[1] ZIDAN M A, STRACHAN J P, LU W D. The future of electronics based on memristive systems [J]. Nature Electronics, 2018, 1(1): 22-9.
[2] CHUA L. Memristor-The missing circuit element [J]. IEEE Transactions on Circuit Theory, 1971, 18(5): 507-19.
[3] STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memristor found [J]. Nature, 2008, 453(7191): 80-3.
[4] LEE M-J, LEE C B, LEE D, et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures [J]. Nature Materials, 2011, 10(8): 625-30.
[5] GERGEL-HACKETT N, HAMADANI B, DUNLAP B, et al. A Flexible Solution-Processed Memristor [J]. IEEE Electron Device Letters, 2009, 30(7): 706-8.
[6] BORGHETTI J, SNIDER G S, KUEKES P J, et al. ‘Memristive’ switches enable ‘stateful’ logic operations via material implication [J]. Nature, 2010, 464(7290): 873-6.
[7] GOVOREANU B, KAR G S, CHEN Y Y, et al. 10×10nm2 Hf/HfOx crossbar resistive RAM with excellent performance, reliability and low-energy operation; proceedings of the 2011 International Electron Devices Meeting, F 5-7 Dec. 2011, 2011 [C].
[8] SHAN X, ZHAO C, WANG X, et al. Plasmonic Optoelectronic Memristor Enabling Fully Light-Modulated Synaptic Plasticity for Neuromorphic Vision [J]. Advanced Science, 2022, 9(6): 2104632.
[9] WU F, CAO P, PENG Z, et al. Memristor Based on TiOx/Al2O3 Bilayer as Flexible Artificial Synapse for Neuromorphic Electronics [J]. IEEE Transactions on Electron Devices, 2022, 69(1): 375-9.
[10] LIU L, XIONG W, LIU Y, et al. Designing High-Performance Storage in HfO2/BiFeO3 Memristor for Artificial Synapse Applications [J]. Advanced Electronic Materials, 2020, 6(2): 1901012.
[11] LIU T Y, YAN T H, SCHEUERLEIN R, et al. A 130.7mm2 2-layer 32Gb ReRAM memory device in 24nm technology; proceedings of the 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, F 17-21 Feb. 2013, 2013 [C].
[12] WANG Z, LI C, SONG W, et al. Reinforcement learning with analogue memristor arrays [J]. Nature Electronics, 2019, 2(3): 115-24.
[13] CHEN J, PAN W Q, LI Y, et al. High-Precision Symmetric Weight Update of Memristor by Gate Voltage Ramping Method for Convolutional Neural Network Accelerator [J]. IEEE Electron Device Letters, 2020, 41(3): 353-6.
[14] HUANG J, YANG S, TANG X, et al. Flexible, Transparent And Wafer‐scale Artificial Synapse Array Based on TiO x /Ti 3 C 2 T x Film for Neuromorphic Computing [J]. Advanced Materials, 2023, 35.
[15] LI C, HU M, LI Y, et al. Analogue signal and image processing with large memristor crossbars [J]. Nature Electronics, 2018, 1(1): 52-9.
[16] YAO P, WU H, GAO B, et al. Face classification using electronic synapses [J]. Nature Communications, 2017, 8(1): 15199.
[17] DESHPANDE V, NAIR K S, HOLZER M, et al. CMOS back-end-of-line compatible ferroelectric tunnel junction devices [J]. Solid-State Electronics, 2021, 186: 108054.
[18] GRENOUILLET L, FRANCOIS T, COIGNUS J, et al. Nanosecond laser anneal (NLA) for Si-implanted HfO2 ferroelectric memories integrated in back-end of line (BEOL); proceedings of the 2020 IEEE Symposium on VLSI Technology, F, 2020 [C]. IEEE.
[19] HUR J, LUO Y C, TASNEEM N, et al. Ferroelectric Hafnium Zirconium Oxide Compatible With Back-End-of-Line Process [J]. IEEE Transactions on Electron Devices, 2021, 68(7): 3176-80.
[20] KIM K-H, OH S, FIAGBENU M M A, et al. Scalable CMOS back-end-of-line-compatible AlScN/two-dimensional channel ferroelectric field-effect transistors [J]. Nature Nanotechnology, 2023.
[21] CHEN H, LI L, WANG J, et al. Performance Optimization of Atomic Layer Deposited HfOx Memristor by Annealing With Back-End-of-Line Compatibility [J]. IEEE Electron Device Letters, 2022, 43(7): 1141-4.
[22] ZAHEER M, BACHA A-U-R, NABI I, et al. All Solution-Processed Inorganic, Multilevel Memristors Utilizing Liquid Metals Electrodes Suitable for Analog Computing [J]. ACS Omega, 2022, 7(45): 40911-9.
[23] LAN J, ZHU Q, ZHANG Y, et al. Zinc-Alloyed HFO2 Synaptic RRAM with Operating Voltage and Switching Energy Enhancement; proceedings of the 2022 China Semiconductor Technology International Conference (CSTIC), F 20-21 June 2022, 2022 [C].
[24] GUO T, TAN T, LIU Z. Enhanced resistive switching behaviors of HfO2:Cu film with annealing process [J]. Vacuum, 2015, 114: 78-81.
[25] TAN T, GUO T, CHEN X, et al. Impacts of Au-doping on the performance of Cu/HfO2/Pt RRAM devices [J]. Applied surface science, 2014, 317: 982-5.
[26] CHOI B J, TORREZAN A C, NORRIS K J, et al. Electrical performance and scalability of Pt dispersed SiO2 nanometallic resistance switch [J]. Nano letters, 2013, 13(7): 3213-7.
[27] BOUAZIZ J, ROMEO P R, BABOUX N, et al. Huge reduction of the wake-up effect in ferroelectric HZO thin films [J]. ACS Applied Electronic Materials, 2019, 1(9): 1740-5.
[28] CAO R, SONG B, SHANG D, et al. Improvement of Endurance in HZO-Based Ferroelectric Capacitor Using Ru Electrode [J]. IEEE Electron Device Letters, 2019, 40(11): 1744-7.
[29] HU Y, RABELO M, KIM T, et al. Ferroelectricity Based Memory Devices: New-Generation of Materials and Applications [J]. Transactions on Electrical and Electronic Materials, 2023.
[30] BÉGON‐LOURS L, HALTER M, PUGLISI F M, et al. Scaled, Ferroelectric Memristive Synapse for Back‐End‐of‐Line Integration with Neuromorphic Hardware [J]. Advanced Electronic Materials, 2022, 8(6): 2101395.
[31] SUNG C, HWANG H, YOO I K. Perspective: A review on memristive hardware for neuromorphic computation [J]. Journal of Applied Physics, 2018, 124(15).
[32] ZHAO Z, YAN X. Ferroelectric memristor based on Hf0. 5Zr0. 5O2 thin film combining memristive and neuromorphic functionalities [J]. physica status solidi (RRL)–Rapid Research Letters, 2020, 14(9): 2000224.
[33] LAN J, LI Z, CHEN Z, et al. Improved Performance of HfxZnyO-Based RRAM and its Switching Characteristics down to 4 K Temperature [J]. Advanced Electronic Materials, 2023, 9(3): 2201250.
[34] ZHANG L, HUANG H, YE C, et al. Exploration of highly enhanced performance and resistive switching mechanism in hafnium doping ZnO memristive device [J]. Semiconductor Science and Technology, 2018, 33(8).
[35] RAJARATHINAM S, GANGULY U, VENKATARAMANI N. Impact of oxygen partial pressure on resistive switching characteristics of PLD deposited ZnFe2O4 thin films for RRAM devices [J]. Ceram Int, 2022, 48(6): 7876-84.
[36] LI X Y, WANG Y L, LIU W F, et al. Study of oxygen vacancies' influence on the lattice parameter in ZnO thin film [J]. Mater Lett, 2012, 85: 25-8.
[37] SHARMA U, SINGH C, VARMA V M, et al. Preparation and characterization of hafnium-zirconium oxide ceramics as a CMOS compatible material for non-volatile memories [J]. B Mater Sci, 2023, 46(2).
[38] RYU S W, CHO S, PARK J, et al. Effects of ZrO2 doping on HfO2 resistive switching memory characteristics [J]. Appl Phys Lett, 2014, 105(7).
[39] XU H T, WU C J, ZHAO X H, et al. Improved Resistance Switching Stability in Fe-Doped ZnO Thin Films Through Pulsed Magnetic Field Annealing [J]. Nanoscale Res Lett, 2017, 12.
[40] KU B, ABBAS Y, SOKOLOV A S, et al. Interface engineering of ALD HfO2-based RRAM with Ar plasma treatment for reliable and uniform switching behaviors [J]. J Alloy Compd, 2018, 735: 1181-8.
[41] WANG T Y, YU L J, CHEN L, et al. Atomic layer deposited Hf0.5Zr0.5O2-based flexible RRAM; proceedings of the 2017 IEEE 12th International Conference on ASIC (ASICON), F 25-28 Oct. 2017, 2017 [C].
[42] WU Z, ZHU J, ZHOU Y, et al. Bipolar Resistive Switching Properties of Hf0.5Zr0.5O2 Thin Film for Flexible Memory Applications [J]. physica status solidi (a), 2018, 215(1): 1700396.
[43] ISMAIL M, BATOOL Z, MAHMOOD K, et al. Resistive switching characteristics and mechanism of bilayer HfO2/ZrO2 structure deposited by radio-frequency sputtering for nonvolatile memory [J]. Results Phys, 2020, 18.
[44] ISMAIL M, MAHATA C, KWON O, et al. Neuromorphic Synapses with High Switching Uniformity and Multilevel Memory Storage Enabled through a Hf-Al-O Alloy for Artificial Intelligence [J]. Acs Applied Electronic Materials, 2022, 4(3): 1288-300.
[45] JERRY M, CHEN P-Y, ZHANG J, et al. Ferroelectric FET analog synapse for acceleration of deep neural network training [J]. 2017 IEEE International Electron Devices Meeting (IEDM), 2017: 6.2.1-6.2.4.
[46] PARK S, SHERI A, KIM J, et al. Neuromorphic speech systems using advanced ReRAM-based synapse; proceedings of the 2013 IEEE International Electron Devices Meeting, F 9-11 Dec. 2013, 2013 [C].
[47] JO S H, CHANG T, EBONG I, et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems [J]. Nano Letters, 2010, 10(4): 1297-301.
[48] KOHONEN T. Essentials of the self-organizing map [J]. Neural Networks, 2013, 37: 52-65.
[49] KOHONEN T. The self-organizing map [J]. Proceedings of the IEEE, 1990, 78(9): 1464-80.
[50] MILJKOVIĆ D. Brief review of self-organizing maps; proceedings of the 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), F 22-26 May 2017, 2017 [C].
[51] KOHONEN T. Exploration of very large databases by self-organizing maps; proceedings of the Proceedings of International Conference on Neural Networks (ICNN'97), F 12-12 June 1997, 1997 [C].
[52] VESANTO J, ALHONIEMI E. Clustering of the self-organizing map [J]. IEEE Transactions on Neural Networks, 2000, 11(3): 586-600.
[53] LIN Y H, WANG C H, LEE M H, et al. Performance Impacts of Analog ReRAM Non-ideality on Neuromorphic Computing [J]. IEEE Transactions on Electron Devices, 2019, 66(3): 1289-95.
[54] KOHONEN T, OJA E, SIMULA O, et al. Engineering applications of the self-organizing map [J]. Proceedings of the IEEE, 1996, 84(10): 1358-84.
[55] BAÇÃO F, LOBO V, PAINHO M. Self-organizing Maps as Substitutes for K-Means Clustering; proceedings of the Computational Science – ICCS 2005, Berlin, Heidelberg, F 2005//, 2005 [C]. Springer Berlin Heidelberg.
[56] THAI L H, HAI T S, THUY N T J I J O I T, et al. Image classification using support vector machine and artificial neural network [J]. 2012, 4(5): 32-8.
[57] BALA R, KUMAR D J I J C I R. Classification using ANN: A review [J]. 2017, 13(7): 1811-20.
[58] THOMAS A. Memristor-based neural networks [J]. Journal of Physics D: Applied Physics, 2013, 46(9): 093001.
[59] WANG Z, JOSHI S, SAVEL’EV S, et al. Fully memristive neural networks for pattern classification with unsupervised learning [J]. Nature Electronics, 2018, 1(2): 137-45.
[60] KIM H, SAH M P, YANG C, et al. Neural Synaptic Weighting With a Pulse-Based Memristor Circuit [J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, 59(1): 148-58.
[61] XIAO H, RASUL K, VOLLGRAF R. Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms [J]. ArXiv, 2017, abs/1708.07747.
[62] LIU Y, WEISBERG R H, MOOERS C N K. Performance evaluation of the self-organizing map for feature extraction [J]. J Geophys Res, 2006, 111(C5).
[63] GREESHMA K, SREEKUMAR K J I J O R T, ENGINEERING. Hyperparameter optimization and regularization on Fashion-MNIST classification [J]. 2019, 8(2): 3713-9.
[64] MANGIAMELI P, CHEN S K, WEST D. A comparison of SOM neural network and hierarchical clustering methods [J]. European Journal of Operational Research, 1996, 93(2): 402-17.
[65] E I KNUDSEN, S LAC A, ESTERLY S D. Computational Maps in the Brain [J]. Annu Rev Neurosci, 1987, 10(1): 41-65.
[66] GHASEMINEZHAD M H, KARAMI A. A novel self-organizing map (SOM) neural network for discrete groups of data clustering [J]. Applied Soft Computing, 2011, 11(4): 3771-8.
修改评论