[1] ANDERSON S R, VETTER M L. Developmental roles of microglia: A window into mechanisms of disease [J]. Dev Dyn, 2019, 248(1): 98-117.
[2] CHU F, SHI M, ZHENG C, et al. The roles of macrophages and microglia in multiple sclerosis and experimental autoimmune encephalomyelitis [J]. 3221, 2018, 318: 1-7.
[3] YU Z, YANG Z, REN G, et al. GATOR2 complex-mediated amino acid signaling regulates brain myelination [J]. Proc Natl Acad Sci U S A, 2022, 119(3).
[4] REEMST K, NOCTOR S C, LUCASSEN P J, et al. The Indispensable Roles of Microglia and Astrocytes during Brain Development [J]. Front Hum Neurosci, 2016, 10: 566.
[5] PELVIG D P, PAKKENBERG H, STARK A K, et al. Neocortical glial cell numbers in human brains [J]. Neurobiol Aging, 2008, 29(11): 1754-62.
[6] AZEVEDO F A, CARVALHO L R, GRINBERG L T, et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain [J]. J Comp Neurol, 2009, 513(5): 532-41.
[7] LU P P, RAMANAN N. A critical cell-intrinsic role for serum response factor in glial specification in the CNS [J]. J Neurosci, 2012, 32(23): 801223.
[8] ROWITCH D H, KRIEGSTEIN A R. Developmental genetics of vertebrate glial–cell specification [J]. 69504, 2010, 468(7321): 214-22.
[9] ZUCHERO J B, BARRES B A. Intrinsic and extrinsic control of oligodendrocyte development [J]. 707, 2013, 23(6): 914-20.
[10] RAMON Y C A S. Pío del Río-Hortega: A Pioneer in the Pathology of Central Nervous System Tumors [J]. Front Neuroanat, 2016, 10: 13.
[11] REZAIE P, MALE D. Mesoglia & microglia--a historical review of the concept of mononuclear phagocytes within the central nervous system [J]. J Hist Neurosci, 2002, 11(4): 325-74.
[12] PRINZ M, JUNG S, PRILLER J. Microglia Biology: One Century of Evolving Concepts [J]. 6685, 2019, 179(2): 292-311.
[13] GINHOUX F, GRETER M, LEBOEUF M, et al. Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages [J]. 63832, 2010, 330(6005): 841-5.
[14] AJAMI B, BENNETT J L, KRIEGER C, et al. Local self-renewal can sustain 61 参考文献 CNS microglia maintenance and function throughout adult life [J]. Nat Neurosci, 2007, 10(12): 1538-43.
[15] HASHIMOTO D, CHOW A, NOIZAT C, et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes [J]. 43474, 2013, 38(4): 792-804.
[16] NAYAK D, ROTH T L, MCGAVERN D B. Microglia development and function [J]. Annu Rev Immunol, 2014, 32: 367-402.
[17]DECZKOWSKA A, MATCOVITCH-NATAN O, TSITSOU-KAMPELI A, et al. Mef2C restrains microglial inflammatory response and is lost in brain ageing in an IFN-I-dependent manner [J]. 17694, 2017, 8(1): 717.
[18] NIMMERJAHN A, KIRCHHOFF F, HELMCHEN F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo [J]. 63832, 2005, 308(5726): 1314-8.
[19] BEYNON S B, WALKER F R. Microglial activation in the injured and healthy brain: what are we really talking about? Practical and theoretical issues associated with the measurement of changes in microglial morphology [J]. 3708, 2012, 225: 162-71.
[20] HATTORI Y. The behavior and functions of embryonic microglia [J]. Anat Sci Int, 2022, 97(1): 1-14.
[21] UENO M, FUJITA Y, TANAKA T, et al. Layer V cortical neurons require microglial support for survival during postnatal development [J]. Nat Neurosci, 2013, 16(5): 543-51.
[22] STEPHAN A H, BARRES B A, STEVENS B. The complement system: an unexpected role in synaptic pruning during development and disease [J]. Annu Rev Neurosci, 2012, 35: 369-89.
[23] HONG S, BEJA-GLASSER V F, NFONOYIM B M, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models [J]. 63832, 2016, 352(6286): 712-6.
[24] DAVALOS D, GRUTZENDLER J, YANG G, et al. ATP mediates rapid microglial response to local brain injury in vivo [J]. 28771, 2005, 8(6): 7528.
[25] ZONCU R, BAR-PELED L, EFEYAN A, et al. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase [J]. 63832, 2011, 334(6056): 678-83.
[26] GUADAGNO J, XU X, KARAJGIKAR M, et al. Microglia-derived TNFα induces apoptosis in neural precursor cells via transcriptional activation of the Bcl-2 family member Puma [J]. 9696, 2013, 4(3): e538-e.
[27] CUNNINGHAM C L, MARTINEZ-CERDENO V, NOCTOR S C. Microglia regulate the number of neural precursor cells in the developing cerebral 62 参考文献 cortex [J]. J Neurosci, 2013, 33(10): 4216-33.
[28] SWINNEN N S S, AVILA A, ET AL. . . . Complex invasion pattern of the cerebral cortex bymicroglial cells during development of the mouse embryo [J]. 8073, 2013, ;61(2):150-163.
[29]PANG Y, CAI Z, RHODES P G. Disturbance of oligodendrocyte development, hypomyelination and white matter injury in the neonatal rat brain after intracerebral injection of lipopolysaccharide [J]. Brain Res Dev Brain Res, 2003, 140(2): 205-14.
[30] SHERWIN C, FERN R. Acute lipopolysaccharide-mediated injury in neonatal white matter glia: role of TNF-alpha, IL-1beta, and calcium [J]. J Immunol, 2005, 175(1): 155-61.
[31] LI J, RAMENADEN E R, PENG J, et al. Tumor necrosis factor alpha mediates lipopolysaccharide-induced microglial toxicity to developing oligodendrocytes when astrocytes are present [J]. J Neurosci, 2008, 28(20): 5321-30.
[32] KAUR C, RATHNASAMY G, LING E A. Roles of activated microglia in hypoxia induced neuroinflammation in the developing brain and the retina [J]. J Neuroimmune Pharmacol, 2013, 8(1): 66-78.
[33] MCNAMARA N B, MUNRO D A D, BESTARD-CUCHE N, et al. Microglia regulate central nervous system myelin growth and integrity [J]. 69504, 2023, 613(7942): 120-9.
[34] LIDDELOW S A, GUTTENPLAN K A, CLARKE L E, et al. Neurotoxic reactive astrocytes are induced by activated microglia [J]. 69504, 2017, 541(7638): 481-7.
[35] VAINCHTEIN I D, CHIN G, CHO F S, et al. Astrocyte-derived interleukin33 promotes microglial synapse engulfment and neural circuit development [J]. 63832, 2018, 359(6381): 1269-73.
[36] WEI Y, BETTEDI L, TING C Y, et al. The GATOR complex regulates an essential response to meiotic double-stranded breaks in Drosophila [J]. 8713, 2019, 8.
[37] PLATANI M, TRINKLE-MULCAHY L, PORTER M, et al. Mio depletion links mTOR regulation to Aurora A and Plk1 activation at mitotic centrosomes [J]. J Cell Biol, 2015, 210(1): 45-62.
[38] VALENSTEIN M L, ROGALA K B, LALGUDI P V, et al. Structure of the nutrient-sensing hub GATOR2 [J]. 69504, 2022, 607(7919): 610-6.
[39] JIANG C, DAI X, HE S, et al. Ring domains are essential for GATOR2dependent mTORC1 activation [J]. Mol Cell, 2023, 83(1): 74-89.e9.
[40] KOWALSKY A H, NAMKOONG S, METTETAL E, et al. The GATOR2mTORC2 axis mediates Sestrin2-induced AKT Ser/Thr kinase activation [J]. 63 参考文献 J Biol Chem, 2020, 295(7): 1769-80.
[41] BAR-PELED L, CHANTRANUPONG L, CHERNIACK A D, et al. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1 [J]. 63832, 2013, 340(6136): 1100-6.
[42] CAI W, WEI Y, JARNIK M, et al. The GATOR2 Component Wdr24 Regulates TORC1 Activity and Lysosome Function [J]. PLoS Genet, 2016, 12(5): e1006036.
[43] LIPTON J O, SAHIN M. The neurology of mTOR [J]. 18688, 2014, 84(2): 275-91.
[44] FRIAS M A, THOREEN C C, JAFFE J D, et al. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s [J]. Curr Biol, 2006, 16(18): 1865-70.
[45] BALLESTEROS-ÁLVAREZ J, ANDERSEN J K. mTORC2: The other mTOR in autophagy regulation [J]. 11005, 2021, 20(8): e13431.
[46] GURI Y, COLOMBI M, DAZERT E, et al. mTORC2 Promotes Tumorigenesis via Lipid Synthesis [J]. 38585, 2017, 32(6): 807-23.e12.
[47] OH W J, JACINTO E. mTOR complex 2 signaling and functions [J]. 5173, 2011, 10(14): 2305-16.
[48] YUAN H-X, GUAN K-L. Structural insights of mTOR complex 1 [J]. 46351, 2016, 26(3): 267-8.
[49] FOSTER K G, ACOSTA-JAQUEZ H A, ROMEO Y, et al. Regulation of mTOR complex 1 (mTORC1) by raptor Ser863 and multisite phosphorylation [J]. J Biol Chem, 2010, 285(1): 80-94.
[50] KAKUMOTO K, IKEDA J, OKADA M, et al. mLST8 Promotes mTORMediated Tumor Progression [J]. 3752, 2015, 10(4): e0119015.
[51] VAZQUEZ-MARTIN A, CUFí S, OLIVERAS-FERRAROS C, et al. Raptor, a positive regulatory subunit of mTOR complex 1, is a novel phosphoprotein of the rDNA transcription machinery in nucleoli and chromosomal nucleolus organizer regions (NORs) [J]. 5173, 2011, 10(18): 3140-52.
[52] LIU G Y, SABATINI D M. mTOR at the nexus of nutrition, growth, ageing and disease [J]. 113915, 2020, 21(4): 183-203.
[53] KIM J, GUAN K-L. mTOR as a central hub of nutrient signalling and cell growth [J]. 28213, 2019, 21(1): 63-71.
[54] CHEN J, OU Y, LUO R, et al. SAR1B senses leucine levels to regulate mTORC1 signalling [J]. 69504, 2021, 596(7871): 281-4.
[55] SAXTON R A, SABATINI D M. mTOR Signaling in Growth, Metabolism, and Disease [J]. 6685, 2017, 168(6): 960-76.
[56] DISABATO D J, QUAN N, GODBOUT J P. Neuroinflammation: the devil is 64 参考文献 in the details [J]. J Neurochem, 2016, 139 Suppl 2(Suppl 2): 136-53.
[57] SIERRA A, GOTTFRIED-BLACKMORE A C, MCEWEN B S, et al. Microglia derived from aging mice exhibit an altered inflammatory profile [J]. 8073, 2007, 55(4): 412-24.
[58] HE Y, TAYLOR N, YAO X, et al. Mouse primary microglia respond differently to LPS and poly(I:C) in vitro [J]. 4997, 2021, 11(1): 10447.
[59] GAO C, JIANG J, TAN Y, et al. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets [J]. 3812, 2023, 8(1): 359.
[60] D'ERRICO P, ZIEGLER-WALDKIRCH S, AIRES V, et al. Microglia contribute to the propagation of Aβ into unaffected brain tissue [J]. Nat Neurosci, 2022, 25(1): 20-5.
[61] SALZER J L, ZALC B. Myelination [J]. 109, 2016, 26(20): R971-R5.
[62] LUBETZKI C, SOL-FOULON N, DESMAZIèRES A. Nodes of Ranvier during development and repair in the CNS [J]. 44711, 2020, 16(8): 426-39.
[63] BRADL M, LASSMANN H. Oligodendrocytes: biology and pathology [J]. Acta Neuropathol, 2010, 119(1): 37-53.
[64] TAKEBAYASHI H, NABESHIMA Y, YOSHIDA S, et al. The basic helixloop-helix factor olig2 is essential for the development of motoneuron and oligodendrocyte lineages [J]. Curr Biol, 2002, 12(13): 1157-63.
[65] NAVE K A, WERNER H B. Myelination of the nervous system: mechanisms and functions [J]. Annu Rev Cell Dev Biol, 2014, 30: 503-33.
[66] LLOYD A F, MIRON V E. Cellular and Molecular Mechanisms Underpinning Macrophage Activation during Remyelination [J]. Front Cell Dev Biol, 2016, 4: 60.
[67] CENGIZ P, ZAFER D, CHANDRASHEKHAR J H, et al. Developmental differences in microglia morphology and gene expression during normal brain development and in response to hypoxia-ischemia [J]. 4297, 2019, 127: 137-47.
[68] TAY T L, MAI D, DAUTZENBERG J, et al. A new fate mapping system reveals context-dependent random or clonal expansion of microglia [J]. Nat Neurosci, 2017, 20(6): 793-803.
[69] OLMOS-ALONSO A, SCHETTERS S T, SRI S, et al. Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer's-like pathology [J]. 15255, 2016, 139(Pt 3): 891907.
[70] BELLVER-LANDETE V, BRETHEAU F, MAILHOT B, et al. Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury [J]. Nat Commun, 2019, 10(1): 518.
[71] PAYNE S C, BARTLETT C A, HARVEY A R, et al. Myelin sheath 65 参考文献 decompaction, axon swelling, and functional loss during chronic secondary degeneration in rat optic nerve [J]. Invest Ophthalmol Vis Sci, 2012, 53(10): 6093-101.
[72] PATEL J R, WILLIAMS J L, MUCCIGROSSO M M, et al. Astrocyte TNFR2 is required for CXCL12-mediated regulation of oligodendrocyte progenitor proliferation and differentiation within the adult CNS [J]. Acta Neuropathol, 2012, 124(6): 847-60.
[73] ARNETT H A, MASON J, MARINO M, et al. TNF alpha promotes proliferation of oligodendrocyte progenitors and remyelination [J]. Nat Neurosci, 2001, 4(11): 1116-22.
[74] LUO Q D L, ZHANG N, ET AL. A stable and easily reproducible model of focal white matter demyelination. [J]. J Neurosci Methods, 2018: ;307:230-9.
[75] [J].
[76] CHEN L F, GREENE W C. Shaping the nuclear action of NF-kappaB [J]. Nat Rev Mol Cell Biol, 2004, 5(5): 392-401.
[77] GHOSH S, TERGAONKAR V, ROTHLIN C V, et al. Essential role of tuberous sclerosis genes TSC1 and TSC2 in NF-kappaB activation and cell survival [J]. 38585, 2006, 10(3): 215-26.
[78] WEICHHART T, COSTANTINO G, POGLITSCH M, et al. The TSC-mTOR signaling pathway regulates the innate inflammatory response [J]. 43474, 2008, 29(4): 565-77.
[79] BENNETT M L, BENNETT F C, LIDDELOW S A, et al. New tools for studying microglia in the mouse and human CNS [J]. Proc Natl Acad Sci U S A, 2016, 113(12): E1738-46.
[80] HUANG M, MALOVIC E, EALY A, et al. Microglial immune regulation by epigenetic reprogramming through histone H3K27 acetylation in neuroinflammation [J]. Front Immunol, 2023, 14: 1052925.
[81] ZUSSO M, LUNARDI V, FRANCESCHINI D, et al. Ciprofloxacin and levofloxacin attenuate microglia inflammatory response via TLR4/NF-kB pathway [J]. J Neuroinflammation, 2019, 16(1): 148.
[82] CARAVAGNA C, JAOUEN A, DESPLAT-JEGO S, et al. Diversity of innate immune cell subsets across spatial and temporal scales in an EAE mouse model [J]. Sci Rep, 2018, 8(1): 5146.
[83] MONTILLA A, ZABALA A, ER-LUKOWIAK M, et al. Microglia and meningeal macrophages depletion delays the onset of experimental autoimmune encephalomyelitis [J]. 9696, 2023, 14(1): 16.
[84] LI Y, ZHOU D, REN Y, et al. Mir223 restrains autophagy and promotes CNS inflammation by targeting ATG16L1 [J]. 13391, 2019, 15(3): 478-92.
修改评论