[1] DOWLING J P, MILBURN G J. Quantum technology: The second quantum revolution[J].Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2003, 361(1809): 1655-1674.
[2] LEIBFRIED D, KNILL E, SEIDELIN S, et al. Creation of a six-atom 'Schrödinger cat’state[J]. Nature, 2005, 438(7068): 639-642.
[3] LEIBFRIED D, BARRETT M D, SCHAETZ T, et al. Toward Heisenberg-limited spectroscopy with multiparticle entangled states[J]. Science, 2004, 304(5676): 1476-1478.
[4] JONES J A, KARLEN S D, FITZSIMONS J, et al. Magnetic field sensing beyond the standard quantum limit using 10-spin NOON states[J]. Science, 2009, 324(5931): 1166-1168.
[5] GARDINER C, ZOLLER P. Quantum noise: A handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics[M]. Springer Science & Business Media, 2004.
[6] GIOVANNETTI V, LLOYD S, MACCONE L. Quantum-enhanced measurements: Beating the standard quantum limit[J]. Science, 2004, 306(5700): 1330-1336.
[7] GIOVANNETTI V, LLOYD S, MACCONE L. Advances in quantum metrology[J]. NaturePhotonics, 2011, 5(4): 222-229.
[8] GIOVANNETTI V, LLOYD S, MACCONE L. Quantum metrology[J]. Physical Review Letters, 2006, 96(1): 010401.
[9] WU L A, KIMBLE H, HALL J, et al. Generation of squeezed states by parametric down conversion[J]. Physical Review Letters, 1986, 57(20): 2520.
[10] KITAGAWA M, UEDA M. Squeezed spin states[J]. Physical Review A, 1993, 47(6): 5138.
[11] MA J, WANG X, SUN C P, et al. Quantum spin squeezing[J]. Physics Reports, 2011, 509(2-3):89-165.
[12] VIDAL G, LATORRE J I, RICO E, et al. Entanglement in quantum critical phenomena[J]. Physical Review Letters, 2003, 90(22): 227902.
[13] MISHRA U, BAYAT A. Driving enhanced quantum sensing in partially accessible many-body systems[J]. Physical Review Letters, 2021, 127(8): 080504.
[14] PEZZE L, SMERZI A, OBERTHALER M K, et al. Quantum metrology with nonclassical states of atomic ensembles[J]. Reviews of Modern Physics, 2018, 90(3): 035005.
[15] ABBOTT B P, ABBOTT R, ABBOTT T, et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 2016, 116(6): 061102.
[16] AASI J, ABADIE J, ABBOTT B, et al. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light[J]. Nature Photonics, 2013, 7(8): 613-619.
[17] BAO H, DUAN J, JIN S, et al. Spin squeezing of 1011 atoms by prediction and retrodiction measurements[J]. Nature, 2020, 581(7807): 159-163.
[18] LUDLOWMA2011QUANTUM A D, BOYD M M, YE J, et al. Optical atomic clocks[J]. Re views of Modern Physics, 2015, 87(2): 637.
[19] BREWER S M, CHEN J S, HANKIN A M, et al. 27Al+ quantum-logic clock with a systematic uncertainty below 10−18[J]. Physical Review Letters, 2019, 123(3): 033201.
[20] ANDERSON M H, ENSHER J R, MATTHEWS M R, et al. Observation of Bose-Einstein condensation in a dilute atomic vapor[J]. Science, 1995, 269(5221): 198-201.
[21] MAO T W, LIU Q, LI X W, et al. Quantum-enhanced sensing by echoing spin-nematic squeezing in atomic Bose-Einstein condensate[J]. Nature Physics, 2023, 19(11): 1585-1590.
[22] HENSEN B, BERNIEN H, DRÉAU A E, et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres[J]. Nature, 2015, 526(7575): 682-686.
[23] BOTO A N, KOK P, ABRAMS D S, et al. Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit[J]. Physical Review Letters, 2000, 85(13): 2733.
[24] OCKELOEN C F, SCHMIED R, RIEDEL M F, et al. Quantum metrology with a scanning probe atom interferometer[J]. Physical Review Letters, 2013, 111(14): 143001.
[25] DEGEN C L, REINHARD F, CAPPELLARO P. Quantum sensing[J]. Reviews of Modern Physics, 2017, 89(3): 035002.
[26] CLERK A A, DEVORET M H, GIRVIN S M, et al. Introduction to quantum noise, measurement, and amplification[J]. Reviews of Modern Physics, 2010, 82(2): 1155.
[27] LAX M. Quantum noise. IV. Quantum theory of noise sources[J]. Physical Review, 1966, 145(1): 110.
[28] HORODECKI R, HORODECKI P, HORODECKI M, et al. Quantum entanglement[J]. Reviews of Modern Physics, 2009, 81(2): 865.
[29] HUELGA S F, MACCHIAVELLO C, PELLIZZARI T, et al. Improvement of frequency standards with quantum entanglement[J]. Physical Review Letters, 1997, 79(20): 3865.
[30] NISET J, FIURÁŠEK J, CERF N J. No-go theorem for Gaussian quantum error correction[J]. Physical Review Letters, 2009, 102(12): 120501.
[31] FANG K, LIU Z W. No-go theorems for quantum resource purification[J]. Physical Review Letters, 2020, 125(6): 060405.
[32] CHIN A W, HUELGA S F, PLENIO M B. Quantum metrology in non-Markovian environments[J]. Physical Review Letters, 2012, 109(23): 233601.
[33] ITANO W M, HEINZEN D J, BOLLINGER J J, et al. Quantum Zeno effect[J]. Physical Review A, 1990, 41(5): 2295.
[34] FISCHER M C, GUTIÉRREZ-MEDINA B, RAIZEN M G. Observation of the quantum Zeno and anti-Zeno effects in an unstable system[J]. Physical Review Letters, 2001, 87(4): 040402.
[35] BORREGAARD J, SØRENSEN A S. Near-Heisenberg-limited atomic clocks in the presence of decoherence[J]. Physical Review Letters, 2013, 111(9): 090801.
[36] ROSSI M A, ALBARELLI F, TAMASCELLI D, et al. Noisy quantum metrology enhanced by continuous nondemolition measurement[J]. Physical Review Letters, 2020, 125(20): 200505.
[37] KESSLER E M, LOVCHINSKY I, SUSHKOV A O, et al. Quantum error correction for metrol ogy[J]. Physical Review Letters, 2014, 112(15): 150802.
[38] YAMAMOTO K, ENDO S, HAKOSHIMA H, et al. Error-mitigated quantum metrology via virtual purification[J]. Physical Review Letters, 2022, 129(25): 250503.
[39] JIAO L, WU W, BAI S Y, et al. Quantum metrology in the noisy intermediate-scale quantum era[J]. Advanced Quantum Technologies, 2023: 2300218.
[40] YANG Y. Memory effects in quantum metrology[J]. Physical Review Letters, 2019, 123(11): 110501.
[41] ALTHERR A, YANG Y. Quantum metrology for non-Markovian processes[J]. Physical Review Letters, 2021, 127(6): 060501.
[42] LIU J, ZHANG M, CHEN H, et al. Optimal scheme for quantum metrology[J]. Advanced Quantum Technologies, 2022, 5(1): 2100080.
[43] RAO C R. Minimum variance and the estimation of several parameters[C]//Mathematical Pro-ceedings of the Cambridge Philosophical Society: Vol. 43. Cambridge University Press, 1947: 280-283.
[44] CRAMÉR H. Mathematical methods of statistics: Vol. 26[M]. Princeton University Press,1999.
[45] MYUNG I J. Tutorial on maximum likelihood estimation[J]. Journal of Mathematical Psychology, 2003, 47(1): 90-100.
[46] RAO C R. Information and the accuracy attainable in the estimation of statistical parameters [M]//Breakthroughs in Statistics: Foundations and Basic Theory. Springer, 1992: 235-247.
[47] BRAUNSTEIN S L, CAVES C M, MILBURN G J. Generalized uncertainty relations: Theory, examples, and Lorentz invariance[J]. Annals of Physics, 1996, 247(1): 135-173.
[48] BRAUNSTEIN S L, CAVES C M. Statistical distance and the geometry of quantum states[J]. Physical Review Letters, 1994, 72(22): 3439.
[49] MEYER J J, BORREGAARD J, EISERT J. A variational toolbox for quantum multi-parameter estimation[J]. npj Quantum Information, 2021, 7(1): 89.
[50] OBERKAMPF W L, DELAND S M, RUTHERFORD B M, et al. Error and uncertainty in modeling and simulation[J]. Reliability Engineering & System Safety, 2002, 75(3): 333-357.
[51] GRAHAM R L, ROTHSCHILD B L, SPENCER J H. Ramsey theory: Vol. 20[M]. John Wiley & Sons, 1991.
[52] JI Y, CHUNG Y, SPRINZAK D, et al. An electronic Mach-Zehnder interferometer[J]. Nature, 2003, 422(6930): 415-418.
[53] POST E J. Sagnac effect[J]. Reviews of Modern Physics, 1967, 39(2): 475.
[54] KOMINIS I K, KORNACK T W, ALLRED J C, et al. A subfemtotesla multichannel atomic magnetometer[J]. Nature, 2003, 422(6932): 596-599.
[55] AUSTER H, GLASSMEIER K, MAGNES W, et al. The THEMIS fluxgate magnetometer[J]. Space Science Reviews, 2008, 141: 235-264.
[56] CELEGHINI E, RASETTI M, VITIELLO G. Quantum dissipation[J]. Annals of Physics, 1992, 215(1): 156-170.
[57] HALBERTAL D, CUPPENS J, SHALOM M B, et al. Nanoscale thermal imaging of dissipation in quantum systems[J]. Nature, 2016, 539(7629): 407-410.
[58] SENITZKY I. Dissipation in quantum mechanics. The harmonic oscillator[J]. Physical Review, 1960, 119(2): 670.
[59] GOLUBEV D S, ZAIKIN A D. Quantum decoherence in disordered mesoscopic systems[J]. Physical Review Letters, 1998, 81(5): 1074.
[60] BERGER S, PECHAL M, KURPIERS P, et al. Measurement of geometric dephasing using a superconducting qubit[J]. Nature Communications, 2015, 6(1): 8757.
[61] GAMBETTA J M, CHOW J M, STEFFEN M. Building logical qubits in a superconducting quantum computing system[J]. npj Quantum Information, 2017, 3(1): 2.
[62] ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable super-conducting processor[J]. Nature, 2019, 574(7779): 505-510.
[63] GROSS C, BLOCH I. Quantum simulations with ultracold atoms in optical lattices[J]. Science, 2017, 357(6355): 995-1001.
[64] DEMILLE D. Quantum computation with trapped polar molecules[J]. Physical Review Letters, 2002, 88(6): 067901.
[65] SCHÄFER F, FUKUHARA T, SUGAWA S, et al. Tools for quantum simulation with ultracold atoms in optical lattices[J]. Nature Reviews Physics, 2020, 2(8): 411-425.
[66] ZUREK W H. Decoherence, einselection, and the quantum origins of the classical[J]. Reviews of Modern Physics, 2003, 75(3): 715.
[67] SCHLOSSHAUER M. Decoherence, the measurement problem, and interpretations of quantum mechanics[J]. Reviews of Modern Physics, 2005, 76(4): 1267.
[68] SHOR P W. Scheme for reducing decoherence in quantum computer memory[J]. Physical Review A, 1995, 52(4): R2493.
[69] ZHANG N, CHEN C, BAI S Y, et al. Non-Markovian quantum thermometry[J]. Physical Review Applied, 2022, 17(3): 034073.
[70] SMIRNE A, KOŁODYŃSKI J, HUELGA S F, et al. Ultimate precision limits for noisy frequency estimation[J]. Physical Review Letters, 2016, 116(12): 120801.
[71] BOIXO S, DATTA A, DAVIS M J, et al. Quantum metrology: Dynamics versus entanglement[J]. Physical Review Letters, 2008, 101(4): 040403.
[72] MATSUZAKI Y, BENJAMIN S C, FITZSIMONS J. Magnetic field sensing beyond the standard quantum limit under the effect of decoherence[J]. Physical Review A, 2011, 84(1): 012103.
[73] BAI K, PENG Z, LUO H G, et al. Retrieving ideal precision in noisy quantum optical metrology[J]. Physical Review Letters, 2019, 123(4): 040402.
[74] KHANEJA N, REISS T, KEHLET C, et al. Optimal control of coupled spin dynamics: Design of NMR pulse sequences by gradient ascent algorithms[J]. Journal of Magnetic Resonance, 2005, 172(2): 296-305.
[75] JONES J, KNILL E. Efficient refocusing of one-spin and two-spin interactions for NMR quan tum computation[J]. Journal of Magnetic Resonance, 1999, 141(2): 322-325.
[76] LEUNG D W, CHUANG I L, YAMAGUCHI F, et al. Efficient implementation of coupled logic gates for quantum computation[J]. Physical Review A, 2000, 61(4): 042310.
[77] VANDERSYPEN L M, CHUANG I L. NMR techniques for quantum control and computation[J]. Reviews of Modern Physics, 2005, 76(4): 1037.
[78] CORY D G, FAHMY A F, HAVEL T F. Ensemble quantum computing by NMR spectroscopy[J]. Proceedings of the National Academy of Sciences, 1997, 94(5): 1634-1639.
[79] KNILL E, CHUANG I, LAFLAMME R. Effective pure states for bulk quantum computation [J]. Physical Review A, 1998, 57(5): 3348.
[80] GERSHENFELD N A, CHUANG I L. Bulk spin-resonance quantum computation[J]. Science, 1997, 275(5298): 350-356.
[81] VANDERSYPEN L M, YANNONI C S, SHERWOOD M H, et al. Realization of logically labeled effective pure states for bulk quantum computation[J]. Physical Review Letters, 1999, 83(15): 3085.
[82] LEVITT M H. Spin dynamics: Basics of nuclear magnetic resonance[M]. John Wiley & Sons, 2013.
[83] CORY D G, PRICE M D, HAVEL T F. Nuclear magnetic resonance spectroscopy: An experimentally accessible paradigm for quantum computing[J]. Physica D: Nonlinear Phenomena, 1998, 120(1-2): 82-101.
[84] KHANEJA N, REISS T, KEHLET C, et al. Optimal control of coupled spin dynamics: Design of NMR pulse sequences by gradient ascent algorithms[J]. Journal of Magnetic Resonance, 2005, 172(2): 296-305.
[85] KNILL E, LAFLAMME R, MARTINEZ R, et al. An algorithmic benchmark for quantum information processing[J]. Nature, 2000, 404(6776): 368-370.
[86] GARDINER C, ZOLLER P. The quantum world of ultra-cold atoms and light book I: Foundations of quantum optics: Vol. 2[M]. World Scientific Publishing Company, 2014.
[87] LIU X J, LAW K T, NG T K. Realization of 2D spin-orbit interaction and exotic topological orders in cold atoms[J]. Physical Review Letters, 2014, 112(8): 086401.
[88] WU Z, ZHANG L, SUN W, et al. Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates[J]. Science, 2016, 354(6308): 83-88.
[89] ZHANG L, ZHANG L, NIU S, et al. Dynamical classification of topological quantum phases[J]. Science Bulletin, 2018, 63(21): 1385-1391.
[90] ZHANG L, ZHANG L, LIU X J. Quench-induced dynamical topology under dynamical noise[J]. Physical Review Research, 2021, 3(1): 013229.
[91] CAVES C M. Quantum-mechanical noise in an interferometer[J]. Physical Review D, 1981, 23(8): 1693.
[92] BREUER H P, PETRUCCIONE F. The theory of open quantum systems[M]. OUP Oxford, 2002.
[93] AI Q, LIAO J Q. Quantum anti-Zeno effect in artificial quantum systems[J]. Communications in Theoretical Physics, 2010, 54(6): 985.
[94] MONZ T, SCHINDLER P, BARREIRO J T, et al. 14-qubit entanglement: Creation and coherence[J]. Physical Review Letters, 2011, 106(13): 130506.
[95] HE W T, GUANG H Y, LI Z Y, et al. Quantum metrology with one auxiliary particle in a correlated bath and its quantum simulation[J]. Physical Review A, 2021, 104(6): 062429.
[96] BOIXO S, FLAMMIA S T, CAVES C M, et al. Generalized limits for single-parameter quantum estimation[J]. Physical Review Letters, 2007, 98(9): 090401.
[97] NIE X, LI J, CUI J, et al. Quantum simulation of interaction blockade in a two-site Bose–Hubbard system with solid quadrupolar crystal[J]. New Journal of Physics, 2015, 17(5): 053028.
[98] CHOI S, SUNDARAM B. Bose-Einstein condensate as a nonlinear Ramsey interferometer operating beyond the Heisenberg limit[J]. Physical Review A, 2008, 77(5): 053613.
[99] ROY S, BRAUNSTEIN S L. Exponentially enhanced quantum metrology[J]. Physical Review Letters, 2008, 100(22): 220501.
[100] NAPOLITANO M, KOSCHORRECK M, DUBOST B, et al. Interaction-based quantum metrology showing scaling beyond the Heisenberg limit[J]. Nature, 2011, 471(7339): 486-489.
[101] NAKAZATO H, NAMIKI M, PASCAZIO S. Temporal behavior of quantum mechanical sys tems[J]. International Journal of Modern Physics B, 1996, 10(03): 247-295.
[102] AI Q, LI Y, ZHENG H, et al. Quantum anti-Zeno effect without rotating wave approximation[J]. Physical Review A, 2010, 81(4): 042116.
[103] AI Q, XU D, YI S, et al. Quantum anti-Zeno effect without wave function reduction[J]. Scientific Reports, 2013, 3(1): 1752.
[104] HARRINGTON P, MONROE J, MURCH K. Quantum Zeno effects from measurement controlled qubit-bath interactions[J]. Physical Review Letters, 2017, 118(24): 240401.
[105] WANG B X, TAO M J, AI Q, et al. Efficient quantum simulation of photosynthetic light har vesting[J]. npj Quantum Information, 2018, 4(1): 52.
[106] ZHANG N N, TAO M J, HE W T, et al. Efficient quantum simulation of open quantum dynamics at various Hamiltonians and spectral densities[J]. Frontiers of Physics, 2021, 16: 1-14.
[107] CHEN X Y, ZHANG N N, HE W T, et al. Global correlation and local information flows in controllable non-Markovian open quantum dynamics[J]. npj Quantum Information, 2022, 8(1): 22.
[108] SOARE A, BALL H, HAYES D, et al. Experimental bath engineering for quantitative studies of quantum control[J]. Physical Review A, 2014, 89(4): 042329.
[109] LI J, YANG X, PENG X, et al. Hybrid quantum-classical approach to quantum optimal control[J]. Physical Review Letters, 2017, 118(15): 150503.
[110] BULUTA I, NORI F. Quantum simulators[J]. Science, 2009, 326(5949): 108-111.
[111] GEORGESCU I M, ASHHAB S, NORI F. Quantum simulation[J]. Reviews of Modern Physics, 2014, 86(1): 153.
[112] LUO S, FU S, SONG H. Quantifying non-Markovianity via correlations[J]. Physical Review A, 2012, 86(4): 044101.
[113] LU X M, WANG X, SUN C. Quantum Fisher information flow and non-Markovian processes of open systems[J]. Physical Review A, 2010, 82(4): 042103.
[114] GOODMAN J W. Statistical optics[M]. John Wiley & Sons, 2015.
[115] TAO M J, ZHANG N N, WEN P Y, et al. Coherent and incoherent theories for photosynthetic energy transfer[J]. Science Bulletin, 2020, 65(4): 318-328.
[116] PIANTINI U, SORENSEN O, ERNST R R. Multiple quantum filters for elucidating NMR coupling networks[J]. Journal of the American Chemical Society, 1982, 104(24): 6800-6801.
[117] MISRA B, SUDARSHAN E G. The Zeno’s paradox in quantum theory[J]. Journal of Mathematical Physics, 1977, 18(4): 756-763.
[118] RISSANEN J J. Fisher information and stochastic complexity[J]. IEEE Transactions on Information Theory, 1996, 42(1): 40-47.
[119] POTOČNIK A, BARGERBOS A, SCHRÖDER F A, et al. Studying light-harvesting models with superconducting circuits[J]. Nature Communications, 2018, 9(1): 904.
[120] DEMKOWICZ-DOBRZAŃSKI R, KOŁODYŃSKI J, GUŢĂ M. The elusive Heisenberg limit in quantum-enhanced metrology[J]. Nature Communications, 2012, 3(1): 1063.
[121] ESCHER B, DE MATOS FILHO R L, DAVIDOVICH L. General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology[J]. Nature Physics, 2011, 7(5): 406-411.
[122] YUAN H, FUNG C H F. Quantum parameter estimation with general dynamics[J]. npj Quantum Information, 2017, 3(1): 14.
[123] PANG S, JORDAN A N. Optimal adaptive control for quantum metrology with time-dependent Hamiltonians[J]. Nature Communications, 2017, 8(1): 14695.
[124] DUTTA T, MUKHERJEE M. A single atom noise probe operating beyond the Heisenberg limit[J]. npj Quantum Information, 2020, 6(1): 3.
[125] DEMKOWICZ-DOBRZAŃSKI R, CZAJKOWSKI J, SEKATSKI P. Adaptive quantummetrology under general Markovian noise[J]. Physical Review X, 2017, 7(4): 041009.
[126] ITHIER G, COLLIN E, JOYEZ P, et al. Decoherence in a superconducting quantum bit circuit[J]. Physical Review B, 2005, 72(13): 134519.
[127] BYLANDER J, GUSTAVSSON S, YAN F, et al. Noise spectroscopy through dynamical decoupling with a superconducting flux qubit[J]. Nature Physics, 2011, 7(7): 565-570.
[128] BROWNNUTT M, KUMPH M, RABL P, et al. Ion-trap measurements of electric-field noise near surfaces[J]. Reviews of Modern Physics, 2015, 87(4): 1419.
[129] SOARE A, BALL H, HAYES D, et al. Experimental noise filtering by quantum control[J]. Nature Physics, 2014, 10(11): 825-829.
[130] LU Y N, ZHANG Y R, LIU G Q, et al. Observing information backflow from controllable non-Markovian multichannels in diamond[J]. Physical Review Letters, 2020, 124(21): 210502.
[131] DIAL O, SHULMAN M D, HARVEY S P, et al. Charge noise spectroscopy using coher ent exchange oscillations in a singlet-triplet qubit[J]. Physical Review Letters, 2013, 110(14): 146804.
[132] PRESKILL J. Quantum computing in the NISQ era and beyond[J]. Quantum, 2018, 2: 79.
[133] MACIESZCZAK K. Zeno limit in frequency estimation with non-Markovian environments[J]. Physical Review A, 2015, 92(1): 010102.
[134] BERRADA K. Non-Markovian effect on the precision of parameter estimation[J]. Physical Review A, 2013, 88(3): 035806.
[135] LI Y L, XIAO X, YAO Y. Classical-driving-enhanced parameter-estimation precision of a non-Markovian dissipative two-state system[J]. Physical Review A, 2015, 91(5): 052105.
[136] TITUM P, SCHULTZ K, SEIF A, et al. Optimal control for quantum detectors[J]. npj Quantum Information, 2021, 7(1): 53.
[137] WANG Y S, CHEN C, AN J H. Quantum metrology in local dissipative environments[J]. New Journal of Physics, 2017, 19(11): 113019.
[138] LONG X, HE W T, ZHANG N N, et al. Entanglement-enhanced quantum metrology in colored noise by quantum Zeno effect[J]. Physical Review Letters, 2022, 129(7): 070502.
[139] NAKAJIMA T, KOJIMA Y, UEHARA Y, et al. Real-time feedback control of charge sensing for quantum dot qubits[J]. Physical Review Applied, 2021, 15(3): L031003.
[140] BAI R, YANG F, LIU P, et al. Optimized microwave sensing in broad frequency range by a fiber diamond probe[J]. Applied Physics Letters, 2022, 120(4).
[141] KAUBRUEGGER R, SILVI P, KOKAIL C, et al. Variational spin-squeezing algorithms on programmable quantum sensors[J]. Physical Review Letters, 2019, 123(26): 260505.
[142] YANG X, THOMPSON J, WU Z, et al. Probe optimization for quantum metrology via closedloop learning control[J]. npj Quantum Information, 2020, 6(1): 62.
[143] KOCH C P. Controlling open quantum systems: Tools, achievements, and limitations[J]. Journal of Physics: Condensed Matter, 2016, 28(21): 213001.
[144] DE VEGA I, ALONSO D. Dynamics of non-Markovian open quantum systems[J]. Reviews of Modern Physics, 2017, 89(1): 015001.
[145] HAASE J F, SMIRNE A, HUELGA S, et al. Precision limits in quantum metrology with open quantum systems[J]. Quantum Measurements and Quantum Metrology, 2016, 5(1): 13-39.
[146] BIERCUK M, DOHERTY A, UYS H. Dynamical decoupling sequence construction as a filter design problem[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44(15): 154002.
[147] BAI K, LUO H G, ZHANG W, et al. Non-Markovian effect on quantum optical metrology under a dissipative environment[J]. Physical Review A, 2020, 101(2): 022115.
[148] WU W, BAI S Y, AN J H. Non-Markovian sensing of a quantum reservoir[J]. Physical Review A, 2021, 103(1): L010601.
[149] SHA Y D, WU W. Continuous-variable quantum sensing of a dissipative reservoir[J]. Physical Review Research, 2022, 4(2): 023169.
[150] RIBERI F, NORRIS L M, BEAUDOIN F, et al. Frequency estimation under non-Markovian spatially correlated quantum noise[J]. New Journal of Physics, 2022, 24(10): 103011.
[151] CEREZO M, ARRASMITH A, BABBUSH R, et al. Variational quantum algorithms[J]. Nature Reviews Physics, 2021, 3(9): 625-644.
[152] DEMKOWICZ-DOBRZAŃSKI R, MACCONE L. Using entanglement against noise in quantum metrology[J]. Physical Review Letters, 2014, 113(25): 250801.
[153] MARCINIAK C D, FELDKER T, POGORELOV I, et al. Optimal metrology with programmable quantum sensors[J]. Nature, 2022, 603(7902): 604-609.
[154] ORESHKOV O, BRUN T A. Continuous quantum error correction for non-Markovian deco herence[J]. Physical Review A, 2007, 76(2): 022318.
[155] KROVI H, ORESHKOV O, RYAZANOV M, et al. Non-Markovian dynamics of a qubit coupled to an Ising spin bath[J]. Physical Review A, 2007, 76(5): 052117.
[156] HAAS H, PUZZUOLI D, ZHANG F, et al. Engineering effective Hamiltonians[J]. New Journal of Physics, 2019, 21(10): 103011.
[157] GÄRTTNER M, HAUKE P, REY A M. Relating out-of-time-order correlations to entanglement via multiple-quantum coherences[J]. Physical Review Letters, 2018, 120(4): 040402.
[158] RATH A, BRANCIARD C, MINGUZZI A, et al. Quantum Fisher information from randomized measurements[J]. Physical Review Letters, 2021, 127(26): 260501.
[159] YU M, LI D, WANG J, et al. Experimental estimation of the quantum Fisher information from randomized measurements[J]. Physical Review Research, 2021, 3(4): 043122.
[160] CEREZO M, SONE A, BECKEY J L, et al. Sub-quantum Fisher information[J]. Quantum Science and Technology, 2021, 6(3): 035008.
[161] BREUER H P, LAINE E M, PIILO J, et al. Colloquium: Non-Markovian dynamics in open quantum systems[J]. Reviews of Modern Physics, 2016, 88(2): 021002.
[162] DAS S, SUGANTHAN P N. Differential evolution: A survey of the state-of-the-art[J]. IEEE Transactions on Evolutionary Computation, 2010, 15(1): 4-31.
[163] YANG X, CHEN X, LI J, et al. Hybrid quantum-classical approach to enhanced quantum metrology[J]. Scientific Reports, 2021, 11(1): 672.
[164] FENG G, CHO F H, KATIYAR H, et al. Gradient-based closed-loop quantum optimal control in a solid-state two-qubit system[J]. Physical Review A, 2018, 98(5): 052341.
[165] XIN T, NIE X, KONG X, et al. Quantum pure state tomography via variational hybrid quantum classical method[J]. Physical Review Applied, 2020, 13(2): 024013.
[166] LU D, LI K, LI J, et al. Enhancing quantum control by bootstrapping a quantum processor of 12 qubits[J]. npj Quantum Information, 2017, 3(1): 45.
[167] YANG X, LI J, PENG X. An improved differential evolution algorithm for learning high-fidelity quantum controls[J]. Science Bulletin, 2019, 64(19): 1402-1408.
[168] PALADINO E, GALPERIN Y, FALCI G, et al. 1/f noise: Implications for solid-state quantum information[J]. Reviews of Modern Physics, 2014, 86(2): 361.
[169] YANG X D, ARENZ C, PELCZER I, et al. Assessing three closed-loop learning algorithmsby searching for high-quality quantum control pulses[J]. Physical Review A, 2020, 102(6):062605.
[170] WELCH P. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms[J]. IEEE Transactions on Audio and Electroacoustics, 1967, 15(2): 70-73.
[171] EKERT A K, ALVES C M, OI D K, et al. Direct estimations of linear and nonlinear functionals of a quantum state[J]. Physical Review Letters, 2002, 88(21): 217901.
[172] LI Z, COLOMBO S, SHU C, et al. Improving metrology with quantum scrambling[J]. Science, 2023, 380(6652): 1381-1384.
[173] ELBEN A, VERMERSCH B, VAN BIJNEN R, et al. Cross-platform verification of intermediate scale quantum devices[J]. Physical Review Letters, 2020, 124(1): 010504.
[174] BRYDGES T, ELBEN A, JURCEVIC P, et al. Probing Rényi entanglement entropy via randomized measurements[J]. Science, 2019, 364(6437): 260-263.
[175] GROSS D, LIU Y K, FLAMMIA S T, et al. Quantum state tomography via compressed sensing[J]. Physical Review Letters, 2010, 105(15): 150401.
[176] KOŁODYŃSKI J, DEMKOWICZ-DOBRZAŃSKI R. Efficient tools for quantum metrology with uncorrelated noise[J]. New Journal of Physics, 2013, 15(7): 073043.
[177] TÓTH G, APELLANIZ I. Quantum metrology from a quantum information science perspective[J]. Journal of Physics A: Mathematical and Theoretical, 2014, 47(42): 424006.
[178] ESCHER B, DE MATOS FILHO R, DAVIDOVICH L. Quantum metrology for noisy systems[J]. Brazilian Journal of Physics, 2011, 41(4): 229-247.
[179] LANG J, LIU R B, MONTEIRO T. Dynamical-decoupling-based quantum sensing: Floquet spectroscopy[J]. Physical Review X, 2015, 5(4): 041016.
[180] SEKATSKI P, SKOTINIOTIS M, DÜR W. Dynamical decoupling leads to improved scaling in noisy quantum metrology[J]. New Journal of Physics, 2016, 18(7): 073034.
[181] DÜR W, SKOTINIOTIS M, FROEWIS F, et al. Improved quantum metrology using quantum error correction[J]. Physical Review Letters, 2014, 112(8): 080801.
[182] LIU J, YUAN H. Quantum parameter estimation with optimal control[J]. Physical Review A, 2017, 96(1): 012117.
[183] HOU Z, WANG R J, TANG J F, et al. Control-enhanced sequential scheme for general quantum parameter estimation at the heisenberg limit[J]. Physical Review Letters, 2019, 123(4): 040501.
[184] XU H, LI J, LIU L, et al. Generalizable control for quantum parameter estimation through reinforcement learning[J]. npj Quantum Information, 2019, 5(1): 82.
[185] MA Z, GOKHALE P, ZHENG T X, et al. Adaptive circuit learning for quantum metrology[C]//2021 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, 2021: 419-430.
[186] MOLL N, BARKOUTSOS P, BISHOP L S, et al. Quantum optimization using variational algorithms on near-term quantum devices[J]. Quantum Science and Technology, 2018, 3(3): 030503.
[187] KANDALA A, MEZZACAPO A, TEMME K, et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets[J]. Nature, 2017, 549(7671): 242-246.
[188] ENDO S, SUN J, LI Y, et al. Variational quantum simulation of general processes[J]. Physical Review Letters, 2020, 125(1): 010501.
[189] CHEN Y Y, ZHANG P, ZHENG W, et al. Many-body echo[J]. Physical Review A, 2020, 102(1): 011301.
[190] SCHULD M, BERGHOLM V, GOGOLIN C, et al. Evaluating analytic gradients on quantum hardware[J]. Physical Review A, 2019, 99(3): 032331.
[191] HEMPEL C, MAIER C, ROMERO J, et al. Quantum chemistry calculations on a trapped-ion quantum simulator[J]. Physical Review X, 2018, 8(3): 031022.
[192] ZHU D, LINKE N M, BENEDETTI M, et al. Training of quantum circuits on a hybrid quantum computer[J]. Science Advances, 2019, 5(10): eaaw9918.
[193] EIBEN A E, SMITH J. From evolutionary computation to the evolution of things[J]. Nature, 2015, 521(7553): 476-482.
[194] FAN R, ZHANG P, SHEN H, et al. Out-of-time-order correlation for many-body localization[J]. Science Bulletin, 2017, 62(10): 707-711.
[195] LI J, FAN R, WANG H, et al. Measuring out-of-time-order correlators on a nuclear magnetic resonance quantum simulator[J]. Physical Review X, 2017, 7(3): 031011.
[196] SWINGLE B. Unscrambling the physics of out-of-time-order correlators[J]. Nature Physics, 2018, 14(10): 988-990.
[197] GÄRTTNER M, BOHNET J G, SAFAVI-NAINI A, et al. Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet[J]. Nature Physics, 2017,13(8): 781-786.
[198] LINDEN N, HERVÉ B, CARBAJO R J, et al. Pulse sequences for NMR quantum computers: How to manipulate nuclear spins while freezing the motion of coupled neighbours[J]. Chemical Physics Letters, 1999, 305(1-2): 28-34
修改评论