中文版 | English
题名

Mios调节小胶质细胞对病理刺激的反应

其他题名
MIOS REGULATED MICROGLIAL RESPONSES TO PATHOLOGICAL CHANLLENGES
姓名
姓名拼音
LI Chenfang
学号
12133039
学位类型
硕士
学位专业
071006 神经生物学
学科门类/专业学位类别
07 理学
导师
肖波
导师单位
神经生物学系
论文答辩日期
2024-05-13
论文提交日期
2024-06-23
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

作为中枢神经系统中驻留的免疫细胞,小胶质细胞在神经系统发育成 熟过程以及维持内环境稳态中发挥着至关重要的作用。生理状态下脑组织 中小胶质细胞具有细小的胞体,长而复杂的分支,但在受到损伤、病原菌 侵袭等病理刺激时,胞体变大,分支缩短、复杂度降低,抵抗病理刺激产 生的负效应。已有研究表明,小胶质细胞的形态变与其功能变化具有一定 联系。细胞的形变和功能改变与营养物质的摄取、蛋白质的合成以及能量 代谢等过程具有密不可分的关系,mTOR 信号通路作为细胞生长、代谢等 生命过程中不可缺少的信号通路之一,在小胶质细胞的形态和功能改变中 起着重要作用,但目前关于该信号通路的正向调控蛋白复合体 GATOR2的 组分—MIOS,对小胶质细胞形态和功能的影响还不清楚。所以我们假设小 胶质细胞中敲除Mios基因会抑制小胶质细胞的形态改变以及功能发挥。 为了验证猜测,我们构建了 TMEM119-CreER/TMEM119-Cre 介导的 小胶质细胞特异性敲除 Mios 的基因工程小鼠,通过构建 LPS 刺激模型以 及 EAE 病理模型,在免疫荧光染色、qRT-PCR、ELISA 等实验方法的辅 助下,检测在小胶质细胞敲除 Mios对其生理状态以及病理刺激下的形态和 功能影响(包括形态变化、增殖能力、炎症因子分泌等),并探究 Mios敲 除对小胶质细胞功能产生影响的作用机制。 我们研究发现小胶质细胞中特异性敲除 Mios,和野生型相比在生理状 态下,分支轻微缩短,胞体轻微变大,但在 LPS 刺激后两者形态变化不明 显。和野生型相比,LPS刺激后小胶质细胞敲除Mios增殖能力没有发生改 变,Mios 敲除组的炎症因子的产生减少,并且吞噬能力受到抑制。这说明 Mios 敲除会抑制小胶质细胞的功能发挥。NF-κB信号通路作为调控多种炎 症因子产生的经典通路,我们猜测 Mios 敲除可能通过抑制 NF-κB信号通 路的激活抑制炎症因子产生,但结果显示 Mios敲除抑制炎症因子的产生和 NF-κB 信号通路无关。研究 Mios 对小胶质细胞对病理刺激反应的调节作 用,有助于我们对小胶质细胞在炎症状态下的形态和功能改变的理解加深, 为研究神经退行性疾病和神经炎症的致病机制和治疗方案奠定理论基础。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] ANDERSON S R, VETTER M L. Developmental roles of microglia: A window into mechanisms of disease [J]. Dev Dyn, 2019, 248(1): 98-117.
[2] CHU F, SHI M, ZHENG C, et al. The roles of macrophages and microglia in multiple sclerosis and experimental autoimmune encephalomyelitis [J]. 3221, 2018, 318: 1-7.
[3] YU Z, YANG Z, REN G, et al. GATOR2 complex-mediated amino acid signaling regulates brain myelination [J]. Proc Natl Acad Sci U S A, 2022, 119(3).
[4] REEMST K, NOCTOR S C, LUCASSEN P J, et al. The Indispensable Roles of Microglia and Astrocytes during Brain Development [J]. Front Hum Neurosci, 2016, 10: 566.
[5] PELVIG D P, PAKKENBERG H, STARK A K, et al. Neocortical glial cell numbers in human brains [J]. Neurobiol Aging, 2008, 29(11): 1754-62.
[6] AZEVEDO F A, CARVALHO L R, GRINBERG L T, et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain [J]. J Comp Neurol, 2009, 513(5): 532-41.
[7] LU P P, RAMANAN N. A critical cell-intrinsic role for serum response factor in glial specification in the CNS [J]. J Neurosci, 2012, 32(23): 801223.
[8] ROWITCH D H, KRIEGSTEIN A R. Developmental genetics of vertebrate glial–cell specification [J]. 69504, 2010, 468(7321): 214-22.
[9] ZUCHERO J B, BARRES B A. Intrinsic and extrinsic control of oligodendrocyte development [J]. 707, 2013, 23(6): 914-20.
[10] RAMON Y C A S. Pío del Río-Hortega: A Pioneer in the Pathology of Central Nervous System Tumors [J]. Front Neuroanat, 2016, 10: 13.
[11] REZAIE P, MALE D. Mesoglia & microglia--a historical review of the concept of mononuclear phagocytes within the central nervous system [J]. J Hist Neurosci, 2002, 11(4): 325-74.
[12] PRINZ M, JUNG S, PRILLER J. Microglia Biology: One Century of Evolving Concepts [J]. 6685, 2019, 179(2): 292-311.
[13] GINHOUX F, GRETER M, LEBOEUF M, et al. Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages [J]. 63832, 2010, 330(6005): 841-5.
[14] AJAMI B, BENNETT J L, KRIEGER C, et al. Local self-renewal can sustain 61 参考文献 CNS microglia maintenance and function throughout adult life [J]. Nat Neurosci, 2007, 10(12): 1538-43.
[15] HASHIMOTO D, CHOW A, NOIZAT C, et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes [J]. 43474, 2013, 38(4): 792-804.
[16] NAYAK D, ROTH T L, MCGAVERN D B. Microglia development and function [J]. Annu Rev Immunol, 2014, 32: 367-402.
[17]DECZKOWSKA A, MATCOVITCH-NATAN O, TSITSOU-KAMPELI A, et al. Mef2C restrains microglial inflammatory response and is lost in brain ageing in an IFN-I-dependent manner [J]. 17694, 2017, 8(1): 717.
[18] NIMMERJAHN A, KIRCHHOFF F, HELMCHEN F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo [J]. 63832, 2005, 308(5726): 1314-8.
[19] BEYNON S B, WALKER F R. Microglial activation in the injured and healthy brain: what are we really talking about? Practical and theoretical issues associated with the measurement of changes in microglial morphology [J]. 3708, 2012, 225: 162-71.
[20] HATTORI Y. The behavior and functions of embryonic microglia [J]. Anat Sci Int, 2022, 97(1): 1-14.
[21] UENO M, FUJITA Y, TANAKA T, et al. Layer V cortical neurons require microglial support for survival during postnatal development [J]. Nat Neurosci, 2013, 16(5): 543-51.
[22] STEPHAN A H, BARRES B A, STEVENS B. The complement system: an unexpected role in synaptic pruning during development and disease [J]. Annu Rev Neurosci, 2012, 35: 369-89.
[23] HONG S, BEJA-GLASSER V F, NFONOYIM B M, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models [J]. 63832, 2016, 352(6286): 712-6.
[24] DAVALOS D, GRUTZENDLER J, YANG G, et al. ATP mediates rapid microglial response to local brain injury in vivo [J]. 28771, 2005, 8(6): 7528.
[25] ZONCU R, BAR-PELED L, EFEYAN A, et al. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase [J]. 63832, 2011, 334(6056): 678-83.
[26] GUADAGNO J, XU X, KARAJGIKAR M, et al. Microglia-derived TNFα induces apoptosis in neural precursor cells via transcriptional activation of the Bcl-2 family member Puma [J]. 9696, 2013, 4(3): e538-e.
[27] CUNNINGHAM C L, MARTINEZ-CERDENO V, NOCTOR S C. Microglia regulate the number of neural precursor cells in the developing cerebral 62 参考文献 cortex [J]. J Neurosci, 2013, 33(10): 4216-33.
[28] SWINNEN N S S, AVILA A, ET AL. . . . Complex invasion pattern of the cerebral cortex bymicroglial cells during development of the mouse embryo [J]. 8073, 2013, ;61(2):150-163.
[29]PANG Y, CAI Z, RHODES P G. Disturbance of oligodendrocyte development, hypomyelination and white matter injury in the neonatal rat brain after intracerebral injection of lipopolysaccharide [J]. Brain Res Dev Brain Res, 2003, 140(2): 205-14.
[30] SHERWIN C, FERN R. Acute lipopolysaccharide-mediated injury in neonatal white matter glia: role of TNF-alpha, IL-1beta, and calcium [J]. J Immunol, 2005, 175(1): 155-61.
[31] LI J, RAMENADEN E R, PENG J, et al. Tumor necrosis factor alpha mediates lipopolysaccharide-induced microglial toxicity to developing oligodendrocytes when astrocytes are present [J]. J Neurosci, 2008, 28(20): 5321-30.
[32] KAUR C, RATHNASAMY G, LING E A. Roles of activated microglia in hypoxia induced neuroinflammation in the developing brain and the retina [J]. J Neuroimmune Pharmacol, 2013, 8(1): 66-78.
[33] MCNAMARA N B, MUNRO D A D, BESTARD-CUCHE N, et al. Microglia regulate central nervous system myelin growth and integrity [J]. 69504, 2023, 613(7942): 120-9.
[34] LIDDELOW S A, GUTTENPLAN K A, CLARKE L E, et al. Neurotoxic reactive astrocytes are induced by activated microglia [J]. 69504, 2017, 541(7638): 481-7.
[35] VAINCHTEIN I D, CHIN G, CHO F S, et al. Astrocyte-derived interleukin33 promotes microglial synapse engulfment and neural circuit development [J]. 63832, 2018, 359(6381): 1269-73.
[36] WEI Y, BETTEDI L, TING C Y, et al. The GATOR complex regulates an essential response to meiotic double-stranded breaks in Drosophila [J]. 8713, 2019, 8.
[37] PLATANI M, TRINKLE-MULCAHY L, PORTER M, et al. Mio depletion links mTOR regulation to Aurora A and Plk1 activation at mitotic centrosomes [J]. J Cell Biol, 2015, 210(1): 45-62.
[38] VALENSTEIN M L, ROGALA K B, LALGUDI P V, et al. Structure of the nutrient-sensing hub GATOR2 [J]. 69504, 2022, 607(7919): 610-6.
[39] JIANG C, DAI X, HE S, et al. Ring domains are essential for GATOR2dependent mTORC1 activation [J]. Mol Cell, 2023, 83(1): 74-89.e9.
[40] KOWALSKY A H, NAMKOONG S, METTETAL E, et al. The GATOR2mTORC2 axis mediates Sestrin2-induced AKT Ser/Thr kinase activation [J]. 63 参考文献 J Biol Chem, 2020, 295(7): 1769-80.
[41] BAR-PELED L, CHANTRANUPONG L, CHERNIACK A D, et al. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1 [J]. 63832, 2013, 340(6136): 1100-6.
[42] CAI W, WEI Y, JARNIK M, et al. The GATOR2 Component Wdr24 Regulates TORC1 Activity and Lysosome Function [J]. PLoS Genet, 2016, 12(5): e1006036.
[43] LIPTON J O, SAHIN M. The neurology of mTOR [J]. 18688, 2014, 84(2): 275-91.
[44] FRIAS M A, THOREEN C C, JAFFE J D, et al. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s [J]. Curr Biol, 2006, 16(18): 1865-70.
[45] BALLESTEROS-ÁLVAREZ J, ANDERSEN J K. mTORC2: The other mTOR in autophagy regulation [J]. 11005, 2021, 20(8): e13431.
[46] GURI Y, COLOMBI M, DAZERT E, et al. mTORC2 Promotes Tumorigenesis via Lipid Synthesis [J]. 38585, 2017, 32(6): 807-23.e12.
[47] OH W J, JACINTO E. mTOR complex 2 signaling and functions [J]. 5173, 2011, 10(14): 2305-16.
[48] YUAN H-X, GUAN K-L. Structural insights of mTOR complex 1 [J]. 46351, 2016, 26(3): 267-8.
[49] FOSTER K G, ACOSTA-JAQUEZ H A, ROMEO Y, et al. Regulation of mTOR complex 1 (mTORC1) by raptor Ser863 and multisite phosphorylation [J]. J Biol Chem, 2010, 285(1): 80-94.
[50] KAKUMOTO K, IKEDA J, OKADA M, et al. mLST8 Promotes mTORMediated Tumor Progression [J]. 3752, 2015, 10(4): e0119015.
[51] VAZQUEZ-MARTIN A, CUFí S, OLIVERAS-FERRAROS C, et al. Raptor, a positive regulatory subunit of mTOR complex 1, is a novel phosphoprotein of the rDNA transcription machinery in nucleoli and chromosomal nucleolus organizer regions (NORs) [J]. 5173, 2011, 10(18): 3140-52.
[52] LIU G Y, SABATINI D M. mTOR at the nexus of nutrition, growth, ageing and disease [J]. 113915, 2020, 21(4): 183-203.
[53] KIM J, GUAN K-L. mTOR as a central hub of nutrient signalling and cell growth [J]. 28213, 2019, 21(1): 63-71.
[54] CHEN J, OU Y, LUO R, et al. SAR1B senses leucine levels to regulate mTORC1 signalling [J]. 69504, 2021, 596(7871): 281-4.
[55] SAXTON R A, SABATINI D M. mTOR Signaling in Growth, Metabolism, and Disease [J]. 6685, 2017, 168(6): 960-76.
[56] DISABATO D J, QUAN N, GODBOUT J P. Neuroinflammation: the devil is 64 参考文献 in the details [J]. J Neurochem, 2016, 139 Suppl 2(Suppl 2): 136-53.
[57] SIERRA A, GOTTFRIED-BLACKMORE A C, MCEWEN B S, et al. Microglia derived from aging mice exhibit an altered inflammatory profile [J]. 8073, 2007, 55(4): 412-24.
[58] HE Y, TAYLOR N, YAO X, et al. Mouse primary microglia respond differently to LPS and poly(I:C) in vitro [J]. 4997, 2021, 11(1): 10447.
[59] GAO C, JIANG J, TAN Y, et al. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets [J]. 3812, 2023, 8(1): 359.
[60] D'ERRICO P, ZIEGLER-WALDKIRCH S, AIRES V, et al. Microglia contribute to the propagation of Aβ into unaffected brain tissue [J]. Nat Neurosci, 2022, 25(1): 20-5.
[61] SALZER J L, ZALC B. Myelination [J]. 109, 2016, 26(20): R971-R5.
[62] LUBETZKI C, SOL-FOULON N, DESMAZIèRES A. Nodes of Ranvier during development and repair in the CNS [J]. 44711, 2020, 16(8): 426-39.
[63] BRADL M, LASSMANN H. Oligodendrocytes: biology and pathology [J]. Acta Neuropathol, 2010, 119(1): 37-53.
[64] TAKEBAYASHI H, NABESHIMA Y, YOSHIDA S, et al. The basic helixloop-helix factor olig2 is essential for the development of motoneuron and oligodendrocyte lineages [J]. Curr Biol, 2002, 12(13): 1157-63.
[65] NAVE K A, WERNER H B. Myelination of the nervous system: mechanisms and functions [J]. Annu Rev Cell Dev Biol, 2014, 30: 503-33.
[66] LLOYD A F, MIRON V E. Cellular and Molecular Mechanisms Underpinning Macrophage Activation during Remyelination [J]. Front Cell Dev Biol, 2016, 4: 60.
[67] CENGIZ P, ZAFER D, CHANDRASHEKHAR J H, et al. Developmental differences in microglia morphology and gene expression during normal brain development and in response to hypoxia-ischemia [J]. 4297, 2019, 127: 137-47.
[68] TAY T L, MAI D, DAUTZENBERG J, et al. A new fate mapping system reveals context-dependent random or clonal expansion of microglia [J]. Nat Neurosci, 2017, 20(6): 793-803.
[69] OLMOS-ALONSO A, SCHETTERS S T, SRI S, et al. Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer's-like pathology [J]. 15255, 2016, 139(Pt 3): 891907.
[70] BELLVER-LANDETE V, BRETHEAU F, MAILHOT B, et al. Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury [J]. Nat Commun, 2019, 10(1): 518.
[71] PAYNE S C, BARTLETT C A, HARVEY A R, et al. Myelin sheath 65 参考文献 decompaction, axon swelling, and functional loss during chronic secondary degeneration in rat optic nerve [J]. Invest Ophthalmol Vis Sci, 2012, 53(10): 6093-101.
[72] PATEL J R, WILLIAMS J L, MUCCIGROSSO M M, et al. Astrocyte TNFR2 is required for CXCL12-mediated regulation of oligodendrocyte progenitor proliferation and differentiation within the adult CNS [J]. Acta Neuropathol, 2012, 124(6): 847-60.
[73] ARNETT H A, MASON J, MARINO M, et al. TNF alpha promotes proliferation of oligodendrocyte progenitors and remyelination [J]. Nat Neurosci, 2001, 4(11): 1116-22.
[74] LUO Q D L, ZHANG N, ET AL. A stable and easily reproducible model of focal white matter demyelination. [J]. J Neurosci Methods, 2018: ;307:230-9.
[75] [J].
[76] CHEN L F, GREENE W C. Shaping the nuclear action of NF-kappaB [J]. Nat Rev Mol Cell Biol, 2004, 5(5): 392-401.
[77] GHOSH S, TERGAONKAR V, ROTHLIN C V, et al. Essential role of tuberous sclerosis genes TSC1 and TSC2 in NF-kappaB activation and cell survival [J]. 38585, 2006, 10(3): 215-26.
[78] WEICHHART T, COSTANTINO G, POGLITSCH M, et al. The TSC-mTOR signaling pathway regulates the innate inflammatory response [J]. 43474, 2008, 29(4): 565-77.
[79] BENNETT M L, BENNETT F C, LIDDELOW S A, et al. New tools for studying microglia in the mouse and human CNS [J]. Proc Natl Acad Sci U S A, 2016, 113(12): E1738-46.
[80] HUANG M, MALOVIC E, EALY A, et al. Microglial immune regulation by epigenetic reprogramming through histone H3K27 acetylation in neuroinflammation [J]. Front Immunol, 2023, 14: 1052925.
[81] ZUSSO M, LUNARDI V, FRANCESCHINI D, et al. Ciprofloxacin and levofloxacin attenuate microglia inflammatory response via TLR4/NF-kB pathway [J]. J Neuroinflammation, 2019, 16(1): 148.
[82] CARAVAGNA C, JAOUEN A, DESPLAT-JEGO S, et al. Diversity of innate immune cell subsets across spatial and temporal scales in an EAE mouse model [J]. Sci Rep, 2018, 8(1): 5146.
[83] MONTILLA A, ZABALA A, ER-LUKOWIAK M, et al. Microglia and meningeal macrophages depletion delays the onset of experimental autoimmune encephalomyelitis [J]. 9696, 2023, 14(1): 16.
[84] LI Y, ZHOU D, REN Y, et al. Mir223 restrains autophagy and promotes CNS inflammation by targeting ATG16L1 [J]. 13391, 2019, 15(3): 478-92.

所在学位评定分委会
生物学
国内图书分类号
Q189
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765858
专题南方科技大学
生命科学学院_生物系
推荐引用方式
GB/T 7714
李晨芳. Mios调节小胶质细胞对病理刺激的反应[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12133039-李晨芳-生物系.pdf(3803KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李晨芳]的文章
百度学术
百度学术中相似的文章
[李晨芳]的文章
必应学术
必应学术中相似的文章
[李晨芳]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。