超弹胶优异的抗疲劳性能,作为概念验证,展示了超弹胶在柔性传感器、柔性折叠屏、软体机器人、电子皮肤等领域的潜在应用。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2024-07
参考文献列表

[1] Pizzi A, Mittal K L. Handbook of adhesive technology[M]. CRC Press, 2018.
[2] Ntasi G, Sbriglia S, Pitocchi R, et al. Proteomic characterization of collagen-based animal glues for restoration[J]. Journal of Proteome Research, 2022, 21(9): 2173-2184.
[3] Fay P A. A history of adhesive bonding[M]. Woodhead Publishing, 2021: 3-40.
[4] Lutz T M, Kimna C, Casini A, et al. Bio-based and bio-inspired adhesives from animals and plants for biomedical applications[J]. Materials Today Bio, 2022, 13.
[5] Burchardt B R, Merz P W. Elastic bonding and sealing in industry[M]. Elsevier Ltd. , 2006.
[6] He X, Wang W, Yang S, et al. Adhesive tapes: From daily necessities to flexible smart electronics[J]. Applied Physics Reviews, 2023, 10(1).
[7] Creton C. Pressure-sensitive adhesives: An introductory course[J]. MRS Bulletin, 2003, 28: 434-439.
[8] Viljanmaa M, Sodergard A, Tormala P. Lactic acid based polymers as hot melt adhesives for packaging[J]. International Journal of Adhesion & Adhesives, 2002, 22: 219–226.
[9] Webster I. Recent developments in pressure-sensitive adhesives for medical applications[J]. Int. J. Adhesion and Adhesives, 1997, 17: 69-73.
[10] Benedek I. Development and manufacture of pressure-sensitive products[M]. CRC Press, 1998.
[11] Mapari S, Mestry S, Mhaske S T. Developments in pressure-sensitive adhesives: A review[J]. Polymer Bulletin, 2020, 78(7): 4075-4108.
[12] Lee T-H, Kim J-S, Lee J-H, et al. Pressure-sensitive adhesives for flexible display applications[J]. Hybrid Nanomaterials - Flexible Electronics Materials, 2019.
[13] Ha M-H, Choi J-K, Park B-M, et al. Highly flexible cover window using ultra-thin glass for foldable displays[J]. Journal of Mechanical Science and Technology, 2021, 35(2): 661-668.
[14] Liu S, Yang D S, Wang S, et al. Soft, environmentally degradable microfluidic devices for measurement of sweat rate and total sweat loss and for colorimetric analysis of sweat biomarkers[J]. EcoMat, 2022, 5(1).
[15] Ma Z, Huang Q, Xu Q, et al. Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics[J]. Nature Materials, 2021, 20(6): 859-868.
[16] Jo W, Jeong K, Park Y-S, et al. Thermally stable and soft pressure-sensitive adhesive for foldable electronics[J]. Stretchable materials, 2023, 452.
[17] Gennes P G D. Soft adhesives[J]. Langmuir, 1996, 12: 4497-4500.
[18] Baik S, Lee H J, Kim D W, et al. Bioinspired adhesive architectures: From skin patch to integrated bioelectronics[J]. Advanced Materials, 2019, 31(34).
[19] Zhao Y, Wu Y, Wang L, et al. Bio-inspired reversible underwater adhesive[J]. Nature Communications, 2017, 8(1).
[20] Zhao B, Pesika N, Rosenberg K, et al. Adhesion and friction force coupling of gecko setal arrays implications for structured adhesive surfaces[J]. Langmuir, 2008, 24: 1517-1524.
[21] Amador G J, Endlein T, Sitti M. Soiled adhesive pads shear clean by slipping: A robust self-cleaning mechanism in climbing beetles[J]. Journal of The Royal Society Interface, 2017, 14(131).
[22] Baik S, Kim D W, Park Y, et al. A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi[J]. Nature, 2017, 546(7658): 396-400.
[23] Lee S H, Song H W, Kang B S, et al. Remora-inspired reversible adhesive for underwater applications[J]. ACS Applied Materials & Interfaces, 2019, 11(50): 47571-47576.
[24] Kade M, Tirrell M. Monitoring polymerization reactions: From fundamentals to applications[M]. John Wiley & Sons, Inc., 2013: 1-28.
[25] Gao Y, Zhou D, Lyu J, et al. Complex polymer architectures through free-radical polymerization of multivinyl monomers[J]. Nature Reviews Chemistry, 2020, 4(4): 194-212.
[26] Garif Y S, Gerberich W W, Pocius A V. Thermally activated parameters of self-adhesion in acrylic pressure-sensitive adhesive-like networks[J]. The Journal of Adhesion, 2010, 80: 61-85.
[27] Lee J-H, Shim G-S, Kim H-J, et al. Adhesion performance and recovery of acrylic psa with acrylic elastomer (AE) blends via thermal crosslinking for application in flexible displays[J]. Polymers, 2019, 11(12).
[28] Gomez-Lopez A, Panchireddy S, Grignard B, et al. Poly(hydroxyurethane) adhesives and coatings: State-of-the-art and future directions[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(29): 9541-9562.
[29] Lee J-H, Lee T-H, Shim K-S, et al. Adhesion performance and recovery of platinum catalyzed silicone psas under various temperature conditions for flexible display applications[J]. Materials Letters, 2017, 208: 86-88.
[30] Gu Z, Wan X, Lou Z, et al. Skin adhesives with controlled adhesion by polymer chain mobility[J]. ACS Applied Materials & Interfaces, 2018, 11(1): 1496-1502.
[31] Xue B, Gu J, Li L, et al. Hydrogel tapes for fault-tolerant strong wet adhesion[J]. Nature Communications, 2021, 12(1).
[32] Yuk H, Varela C E, Nabzdyk C S, et al. Dry double-sided tape for adhesion of wet tissues and devices[J]. Nature, 2019, 575: 169-177.
[33] Dobrynin A V, Tian Y, Jacobs M, et al. Forensics of polymer networks[J]. Nature Materials, 2023, 22(11): 1394-1400.
[34] Sheiko S S, Dobrynin A V. Architectural code for rubber elasticity: From supersoft to superfirm materials[J]. Macromolecules, 2019, 52(20): 7531-7546.
[35] Treloar L R G. The physics of rubber elasticity [M]. USA: Oxford University Press, 2005.
[36] Zhong M, Wang R, Kawamoto K, et al. Quantifying the impact of molecular defects on polymer network elasticity[J]. Science, 2016, 353 (6305): 1264-1268.
[37] Rostiashvili V G, Vilgis T A. Statistical thermodynamics of polymeric networks[M]. Encyclopedia of Polymeric Nanomaterials, 2014: 1-18.
[38] Majidi C. Soft robotics: A perspective—current trends and prospects for the future[J]. Soft Robotics, 2014, 1(1): 5-11.
[39] Xu P, Wang S, Lin A, et al. Conductive and elastic bottlebrush elastomers for ultrasoft electronics[J]. Nature Communications, 2023, 14(1).
[40] Boutry C M, Negre M, Jorda M, et al. A hierarchically patterned, bioinspired e-skin[J]. Science Robotics, 2013, 3: eaau6914.
[41] Sinatra N R, Teeple C B, Vogt D M, et al. Ultragentle manipulation of delicate structures using a soft robotic gripper[J]. Science Robotics, 2019, 4: eaax5425.
[42] Webb R C, Bonifas A P, Behnaz A, et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin[J]. Nature Materials, 2013, 12(10): 938-944.
[43] Tybrandt K, Khodagholy D, Dielacher B, et al. High‐density stretchable electrode grids for chronic neural recording[J]. Advanced Materials, 2018, 30(15).
[44] Guimarães C F, Gasperini L, Marques A P, et al. The stiffness of living tissues and its implications for tissue engineering[J]. Nature Reviews Materials, 2020, 5(5): 351-370.
[45] Morin F, Chabanas M, Courtecuisse H, et al. Biomechanical modeling of brain soft tissues for medical applications[M]. Oxford: Academic Press, 2017: 127-146.
[46] Ebrahimi A P. Mechanical properties of normal and diseased cerebrovascular system[J]. Journal of Vascular and Interventional Neurology, 2009, 2.
[47] Silver F H, Snowhill P B, Foran D J. Mechanical properties of normal and diseased cerebrovascular system[J]. Annals of Biomedical Engineering, 2003, 31: 793-803.
[48] Zhou H, Lai J, Jin X, et al. Intrinsically adhesive, highly sensitive and temperature tolerant flexible sensors based on double network organohydrogels[J]. Chemical Engineering Journal, 2021, 413.
[49] Chen J, Zhang J, Luo Z, et al. Superelastic, sensitive, and low hysteresis flexible strain sensor based on wave-patterned liquid metal for human activity monitoring[J]. ACS Applied Materials & Interfaces, 2020, 12(19): 22200-22211.
[50] Kim D-H, Lu N, Ma R, et al. Epidermal electronics[J]. Science, 2011, 333(838).
[51] Sempionatto J R, Lin M, Yin L, et al. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers[J]. Nature Biomedical Engineering, 2021, 5(7): 737-748.
[52] Baker L B, Model J B, Barnes K A, et al. Skin-interfaced microfluidic system with personalized sweating rate and sweat chloride analytics for sports science applications[J]. Science Advances,  2020, 6: eabe3929
[53] Shi Y, Wang F, Tian J, et al. Self-powered electro-tactile system for virtual tactile experiences[J]. Science Advances, 2021, 7: eabe2943.
[54] Liu Q, Chen J, Li Y, et al. High-performance strain sensors with fish-scale-like graphene-sensing layers for full-range detection of human motions[J]. ACS Nano, 2016, 10(8): 7901-7906.
[55] Kim J, Sempionatto J R, Imani S, et al. Simultaneous monitoring of sweat and interstitial fluid using a single wearable biosensor platform[J]. Advanced Science, 2018, 5(10).highly
[56] Son D, Lee J, Qiao S, et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders[J]. Nature Nanotechnology, 2014, 9(5): 397-404.
[57] Koh A, Kang D, Xue Y, et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat[J]. Science Translational Medicine, 2016, 8(366): 366ra165-366ra165.
[58] Camara C G, Escobar J V, Hird J R, et al. Correlation between nanosecond x-ray flashes and stick–slip friction in peeling tape[J]. Nature, 2008, 455(7216): 1089-1092.
[59] Mallineni S S K, Behlow H, Dong Y, et al. Facile and robust triboelectric nanogenerators assembled using off-the-shelf materials[J]. Nano Energy, 2017, 35: 263-270.
[60] Gao D, Thangavel G, Lee J, et al. A supramolecular gel-elastomer system for soft iontronic adhesives[J]. Nature Communications, 2023, 14(1).
[61] Ling S, Luo Y, Luan L, et al. Inkjet printing of patterned ultra-slippery surfaces for planar droplet manipulation[J]. Sensors and Actuators B: Chemical, 2016, 235: 732-738.
[62] Berchmans S, J.Bandodkar A, Jia W, et al. An epidermal alkaline rechargeable ag–zn printable tattoo battery for wearable electronics[J]. Journal of Materials Chemistry A, 2014, 2: 15788.
[63] He X, Yang S, Pei Q, et al. Integrated smart janus textile bands for self-pumping sweat sampling and analysis[J]. ACS Sensors, 2020, 5(6): 1548-1554.
[64] Cheng X, Wang B, Zhao Y, et al. A mediator‐free electroenzymatic sensing methodology to mitigate ionic and electroactive interferents' effects for reliable wearable metabolite and nutrient monitoring[J]. Advanced Functional Materials, 2019, 30(10).
[65] Wang J, Cai X, Shi R, et al. Twin defect derived growth of atomically thin MoS2 dendrites[J]. ACS Nano, 2017, 12(1): 635-643.
[66] He X, Yang S, Xu T, et al. Microdroplet-captured tapes for rapid sampling and sers detection of food contaminants[J]. Biosensors and Bioelectronics, 2020, 152.
[67] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[68] Lee C H, Kim D R, Zheng X. Fabricating nanowire devices on diverse substrates by simple transfer-printing methods[J]. Proceedings of the National Academy of Sciences, 2010, 107(22): 9950-9955.
[69] Baytekin H T, Baytekin B, Huda S, et al. Mechanochemical activation and patterning of an adhesive surface toward nanoparticle deposition[J]. Journal of the American Chemical Society, 2015, 137(5): 1726-1729.
[70] Wang Y, Yu X, Zhang H, et al. Highly stretchable, soft, low-hysteresis, and self-healable ionic conductive elastomers enabled by long, functional cross-linkers[J]. Macromolecules, 2022, 55(17): 7845-7855.
[71] Zhao T, Cao J, Li X, et al. A network-based visco-hyperelastic constitutive model for optically clear adhesives[J]. Extreme Mechanics Letters, 2022, 51.
[72] Lee B-C, Park B-M, Hong D-S, et al. Development of a novel slit-nozzle design for the lamination of optically clear resin for a foldable oled[J]. Molecular Crystals and Liquid Crystals, 2021, 734(1): 63-71.
[73] Yu H, Feng Y, Chen C, et al. Highly thermally conductive adhesion elastomer enhanced by vertically aligned folded graphene[J]. Advanced Science, 2022, 9(33).
[74] Shi L, Zhu T, Gao G, et al. Highly stretchable and transparent ionic conducting elastomers[J]. Nature Communications, 2018, 9(1).
[75] Kim H J, Chen B, Suo Z, et al. Ionoelastomer junctions between polymer networks[J]. Science, 2020, 367: 773-776.
[76] Wang M, Chen D, Feng W, et al. Synthesis and characterization of optically clear pressure-sensitive adhesive[J]. Materials Transactions, 2015, 56(6): 895-898.
[77] Barrios C A. Pressure sensitive adhesive tape: A versatile material platform for optical sensors[J]. Sensors, 2020, 20(18).
[78] Lee T-H, Kim J-S, Lee J-H, et al. Pressure-sensitive adhesives for display[J], 2019.
[79] Chang E P. Viscoelastic properties of pressure-sensitive adhesives[J]. The Journal of Adhesion, 1997, 60(1-4): 233-248.
[80] Jung H, Song H, Lee M, et al. Determination of viscoelastic properties of thin pressure sensitive adhesive using dynamic mechanical analysis[J]. Mechanics of Time-Dependent Materials, 2019, 24(2): 129-140.
[81] Huang R, Suo Z. Wrinkling of a compressed elastic film on a viscous layer[J]. Journal of Applied Physics, 2002, 91(3): 1135-1142.
[82] Lee J H, Park J, Myung M H, et al. Stretchable and recoverable acrylate-based pressure sensitive adhesives with high adhesion performance, optical clarity, and metal corrosion resistance[J]. Chemical Engineering Journal, 2021, 406.
[83] Ho S, Hillman C, Lange F F, et al. Surface cracking in layers under biaxial, residual compressive stress[J]. Journal of the American Ceramic Society, 2005, 78(9): 2353-2359.
[84] Chun-Jen Chen, Lin K-L. Internal stress and adhesion of amorphous ni–cu–p alloy on aluminum.[J]. Thin Solid Films 2000, 370: 106-113.
[85] Burla F, Mulla Y, Vos B E, et al. From mechanical resilience to active material properties in biopolymer networks[J]. Nature Reviews Physics, 2019, 1(4): 249-263.
[86] Cheng S, Narang Y S, Yang C, et al. Stick‐on large‐strain sensors for soft robots[J]. Advanced Materials Interfaces, 2019, 6(20).
[87] Zhang Y, Yang J, Hou X, et al. Highly stable flexible pressure sensors with a quasi-homogeneous composition and interlinked interfaces[J]. Nature Communications, 2022, 13(1).
[88] Xia Y, Jiang H, Yao C, et al. Revealing the shear fatigue damage mechanism of soft adhesive: Coexistence of viscoelastic and damage dissipation[J]. Journal of the Mechanics and Physics of Solids, 2024, 185.
[89] Hosseini-Farid M, Rezaei A, Eslaminejad A, et al. Instantaneous and equilibrium responses of the brain tissue by stress relaxation and quasi-linear viscoelasticity theory[J]. Scientia Iranica, 2019.
[90] Meng X, Qiao Y, Do C, et al. Hysteresis‐free nanoparticle‐reinforced hydrogels[J]. Advanced Materials, 2022, 34(7).
[91] Xiong J, Wang X, Li L, et al. Low‐hysteresis and high‐toughness hydrogels regulated by porous cationic polymers: The effect of counteranions[J]. Angewandte Chemie International Edition, 2023, 63(1).
[92] Huang J, Xu Y, Qi S, et al. Ultrahigh energy-dissipation elastomers by precisely tailoring the relaxation of confined polymer fluids[J]. Nature Communications, 2021, 12(1).
[93] Fang Y, Xia J. Highly stretchable, soft, and clear viscoelastic film with good recoverability for flexible display[J]. ACS Applied Materials & Interfaces, 2022, 14(33): 38398-38408.
[94] Zhang G, Chen S, Peng Z, et al. Topologically enhanced dual-network hydrogels with rapid recovery for low-hysteresis, self-adhesive epidemic electronics[J]. ACS Applied Materials & Interfaces, 2021, 13(10): 12531-12540.
[95] Zhou Y, Zhang C, Gao S, et al. Pressure-sensitive adhesive with enhanced and phototunable underwater adhesion[J]. ACS Applied Materials & Interfaces, 2021, 13(42): 50451-50460.
[96] Zhang Y, Wang Y, Guan Y, et al. Peptide-enhanced tough, resilient and adhesive eutectogels for highly reliable strain/pressure sensing under extreme conditions[J]. Nature Communications, 2022, 13(1).
[97] Han G-Y, Park J Y, Lee T-H, et al. Highly resilient dual-crosslinked hydrogel adhesives based on a dopamine-modified crosslinker[J]. ACS Applied Materials & Interfaces, 2022, 14(32): 36304-36314.
[98] Kim J, Zhang G, Shi M, et al. Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links[J]. Science, 2021, 374: 212-216.
[99] Du R, Bao T, Zhu T, et al. A low-hysteresis and highly stretchable ionogel enabled by well dispersed slidable cross-linker for rapid human-machine interaction[J]. Advanced Functional Materials, 2023, 33(30).
[100] Lee J-H, Kim K-M, Kim H-J, et al. Ultraviolet-patterned acrylic pressure-sensitive adhesives for flexible displays[J]. Polymer, 2021, 237.
[101] Lin S, Zhou Y, Zhao X. Designing extremely resilient and tough hydrogels via delayed dissipation[J]. Extreme Mechanics Letters, 2014, 1: 70-75.
[102] Costantino Creton M C. Fracture and adhesion of soft materials[J]. Reports on Progress in Physics, 2016, 79 (4): pp.046601
[103] Volinsky A A, Moody N R, Gerberich W W. Interfacial toughness measurements for thin films on substrate[J]. Acta Materialia, 2002, 50: 441–466.
[104] Yuk H, Zhang T, Lin S, et al. Tough bonding of hydrogels to diverse non-porous surfaces[J]. Nature Materials, 2015, 15(2): 190-196.
[105] Rose S, Prevoteau A, Elzière P, et al. Nanoparticle solutions as adhesives for gels and biological tissues[J]. Nature, 2013, 505(7483): 382-385.
[106] Liu J, Lin S, Liu X, et al. Fatigue-resistant adhesion of hydrogels[J]. Nature Communications, 2020, 11(1).
[107] Zhang W, Gao Y, Yang H, et al. Fatigue-resistant adhesion i. Long-chain polymers as elastic dissipaters[J]. Extreme Mechanics Letters, 2020, 39.
[108] Rao P, Sun T L, Chen L, et al. Tough hydrogels with fast, strong, and reversible underwater adhesion based on a multiscale design[J]. Advanced Materials, 2018, 30(32).
[109] Kurokawa T, Furukawa H, Wang W, et al. Formation of a strong hydrogel–porous solid interface via the double-network principle[J]. Acta Biomaterialia, 2010, 6(4): 1353-1359.
[110] Zhao X, Chen X, Yuk H, et al. Soft materials by design unconventional polymer networks give extreme properties[J]. Chemical Reviews, 2021, 121: 4309-4372.
[111] Zhang T, Yuk H, Lin S, et al. Tough and tunable adhesion of hydrogels: Experiments and models[J]. Acta Mechanica Sinica, 2017, 33(3): 543-554.
[112] Heinzmann C, Weder C, De Espinosa L M. Supramolecular polymer adhesives: Advanced materials inspired by nature[J]. Chemical Society Reviews, 2016, 45(2): 342-358.
[113] Cui C, Wu T, Chen X, et al. A janus hydrogel wet adhesive for internal tissue repair and anti-postoperative adhesion[J]. Advanced Functional Materials, 2020, 30(49).
[114] Feng H, Ma Y, Zhang Z, et al. Reversing hydrogel adhesion property via firmly anchoring thin adhesive coatings[J]. Advanced Functional Materials, 2022, 32(2111278).
[115] Brodoceanu D, Bauer C T, Kroner E, et al. Hierarchical bioinspired adhesive surfaces—a review[J]. Bioinspiration & Biomimetics, 2016, 11(5).
[116] Wan X, Gu Z, Zhang F, et al. Asymmetric janus adhesive tape prepared by interfacial hydrosilylation for wet/dry amphibious adhesion[J]. NPG Asia Materials, 2019, 11(1).
[117] Sasaki M, Fujita K, Adachi M, et al. The effect of tackifier on phase structure and peel adhesion of a triblock[J]. International Journal of Adhesion & Adhesives, 2008, 28: 372-381.
[118] Sitti M, Cusick B, Aksak B, et al. Dangling chain elastomers as repeatable fibrillar adhesives[J]. ACS Applied Materials & Interfaces, 2009, 1(10): 2277-2287.
[119] Kim E S, Song D B, Choi K H, et al. Robust and recoverable dual cross-linking networks in pressure-sensitive adhesives[J]. Journal of Polymer Science, 2020, 58(23): 3358-3369.
[120] Gent A N, Kaang S Y. Effect of peel angle upon peel force[J]. The Journal of Adhesion, 1987, 24(2-4): 173-181.
[121] Hui C-Y, Liu Z, Minsky H, et al. Mechanics of an adhesive tape in a zero degree peel test: Effect of large deformation and material nonlinearity[J]. Soft Matter, 2018, 14(47): 9681-9692.
[122] Da Silva L F M, Rodrigues T N S S, Figueiredo M a V, et al. Effect of adhesive type and thickness on the lap shear strength[J]. The Journal of Adhesion, 2006, 82(11): 1091-1115.
[123] Wang Y, Yang X, Nian G, et al. Strength and toughness of adhesion of soft materials measured in lap shear[J]. Journal of the Mechanics and Physics of Solids, 2020, 143.
[124] Evans A G, Wiederhorn S M. Proof testing of ceramic materials—an analytical basis for failure prediction[J]. International Journal of Fracture, 1974, 10(3).
[125] Ritchie R O. Mechanisms of fatigue crack propagation in metals, ceramic[J]. Materials Science and Engineering, 1988, A103 15-28.
[126] Fleck N A, Kang K J, As M F. The cyclic properties of egineering materials[J]. Acta metall. mater., 1994, 42(2): 365-381.
[127] Lin S, Liu J, Liu X, et al. Muscle-like fatigue-resistant hydrogels by mechanical training[J]. Proceedings of the National Academy of Sciences, 2019, 116(21): 10244-10249.
[128] Kim I H, Choi S, Lee J, et al. Human-muscle-inspired single fibre actuator with reversible percolation[J]. Nature Nanotechnology, 2022, 17(11): 1198-1205.
[129] Wang J, Wu B, Wei P, et al. Fatigue-free artificial ionic skin toughened by self-healable elastic nanomesh[J]. Nature Communications, 2022, 13(1).
[130] Wang B, Zhang Z, Su W, et al. The influence of the bending mode on the mechanical behavior of amoleds[J]. IEEE Access, 2021, 9: 152442-152448.
[131] Tang J, Li J, Vlassak J J, et al. Fatigue fracture of hydrogels[J]. Extreme Mechanics Letters, 2017, 10: 24-31.
[132] Zhou Y, Zhang W, Hu J, et al. The stiffness-threshold conflict in polymer networks and a resolution[J]. Journal of Applied Mechanics, 2020, 87(3).
[133] Lake G J, Thomas A G. The strength of highly elastic materials[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1967, 300(1460): 108-119.
[134] Ruobing Bai J Y, Zhigang Suo. Fatigue of hydrogels[J]. European Journal of Mechanics - A/Solids, 2019, 74: 337-370.
[135] Bai R, Yang J, Morelle X P, et al. Fatigue fracture of self-recovery hydrogels[J]. ACS Macro Letters, 2018, 7: 312-317.
[136] Kinloch A J. Adhesion and adhesives: Science and technology[M]. Springer Science & Business Media, 2012.
[137] Levine H J. Rest heart rate and life expectancy[J]. Journal of the American College of Cardiology, 1997, 30 4: 1104-6.
[138] Zhang W, Hu J, Yang H, et al. Fatigue-resistant adhesion ii: Swell tolerance[J]. Extreme Mechanics Letters, 2021, 43.
[139] Raos G, Zappone B. Polymer adhesion: Seeking new solutions for an old problem[J]. Macromolecules, 2021, 54(23): 10617-10644.
[140] Lee J-H, Lee T-H, Shim K-S, et al. Effect of crosslinking density on adhesion performance and flexibility properties of acrylic pressure sensitive adhesives for flexible display applications[J]. International Journal of Adhesion and Adhesives, 2017, 74: 137-143.
[141] Rubinstein M, Colby R H. Polymer physics[M]. Oxford university press New York: 2003.
[142] Watanabe H. Viscoelasticity and dynamics of entangled polymers[J]. Progress in Polymer Science, 1999, 24: 1253-1403.
[143] Okumura Y, Ito K. The polyrotaxane gel: A topological gel by figure-of-eight cross-links[J]. Advanced Materials, 2001, 13(7): 485-487.
[144] Yang J, Bai R, Chen B, et al. Hydrogel adhesion: A supramolecular synergy of chemistry, topology, and mechanics[J]. Advanced Functional Materials, 2019, 30(2).
[145] Awaja F, Gilbert M, Kelly G, et al. Adhesion of polymers[J]. Progress in Polymer Science, 2009, 34(9): 948-968.
[146] Brown H R. The adhesion between polymers[J]. Annual Review of Materials Science, 1991, 21(1): 463-489.
[147] Back J-H, Baek D, Sim K-B, et al. Optimization of recovery and relaxation of acrylic pressure-sensitive adhesives by using uv patterning for flexible displays[J]. Industrial & Engineering Chemistry Research 2019, 58: 4331-4340.
[148] Hoda S A, Hoda R S. Robbins and cotran pathologic basis of disease[J]. American Journal of Clinical Pathology, 2020, 154(6): 869-869.
[149] A. M. Jackson S S S, V. S. Ashby. Grafting poly(oegma) brushes from a shape memory elastomer and subsequent wrinkling behavior[J]. Langmuir, 2015, 31: 5489-5494
[150] Liu X, Liu J, Wang J, et al. Bioinspired, microstructured silk fibroin adhesives for flexible skin sensors[J]. ACS Applied Materials & Interfaces, 2020, 12(5): 5601-5609.
[151] Gao Y, Xiao T, Li Q, et al. Flexible microstructured pressure sensors: Design, fabrication and applications[J]. Nanotechnology, 2022, 33(32).
[152] Liu J, Yang C, Yin T, et al. Polyacrylamide hydrogels. Ii. Elastic dissipater[J]. Journal of the Mechanics and Physics of Solids, 2019, 133.
[153] Li L, Tirrell M, Korba G A, et al. Surface energy and adhesion studies on acrylic pressure sensitive adhesives[J]. The Journal of Adhesion, 2001, 76(4): 307-334.
[154] Sugimoto A, Ochi H, Fujimura S, et al. Flexible oled displays using plastic substrates[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(1): 107-114.
[155] Y. Chen J A, P. Kazlas, A. Ritenour, H. Gates & M. Mccreary Flexible active-matrix electronic ink display[J]. Nature 2003, 423.
[156] Shi X, Zuo Y, Zhai P, et al. Large-area display textiles integrated with functional systems[J]. Nature, 2021, 591(7849): 240-245.
[157] Kim C-C, Lee H-H, Oh K H, et al. Highly stretchable, transparent ionic touch panel[J]. Science, 2016, 353(6300): 682-687.
[158] Koo J H, Kim D C, Shim H J, et al. Flexible and stretchable smart display: Materials, fabrication, device design, and system integration[J]. Advanced Functional Materials, 2018, 28(35).
[159] Chortos A, Liu J, Bao Z. Pursuing prosthetic electronic skin[J]. NATURE MATERIALS 2016, 15.
[160] Choi Y S, Yin R T, Pfenniger A, et al. Fully implantable and bioresorbable cardiac pacemakers without leads or batteries[J]. Nature Biotechnology, 2021, 39(10): 1228-1238.
[161] Li G, Chen X, Zhou F, et al. Self-powered soft robot in the mariana trench[J]. Nature, 2021, 591(7848): 66-71.
[162] Kalcioglu Z I, Mahmoodian R, Hu Y, et al. From macro- to microscale poroelastic characterization of polymeric hydrogels via indentation[J]. Soft Matter, 2012, 8(12): 3393-3398.
[163] Kondratov A P, Lozitskaya A V, Samokhin V N, et al. Mullins effect in polymer large deformation strain gauges[J]. Journal of Polymer Research, 2022, 30(1).
[164] Diani J, Fayolle B, Gilormini P. A review on the mullins effect[J]. European Polymer Journal 2009, 45: 601-612.
[165] Wang S, He J, Li Q, et al. Highly elastic energy storage device based on intrinsically super-stretchable polymer lithium-ion conductor with high conductivity[J]. Fundamental Research, 2024, 4(1): 140-146.
[166] Gong X, Yang Q, Zhi C, et al. Stretchable energy storage devices: From materials and structural design to device assembly[J]. Advanced Energy Materials, 2020, 11(15).
[167] Whitesides G M. Soft robotics[J]. Angewandte Chemie, 2018, 130(16): 4336-4353.
[168] Yang C. Perspectives on the fundamental principles and manufacturing of stretchable ionotronics[J]. Applied Physics Letters, 2023, 122(7).
[169] Rogers J A, Someya T, Huang Y. Materials and mechanics for stretchable electronics[J]. Science, 2010, 327(5973): 1603-1607.
[170] Studer K, Decker C, Beck E, et al. Thermal and photochemical curing of isocyanate and acrylate functionalized oligomers[J]. European Polymer Journal, 2005, 41(1): 157-167.
[171] Zhang P, Li Q, Xiao Y, et al. Biomimetic hydrophilic islands for integrating elastomers and hydrogels of regulable curved profiles[J]. ACS Applied Electronic Materials, 2020, 3(2): 668-675.
[172] Sato R, Kurihara T, Takeishi M. Rate enhancement of amines in the photopolymerization of methyl methacrylate under oxygen[J]. Polymer International, 1998, 47(2): 159-164.
[173] Oytun F, Kahveci M U, Yagci Y. Sugar overcomes oxygen inhibition in photoinitiated free radical polymerization[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2013, 51(8): 1685-1689.
[174] C. Decker A D J. Kinetic approach of o2 inhibition in ultraviolet- and laser-induced polymerizations[J]. Macromolecules 1985, 18: 1241-1244.
[175] Dorfman L M. Radiation chemistry: Intermediates in liquids[C], 1961.
[176] Allison K. O’brien, Bowman C N. Impact of oxygen on photopolymerization kinetics and polymer[J], 2006, 39: 2501-2506.
[177] Guvendiren M, Yang S, Burdick J A. Swelling‐induced surface patterns in hydrogels with gradient crosslinking density[J]. Advanced Functional Materials, 2009, 19(19): 3038-3045.
[178] O'brien A K, Bowman C N. Modeling the effect of oxygen on photopolymerization kinetics[J]. Macromolecular Theory and Simulations, 2006, 15(2): 176-182.
[179] Eduard Stadler, Anna Eibel, David Fast, et al. A versatile method for the determination of photochemical quantum yields via online uv-vis spectroscopy[J]. Photochemical & Photobiological Sciences, 2018, 17(5): 660-669.
[180] Steffen Jockusch, Margaret S. Landis, Beat Freiermuth, et al. Photochemistry and photophysics of r-hydroxy ketones[J]. Macromolecules, 2001, 34: 1619-1626.
[181] Eibel A, Fast D E, Gescheidt G. Choosing the ideal photoinitiator for free radical photopolymerizations: Predictions based on simulations using established data[J]. Polymer Chemistry, 2018, 9(41): 5107-5115.
[182] Colley C S, Grills D C, Besley N A, et al. Probing the reactivity of photoinitiators for free radical[J]. Journal of the American Chemical Society, 2002, 124: 14952-14958.
[183] Michael D. Goodner H R L, And Christopher N. Bowman. Method for determining the kinetic parameters in photopolymerization[J]. Industrial & Engineering Chemistry Research, 1997, 36: 1247-1252.
[184] Yang C, Yin T, Suo Z. Polyacrylamide hydrogels. I. Network imperfection[J]. Journal of the Mechanics and Physics of Solids, 2019, 131: 43-55.
[185] Krevelen V. Properties of polymers: Their correlation with chemical structure; their numerical estimation and prediction from additive group contributions[M]. 2009.
[186] Girifalco L A, Good R J. A theory for the estimation of surface and interfacial energies. I. Derivation and application to interfacial tension[J]. Journal of Chemical Physics, 1957, 61.
[187] Zhang P, Zhou W, He Y, et al. Stretchable heterogeneous polymer networks of high adhesion and low hysteresis[J]. ACS Applied Materials & Interfaces, 2022, 14(43): 49264-49273.
[188] Lee J H, Myung M H, Baek M J, et al. Effects of monomer functionality on physical properties of 2-ethylhexyl acrylate based stretchable pressure sensitive adhesives[J]. Polymer Testing, 2019, 76: 305-311.
[189] Wang Z, Xiang C, Yao X, et al. Stretchable materials of high toughness and low hysteresis[J]. Proceedings of the National Academy of Sciences, 2019, 116(13): 5967-5972.
[190] Asai F, Seki T, Hoshino T, et al. Silica nanoparticle reinforced composites as transparent elastomeric damping materials[J]. ACS Applied Nano Materials, 2021, 4(4): 4140-4152.
[191] Mehdizadeh M, Yang J. Design strategies and applications of tissue bioadhesives[J]. Macromolecular Bioscience, 2012, 13(3): 271-288.
[192] Liu Q, Nian G, Yang C, et al. Bonding dissimilar polymer networks in various manufacturing processes[J]. Nature Communications, 2018, 9(1).
[193] J. Li, A. D. Celiz, J. Yang, et al. Tough adhesives for diverse wet surfaces[J]. Science, 2017, 357: 378-381.
[194] Wang Y, Jia K, Xiang C, et al. Instant, tough, noncovalent adhesion[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 40749-40757.
[195] Gao Y, Wu K, Suo Z. Photodetachable adhesion[J]. Advanced Materials, 2018, 31(6).
[196] Steck J, Yang J, Suo Z. Covalent topological adhesion[J]. ACS Macro Letters, 2019, 8(6): 754-758.
[197] Karobi S N, Sun T L, Kurokawa T, et al. Creep behavior and delayed fracture of tough polyampholyte hydrogels by tensile test[J]. Macromolecules, 2016, 49(15): 5630-5636.
[198] Liang G, Zhu J, Chen A, et al. Adhesive and cohesive force matters in deformable batteries[J]. npj Flexible Electronics, 2021, 5(1).
[199] Park Y, Byun H, Lee J H. Highly stretchable and transparent optical adhesive films using hierarchically structured rigid-flexible dual-stiffness nanoparticles[J]. ACS Applied Materials & Interfaces, 2020, 13(1): 1493-1502.

所在学位评定分委会
力学
国内图书分类号
O34
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765856
专题南方科技大学
工学院_力学与航空航天工程系
推荐引用方式
GB/T 7714
张平. 低迟滞、强粘接超弹胶的力学设计与应用[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12031101-张平-力学与航空航天工(13723KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张平]的文章
百度学术
百度学术中相似的文章
[张平]的文章
必应学术
必应学术中相似的文章
[张平]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。