中文版 | English
题名

Li2S-Li3N固态电解质的高温高压合成及电化学性能表征

其他题名
HIGH-TEMPERATURE HIGH-PRESSURE SYNTHESIS AND ELECTROCHEMICAL CHARACTERIZATION OF Li2S-Li3N SOLID STATE ELECTROLYTE
姓名
姓名拼音
ZOU Jialing
学号
12232940
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
王李平
导师单位
前沿与交叉科学研究院
论文答辩日期
2024-05-08
论文提交日期
2024-06-23
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

固态锂离子电池凭借其结构紧凑、安全性能高以及能量密度大等特点, 在电池技术领域备受瞩目。其中,研发出性能卓越的固态电解质显得尤为 重要。在诸多固态电解质材料中,硫化锂的电化学窗口相对较宽,然而, 其在室温下的锂离子电导率却不尽如人意。相较之下,氮化锂在室温下展 现出了理想的锂离子电导率,但是它的电化学稳定性问题仍然突出。值得 注意的是,两者都表现出了对锂金属的良好的电化学稳定性。所以如果将 其应用于全固态电池中,使锂金属负极成为可能,则可以提高电池的整体 能量密度。 本研究希望结合硫化锂和氮化锂两者的优点,采用球磨-高温高压的方 法将氮化锂掺杂进硫化锂,合成电化学性能优异的Li2S1-1.5xNx(0 ≤ x < 2/3) 系列固态电解质。数据表明,在一定温压范围内,温度越高,压力越大, 保温时间越长,越有利于氮化锂的掺杂。通过调整相关参数,本研究确定 了样品合成的最佳工艺条件。我们成功合成了 Li2S1-1.5xNx 系列固态电解质, 并对其进行了深入的表征分析。在离子电导率方面,样品的锂离子电导率 与氮化锂掺杂量呈正相关,其中x = 0.6时,样品的离子电导率最高(25 ℃, 4.53×10-4 S cm-1),活化能也达到最小值(0.28 eV)。在晶体结构解析方 面,Li2S0.25N0.5 呈现立方相结构(Fm3 ̅m),晶格常数为 5.3126 Å,远低于 纯相硫化锂。这表明晶格常数的减小,缩短了锂离子间距离,有助于离子 的高效输运。此外,氮占据了硫的位置的同时还产生了阴离子空位,锂占 据 8c 位点的同时还部分占据 32f 位点,这进一步提升了电解质的离子传输 性能。同时结合同步热分析数据可知,该电解质在较宽的温度范围内能保 持良好的热稳定性,使其能够适应不同工作环境下的温度变化。在电池性 能测试方面,基于 Li2S0.25N0.5 组装的锂对称电池和锂铟对称电池均可稳定 循环数千圈以上,说明该固态电解质对锂金属及锂铟合金负极具有良好的 兼容性。此外,以 LiCoO2 和 TiS2 为正极的全固态电池也都展现出了优异 的循环性能和较高的容量保持率,进一步验证了该系列固态电解质在固态 锂电池中的应用潜力,为新型固态电解质的研发提供了新思路。

其他摘要

Solid-state lithium-ion batteries have attracted much attention in the field of battery technology due to their compact structure, high safety and high energy density. As of the current issues related to solid-state batteries, the development of solid electrolytes with excellent performance is particularly important. Among the many solid-state electrolyte materials, Li2S has a relatively wide electrochemical window (~2.3 V), however, its lithium-ion conductivity at room temperature is low. In contrast, Li3N exhibits ideal lithium-ion conductivity at room temperature, but its electrochemical window is narrow (~0.44 V). Notably, both exhibit good electrochemical stability to lithium metal, a property that, if applied to solid-state lithium metal batteries, could lead to the improvement of the overall energy density of the battery. In this study, we hope to harvest the advantages of Li2S and Li3N through the use of ball milling technique and high-temperature high-pressure (HPHT) method to dope Li3N into Li2S and synthesize Li2S1-1.5xNx series (0 ≤ x < 2/3) solid electrolytes. The results show that the increase of temperature, pressure and holding duration is more conducive to the doping of Li3N in Li2S. By adjusting the relevant parameters, the optimal conditions for sample synthesis were determined. We successfully synthesized and characterized the Li2S1 1.5xNx series solid electrolytes. The lithium ionic conductivity of the sample is positively correlated with the doping amount of Li3N. The ionic conductivity of Li2S0.1N0.6 is the highest (25 ℃, 4.53×10-4 S cm-1), while the corresponding Ea is also the lowest (0.28 eV). In terms of crystal structure analysis, Li2S0.25N0.5 possesses a cubic phase structure (Fm3 ̅m) with a lattice constant of 5.3126 Å, which is much lower than that of pure phase Li2S. The reduction of the lattice constant shortens the distance between lithium ions within the crystalline structure, which is conducive to the efficient transport of lithium ions through hopping mechanism. In addition, nitrogen occupies the position of sulfur and in the meantime also creates anion vacancies, and lithium occupies the 8c site while also partially occupying the 32f site, which further improves the ionic transport performance of the electrolyte. With the combined TG-DSC analysis, it can be seen that the electrolytes as synthesized have good thermal stability in a wide temperature range, so that it can adapt to temperature changes in different working environments. In terms of battery performance testing, the lithium symmetrical battery and lithium-indium symmetrical battery assembled based on Li2S0.25N0.5 can be stably cycled for more than thousands of cycles, indicating that the solid-state electrolyte has good compatibility with lithium metal and lithium indium alloy anodes. In addition, all-solid-state batteries with LiCoO2 and TiS2 as the cathodes also show excellent cycling performance and high capacity retention, which further verify the application potential of this series of solid-state electrolytes in solid-state lithium batteries and provide new ideas for the research and development of new solid-state electrolytes.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-07
参考文献列表

[1] GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: a perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176.
[2] WANG Y, ZHANG Q H, XUE Z C, et al. An in situ formed surface coating layer enabling LiCoO2 with stable 4.6 V high-voltage cycle performances[J]. Advanced Energy Materials, 2020, 10(28): 2001413.
[3] GUO X L, LAN T, ZHANG L, et al. A stable filamentous coaxial microelectrode for Li-ion batteries: a case of olivine LiFePO4[J]. Chemical communications, 2019, 55(24): 3529-3531.
[4] BAN C M, YIN W J, TANG H W, et al. A novel codoping approach for enhancing the performance of LiFePO4 cathodes[J]. Advanced Energy Materials, 2012, 2(8): 1028-1032.
[5] TOMASZEWSKA A, CHU Z Y, FENG X N, et al. Lithium-ion battery fast charging[J]: A review. ETransportation, 2019, 1: 100011.
[6] QIAN J, ZHU T, HUANG D, et al. Insights into the enhanced reversibility of graphite anode upon fast charging through Li reservoir[J]. ACS nano, 2022, 16(12): 20197-20205.
[7] KIM J, JEGHAN S M N, LEE G. Superior fast-charging capability of graphite anode via facile surface treatment for lithium-ion batteries[J]. Microporous and Mesoporous Materials, 2020, 305: 110325.
[8] HE Y S, MUHETAER A, LI J M, et al. Ultrathin Li4Ti5O12 nanosheet based hierarchical microspheres for high-rate and long-cycle life Li-ion batteries[J]. Advanced Energy Materials, 2017, 7(21): 1700950.
[9] KIM H, SEO M, PARK M H, et al. A critical size of silicon nano-anodes for lithium rechargeable batteries[J]. Angewandte Chemie International Edition, 2010, 49(12): 2146-2149.
[10] CHAE, S J, XU Y B, YI R, et al. A micrometer-sized silicon/carbon composite anode synthesized by impregnation of petroleum pitch in nanoporous silicon[J]. Advanced Materials, 2021, 33(40): 2103095.
[11] LEE Y G, FUJIKI S, JUNG C, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes[J]. Nature Energy, 2020, 5(4): 299-308.
[12] ZHOU T, ZHAO Y, CHOI J W, et al. Lithium-salt mediated synthesis of a covalent triazine framework for highly stable lithium metal batteries[J]. Angewandte Chemie, 2019, 131(47): 16951-16955.
[13] WANG S F, XU H H, LI W D, et al. Interfacial chemistry in solid-state batteries: formation of interphase and its consequences[J]. Journal of the American Chemical Society, 2018, 140(1): 250-257.
[14] KANNO R, MURAYAMA M. Lithium ionic conductor thio-LISICON: the Li2SGeS2-P2S5 system[J]. Journal of the electrochemical society, 2001, 148(7): A742.
[15] KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature materials, 2011, 10(9): 682-686.
[16] MO Y F, ONG S P, CEDER G. First principles study of the Li10GeP2S12 lithium super ionic conductor material[J]. Chemistry of Materials, 2012, 24(1): 15-17.
[17] BRON P, JOHONSSON S, ZICK K, et al. Li10SnP2S12: an affordable lithium superionic conductor[J]. Journal of the American Chemical Society, 2013, 135(42): 15694-15697.
[18] KUHN A, GERBIG O, ZHU C B, et al. A new ultrafast superionic Li-conductor: ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes[J]. Physical Chemistry Chemical Physics, 2014, 16(28): 14669-14674.
[19] KRAUSKOPF T, CULVER S P, ZEIER W G. Bottleneck of diffusion and inductive effects in Li10Ge1–xSnxP2S12[J]. Chemistry of Materials, 2018, 30(5): 1791-1798.
[20] KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1(4): 1-7.
[21] DEISEROTH H J, KONG S T, ECKERT H, et al. Li6PS5X: a class of crystalline Lirich solids with an unusually high Li+ mobility[J]. Angewandte Chemie, 2008, 120(4): 767-770.
[22] BOULINEAU S, COURTY M, TARASCON J M, et al. Mechanochemical synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application[J]. Solid State Ionics, 2012, 221: 1-5.
[23] YUBUCHI S, UEMATSU M, DEGUCHI M, et al. Lithium-ion-conducting argyrodite-type Li6PS5X (X = Cl, Br, I) solid electrolytes prepared by a liquid-phase technique using ethanol as a solvent[J]. ACS Applied Energy Materials, 2018, 1(8): 3622-3629.
[24] ZHAO Y S, DAEMEN L L. Superionic conductivity in lithium-rich antiperovskites[J]. Journal of the American Chemical Society, 2012, 134(36): 1504215047.
[25] BRAGA M H, FERREIRA J A, STOCKHAUSEN V, et al. Novel Li3ClO based glasses with superionic properties for lithium batteries[J]. Journal of Materials Chemistry A, 2014, 2(15): 5470-5480.
[26] Rea J R, FOSTER D L, MALLORY P R, et al. High ionic conductivity in densified polycrystalline lithium nitride[J]. Materials Research Bulletin, 1979, 14(6): 841-846.
[27] KITAHAMA K, FURUKAWA Y, KAWAI S, et al. Synthesis and NMR study of solid electrolytes in the system Li3N-LiCl[J]. Solid State Ionics, 1981, 3: 335-339.
[28] HARTWIG P, WEPPNER W, WICHELHAUS W, et al. Ionic transport in the lithium nitride bromides, Li6NBr3 and Li13N4Br[J]. Solid State Communications, 1979, 30 (10): 601-603.
[29] HARTWIG P, RABENAU A, WEPPNER W. Phase equilibria and thermodynamic properties of the Li-N-Cl, Li-N-Br and Li-N-I systems[J]. Journal of the Less Common Metals, 1981, 80(1): 81-90.
[30] Li W, Li M, Chien P H, et al. Lithium-compatible and air-stable vacancy-rich Li9N2Cl3 for high-areal capacity, long-cycling all-solid-state lithium metal batteries[J]. Science Advances, 2023, 9(42): eadh4626.
[31] BATES J B, DUDNEY N J, GRUZALSKI G R, et al. Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thinfilm batteries[J]. Journal of power sources, 1993, 43(1-3): 103-110.
[32] KLERK N J J, WAGEMAKER M. Diffusion mechanism of the sodium-ion solid electrolyte Na3PS4 and potential improvements of halogen doping[J]. Chemistry of Materials, 2016, 28(9): 3122-3130.
[33] DENG Y, EAMES C, FLEUTOT B, et al. Enhancing the lithium ion conductivity in lithium superionic conductor (LISICON) solid electrolytes through a mixed polyanion effect[J]. ACS applied materials & interfaces, 2017, 9(8): 7050-7058.
[34] HONG M, DONG Q, XIE H, et al. Ultrafast sintering of solid-state electrolytes with volatile fillers[J]. ACS Energy Letters, 2021, 6(11): 3753-3760.
[35] MARX R, LISSNER F, SCHLEID T. Li9NS3: Das erste nitridsulfid der alkalimetalle in einer Li2O-typ-variante[J]. Zeitschrift f ü r anorganische und allgemeine Chemie, 2006, 632(12-13): 2151-2151.
[36] MIARA L J, SUZUKI N, RICHARDS W D, et al. Li-ion conductivity in Li9S3N[J]. Journal of Materials Chemistry A, 2015, 3(40): 20338-20344.
[37] ZHANG J, WANG L, ZHU J, et al. Structural disorder, sublattice melting, and thermos-elastic properties of anti-perovskite Li3OBr under high pressure and temperature[J]. Applied Physics Letters, 2020, 117(8).
[38] MAO H-K, HEMLEY R J. The high-pressure Dimension in earth and planetary science[J]. Proceedings of the National Academy of Sciences, 2007, 104(22): 91149115.
[39] MAO H-K, HEMLEY R J. Ultrahigh-pressure transitions in solid hydrogen[J]. Reviews of Modern Physics, 1994, 66(2): 671.
[40] ZHANG L, WANG Y, LV J, et al. Materials discovery at high pressures[J]. Nature Reviews Materials, 2017, 2(4): 17005.
[41] SU H, LIU X, WEI C, et al. Pressure-controlled structural symmetry transition in layered InSe[J]. Laser & Photonics Reviews, 2019, 13(6): 1900012.
[42] 吕世杰. 滑块式六含八大腔体高压装置的温压标定及高压合成金刚石新触媒的发现[D]. 成都:西南交通大学, 2010.
[43] ZHANG C, HUANG J, ZHAI K, et al. Valence-skipping and quasi-twodimensionality of superconductivity in a van der waals insulator[J]. Nature Communications, 2022, 13(1): 6938.
[44] IZCI E. The investigation of dielectric properties of pyrophyllite[J]. Key Engineering Materials, 2004, 264-268: 1361-1364.
[45] 贾攀,卢灿华,郝兆印. 金刚石生长相关技术的讨论[J].超硬材料工程, 2011,23(2): 19-23.
[46] XIAO Y, LIU T, LIU J, et al. Insight into the origin of lithium/nickel ions exchange in layered Li (NixMnyCoz)O2 cathode materials[J]. Nano Energy, 2018, 49: 77-85.
[47] ZHANG J, LIU Y, ZHAO X, et al. A novel NASICON-type Na4MnCr(PO4)3 demonstrating the energy density record of phosphate cathodes for sodium-ion batteries[J]. Advanced Materials, 2020, 32(11): 1906348.
[48] XU J, XIA Y, LI Z, et al. Multi-physics instrument: total scattering neutron time-offlight diffractometer at China Spallation Neutron Source[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1013: 165642.
[49] HODGE I M, INGRAM M D, WEST A R. Impedance and modulus spectroscopy of polycrystalline solid electrolytes[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1976, 74 (2): 125-143.
[50] CRIST B V. XPS in industry-problems with binding energies in journals and binding energy databases[J]. Journal of Electron Spectroscopy and Related Phenomena, 2019, 231: 75-87.
[51] LI X, LIANG J, LUO J, et al. Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries[J]. Energy & Environmental Science, 2019, 12(9): 2665-2671.
[52] WANG K, REN Q, GU Z, et al. A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries[J]. Nature Communications, 2021, 12(1): 4410.
[53] CHOI S, YOON I, NICHOLS W T, et al. Carbon-coated Li2S cathode for improving the electrochemical properties of an all-solid-state lithium-sulfur battery using Li2SP2S5 solid electrolyte[J]. Ceramics International, 2018, 44(7): 7450-7453.
[54] JAND S P, ZHANG Q, KAGHAZCHI P. Theoretical study of superionic phase transition in Li2S[J]. Scientific reports, 2017, 7(1): 5873.
[55] SAGOTRA A K, CHU D, CAZORLA C. Room-temperature mechanocaloric effects in lithium-based superionic materials[J]. Nature communications, 2018, 9(1): 3337.
[56] Li W, WU G, MOYSES ARAUJO C, et al. Li+ ion conductivity and diffusion mechanism in α-Li3N and β-Li3N[J]. Energy & Environmental Science, 2010, 3,1524.
[57] BURMEISTER C F, KWADE A. Process engineering with planetary ball mills[J]. Chemical Society Reviews, 2013, 42(18): 7660-7667.
[58] 涂华民. 化合物颜色成因简介[J]. 化学教育, 2005, (09): 3-8.
[59] SZCZUKA C, KARASULU B, GROH M F, et al. Forced disorder in the solid solution Li3P-Li2S: a new class of fully reduced solid electrolytes for lithium metal anodes[J]. Journal of the American Chemical Society, 2022, 144(36): 16350-16365.
[60] WOOD K N, STEIRER K X, HAFNER S E, et al. Operando X-ray photoelectron spectroscopy of solid electrolyte interphase formation and evolution in Li2S-P2S5 solid-state electrolytes[J]. Nature communications, 2018, 9(1): 2490.
[61] WOOD K N, TEETER G. XPS on Li-battery-related compounds: analysis of inorganic SEI phases and a methodology for charge correction[J]. ACS Applied Energy Materials, 2018, 1(9): 4493-4504.
[62] SUN M, LIU T, YUAN Y, et al. Visualizing lithium dendrite formation within solidstate electrolytes[J]. ACS Energy Letters, 2021, 6(2): 451-458.
[63] CAO D, ZHANG K, LI W, et al. Nondestructively visualizing and understanding the mechano-electro-chemical origins of “soft short” and “creeping” in all-solid-state batteries[J]. Advanced Functional Materials, 2023, 33(52): 2307998.
[64] JI X, HOU S, WANG P, et al. Solid-state electrolyte design for lithium dendrite suppression[J]. Advanced Materials, 2020, 32(46): 2002741.
[65] YAN Z. Symmetric cells as an analytical tool for battery research: assembly, operation, and data analysis strategies[J]. Journal of The Electrochemical Society, 2023, 170(2): 020521.
[66] ZHU Y Z, HE X F, MO Y F, et al. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations[J]. ACS Appl. Mater. Inter., 2015, 7: 23685-23693.
[67] LUO S, WANG Z, LI X, et al. Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes[J]. Nature Communications, 2021, 12(1): 6968.
[68] LEE S, KIM Y, PARK C, et al. Interplay of cathode-halide solid electrolyte in enhancing thermal stability of charged cathode material in all-solid-state batteries[J]. ACS Energy Letters, 2024.
[69] LU Y, ZHAO C Z, ZHANG R, et al. The carrier transition from Li atoms to Li vacancies in solid-state lithium alloy anodes[J]. Science advances, 2021, 7(38): eabi5520.
[70] WHITTINGHAM M S. Lithium titanium disulfide cathodes[J]. Nature Energy, 2021 6(2): 214-214.

所在学位评定分委会
材料科学与工程
国内图书分类号
TM911
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765863
专题南方科技大学
理学院_物理系
推荐引用方式
GB/T 7714
邹嘉玲. Li2S-Li3N固态电解质的高温高压合成及电化学性能表征[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12232940-邹嘉玲-物理系.pdf(4674KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[邹嘉玲]的文章
百度学术
百度学术中相似的文章
[邹嘉玲]的文章
必应学术
必应学术中相似的文章
[邹嘉玲]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。