[1] GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: a perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176.
[2] WANG Y, ZHANG Q H, XUE Z C, et al. An in situ formed surface coating layer enabling LiCoO2 with stable 4.6 V high-voltage cycle performances[J]. Advanced Energy Materials, 2020, 10(28): 2001413.
[3] GUO X L, LAN T, ZHANG L, et al. A stable filamentous coaxial microelectrode for Li-ion batteries: a case of olivine LiFePO4[J]. Chemical communications, 2019, 55(24): 3529-3531.
[4] BAN C M, YIN W J, TANG H W, et al. A novel codoping approach for enhancing the performance of LiFePO4 cathodes[J]. Advanced Energy Materials, 2012, 2(8): 1028-1032.
[5] TOMASZEWSKA A, CHU Z Y, FENG X N, et al. Lithium-ion battery fast charging[J]: A review. ETransportation, 2019, 1: 100011.
[6] QIAN J, ZHU T, HUANG D, et al. Insights into the enhanced reversibility of graphite anode upon fast charging through Li reservoir[J]. ACS nano, 2022, 16(12): 20197-20205.
[7] KIM J, JEGHAN S M N, LEE G. Superior fast-charging capability of graphite anode via facile surface treatment for lithium-ion batteries[J]. Microporous and Mesoporous Materials, 2020, 305: 110325.
[8] HE Y S, MUHETAER A, LI J M, et al. Ultrathin Li4Ti5O12 nanosheet based hierarchical microspheres for high-rate and long-cycle life Li-ion batteries[J]. Advanced Energy Materials, 2017, 7(21): 1700950.
[9] KIM H, SEO M, PARK M H, et al. A critical size of silicon nano-anodes for lithium rechargeable batteries[J]. Angewandte Chemie International Edition, 2010, 49(12): 2146-2149.
[10] CHAE, S J, XU Y B, YI R, et al. A micrometer-sized silicon/carbon composite anode synthesized by impregnation of petroleum pitch in nanoporous silicon[J]. Advanced Materials, 2021, 33(40): 2103095.
[11] LEE Y G, FUJIKI S, JUNG C, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes[J]. Nature Energy, 2020, 5(4): 299-308.
[12] ZHOU T, ZHAO Y, CHOI J W, et al. Lithium-salt mediated synthesis of a covalent triazine framework for highly stable lithium metal batteries[J]. Angewandte Chemie, 2019, 131(47): 16951-16955.
[13] WANG S F, XU H H, LI W D, et al. Interfacial chemistry in solid-state batteries: formation of interphase and its consequences[J]. Journal of the American Chemical Society, 2018, 140(1): 250-257.
[14] KANNO R, MURAYAMA M. Lithium ionic conductor thio-LISICON: the Li2SGeS2-P2S5 system[J]. Journal of the electrochemical society, 2001, 148(7): A742.
[15] KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature materials, 2011, 10(9): 682-686.
[16] MO Y F, ONG S P, CEDER G. First principles study of the Li10GeP2S12 lithium super ionic conductor material[J]. Chemistry of Materials, 2012, 24(1): 15-17.
[17] BRON P, JOHONSSON S, ZICK K, et al. Li10SnP2S12: an affordable lithium superionic conductor[J]. Journal of the American Chemical Society, 2013, 135(42): 15694-15697.
[18] KUHN A, GERBIG O, ZHU C B, et al. A new ultrafast superionic Li-conductor: ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes[J]. Physical Chemistry Chemical Physics, 2014, 16(28): 14669-14674.
[19] KRAUSKOPF T, CULVER S P, ZEIER W G. Bottleneck of diffusion and inductive effects in Li10Ge1–xSnxP2S12[J]. Chemistry of Materials, 2018, 30(5): 1791-1798.
[20] KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1(4): 1-7.
[21] DEISEROTH H J, KONG S T, ECKERT H, et al. Li6PS5X: a class of crystalline Lirich solids with an unusually high Li+ mobility[J]. Angewandte Chemie, 2008, 120(4): 767-770.
[22] BOULINEAU S, COURTY M, TARASCON J M, et al. Mechanochemical synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application[J]. Solid State Ionics, 2012, 221: 1-5.
[23] YUBUCHI S, UEMATSU M, DEGUCHI M, et al. Lithium-ion-conducting argyrodite-type Li6PS5X (X = Cl, Br, I) solid electrolytes prepared by a liquid-phase technique using ethanol as a solvent[J]. ACS Applied Energy Materials, 2018, 1(8): 3622-3629.
[24] ZHAO Y S, DAEMEN L L. Superionic conductivity in lithium-rich antiperovskites[J]. Journal of the American Chemical Society, 2012, 134(36): 1504215047.
[25] BRAGA M H, FERREIRA J A, STOCKHAUSEN V, et al. Novel Li3ClO based glasses with superionic properties for lithium batteries[J]. Journal of Materials Chemistry A, 2014, 2(15): 5470-5480.
[26] Rea J R, FOSTER D L, MALLORY P R, et al. High ionic conductivity in densified polycrystalline lithium nitride[J]. Materials Research Bulletin, 1979, 14(6): 841-846.
[27] KITAHAMA K, FURUKAWA Y, KAWAI S, et al. Synthesis and NMR study of solid electrolytes in the system Li3N-LiCl[J]. Solid State Ionics, 1981, 3: 335-339.
[28] HARTWIG P, WEPPNER W, WICHELHAUS W, et al. Ionic transport in the lithium nitride bromides, Li6NBr3 and Li13N4Br[J]. Solid State Communications, 1979, 30 (10): 601-603.
[29] HARTWIG P, RABENAU A, WEPPNER W. Phase equilibria and thermodynamic properties of the Li-N-Cl, Li-N-Br and Li-N-I systems[J]. Journal of the Less Common Metals, 1981, 80(1): 81-90.
[30] Li W, Li M, Chien P H, et al. Lithium-compatible and air-stable vacancy-rich Li9N2Cl3 for high-areal capacity, long-cycling all-solid-state lithium metal batteries[J]. Science Advances, 2023, 9(42): eadh4626.
[31] BATES J B, DUDNEY N J, GRUZALSKI G R, et al. Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thinfilm batteries[J]. Journal of power sources, 1993, 43(1-3): 103-110.
[32] KLERK N J J, WAGEMAKER M. Diffusion mechanism of the sodium-ion solid electrolyte Na3PS4 and potential improvements of halogen doping[J]. Chemistry of Materials, 2016, 28(9): 3122-3130.
[33] DENG Y, EAMES C, FLEUTOT B, et al. Enhancing the lithium ion conductivity in lithium superionic conductor (LISICON) solid electrolytes through a mixed polyanion effect[J]. ACS applied materials & interfaces, 2017, 9(8): 7050-7058.
[34] HONG M, DONG Q, XIE H, et al. Ultrafast sintering of solid-state electrolytes with volatile fillers[J]. ACS Energy Letters, 2021, 6(11): 3753-3760.
[35] MARX R, LISSNER F, SCHLEID T. Li9NS3: Das erste nitridsulfid der alkalimetalle in einer Li2O-typ-variante[J]. Zeitschrift f ü r anorganische und allgemeine Chemie, 2006, 632(12-13): 2151-2151.
[36] MIARA L J, SUZUKI N, RICHARDS W D, et al. Li-ion conductivity in Li9S3N[J]. Journal of Materials Chemistry A, 2015, 3(40): 20338-20344.
[37] ZHANG J, WANG L, ZHU J, et al. Structural disorder, sublattice melting, and thermos-elastic properties of anti-perovskite Li3OBr under high pressure and temperature[J]. Applied Physics Letters, 2020, 117(8).
[38] MAO H-K, HEMLEY R J. The high-pressure Dimension in earth and planetary science[J]. Proceedings of the National Academy of Sciences, 2007, 104(22): 91149115.
[39] MAO H-K, HEMLEY R J. Ultrahigh-pressure transitions in solid hydrogen[J]. Reviews of Modern Physics, 1994, 66(2): 671.
[40] ZHANG L, WANG Y, LV J, et al. Materials discovery at high pressures[J]. Nature Reviews Materials, 2017, 2(4): 17005.
[41] SU H, LIU X, WEI C, et al. Pressure-controlled structural symmetry transition in layered InSe[J]. Laser & Photonics Reviews, 2019, 13(6): 1900012.
[42] 吕世杰. 滑块式六含八大腔体高压装置的温压标定及高压合成金刚石新触媒的发现[D]. 成都:西南交通大学, 2010.
[43] ZHANG C, HUANG J, ZHAI K, et al. Valence-skipping and quasi-twodimensionality of superconductivity in a van der waals insulator[J]. Nature Communications, 2022, 13(1): 6938.
[44] IZCI E. The investigation of dielectric properties of pyrophyllite[J]. Key Engineering Materials, 2004, 264-268: 1361-1364.
[45] 贾攀,卢灿华,郝兆印. 金刚石生长相关技术的讨论[J].超硬材料工程, 2011,23(2): 19-23.
[46] XIAO Y, LIU T, LIU J, et al. Insight into the origin of lithium/nickel ions exchange in layered Li (NixMnyCoz)O2 cathode materials[J]. Nano Energy, 2018, 49: 77-85.
[47] ZHANG J, LIU Y, ZHAO X, et al. A novel NASICON-type Na4MnCr(PO4)3 demonstrating the energy density record of phosphate cathodes for sodium-ion batteries[J]. Advanced Materials, 2020, 32(11): 1906348.
[48] XU J, XIA Y, LI Z, et al. Multi-physics instrument: total scattering neutron time-offlight diffractometer at China Spallation Neutron Source[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1013: 165642.
[49] HODGE I M, INGRAM M D, WEST A R. Impedance and modulus spectroscopy of polycrystalline solid electrolytes[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1976, 74 (2): 125-143.
[50] CRIST B V. XPS in industry-problems with binding energies in journals and binding energy databases[J]. Journal of Electron Spectroscopy and Related Phenomena, 2019, 231: 75-87.
[51] LI X, LIANG J, LUO J, et al. Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries[J]. Energy & Environmental Science, 2019, 12(9): 2665-2671.
[52] WANG K, REN Q, GU Z, et al. A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries[J]. Nature Communications, 2021, 12(1): 4410.
[53] CHOI S, YOON I, NICHOLS W T, et al. Carbon-coated Li2S cathode for improving the electrochemical properties of an all-solid-state lithium-sulfur battery using Li2SP2S5 solid electrolyte[J]. Ceramics International, 2018, 44(7): 7450-7453.
[54] JAND S P, ZHANG Q, KAGHAZCHI P. Theoretical study of superionic phase transition in Li2S[J]. Scientific reports, 2017, 7(1): 5873.
[55] SAGOTRA A K, CHU D, CAZORLA C. Room-temperature mechanocaloric effects in lithium-based superionic materials[J]. Nature communications, 2018, 9(1): 3337.
[56] Li W, WU G, MOYSES ARAUJO C, et al. Li+ ion conductivity and diffusion mechanism in α-Li3N and β-Li3N[J]. Energy & Environmental Science, 2010, 3,1524.
[57] BURMEISTER C F, KWADE A. Process engineering with planetary ball mills[J]. Chemical Society Reviews, 2013, 42(18): 7660-7667.
[58] 涂华民. 化合物颜色成因简介[J]. 化学教育, 2005, (09): 3-8.
[59] SZCZUKA C, KARASULU B, GROH M F, et al. Forced disorder in the solid solution Li3P-Li2S: a new class of fully reduced solid electrolytes for lithium metal anodes[J]. Journal of the American Chemical Society, 2022, 144(36): 16350-16365.
[60] WOOD K N, STEIRER K X, HAFNER S E, et al. Operando X-ray photoelectron spectroscopy of solid electrolyte interphase formation and evolution in Li2S-P2S5 solid-state electrolytes[J]. Nature communications, 2018, 9(1): 2490.
[61] WOOD K N, TEETER G. XPS on Li-battery-related compounds: analysis of inorganic SEI phases and a methodology for charge correction[J]. ACS Applied Energy Materials, 2018, 1(9): 4493-4504.
[62] SUN M, LIU T, YUAN Y, et al. Visualizing lithium dendrite formation within solidstate electrolytes[J]. ACS Energy Letters, 2021, 6(2): 451-458.
[63] CAO D, ZHANG K, LI W, et al. Nondestructively visualizing and understanding the mechano-electro-chemical origins of “soft short” and “creeping” in all-solid-state batteries[J]. Advanced Functional Materials, 2023, 33(52): 2307998.
[64] JI X, HOU S, WANG P, et al. Solid-state electrolyte design for lithium dendrite suppression[J]. Advanced Materials, 2020, 32(46): 2002741.
[65] YAN Z. Symmetric cells as an analytical tool for battery research: assembly, operation, and data analysis strategies[J]. Journal of The Electrochemical Society, 2023, 170(2): 020521.
[66] ZHU Y Z, HE X F, MO Y F, et al. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations[J]. ACS Appl. Mater. Inter., 2015, 7: 23685-23693.
[67] LUO S, WANG Z, LI X, et al. Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes[J]. Nature Communications, 2021, 12(1): 6968.
[68] LEE S, KIM Y, PARK C, et al. Interplay of cathode-halide solid electrolyte in enhancing thermal stability of charged cathode material in all-solid-state batteries[J]. ACS Energy Letters, 2024.
[69] LU Y, ZHAO C Z, ZHANG R, et al. The carrier transition from Li atoms to Li vacancies in solid-state lithium alloy anodes[J]. Science advances, 2021, 7(38): eabi5520.
[70] WHITTINGHAM M S. Lithium titanium disulfide cathodes[J]. Nature Energy, 2021 6(2): 214-214.
修改评论