中文版 | English
题名

基于核磁共振体系的开放量子系统中量子精密测量的实验研究

其他题名
EXPERIMENTAL QUANTUM METROLOGY IN OPEN QUANTUM SYSTEMS BASED ON NUCLEAR MAGNETIC RESONANCE TECHNOLOGY
姓名
姓名拼音
LONG Xinyue
学号
11930495
学位类型
博士
学位专业
07 理学
学科门类/专业学位类别
07 理学
导师
鲁大为
导师单位
物理系
论文答辩日期
2024-05
论文提交日期
2024-06-21
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

基于量子资源(例如相干、纠缠、压缩等)及其调控技术的量子精密测量有 望超越经典技术极限,以更高的精确度、灵敏度和/或空间分辨率等实现对物理量 的感知和度量。借助这些优势,量子精密测量在基础科学研究和实际应用领域都 展现出巨大的潜力。然而,在量子精密测量中起着关键作用的量子探针态对外界 环境极为敏感,导致在开放量子系统中测量精度难以达到海森堡极限(Heisenberg limit, HL)。鉴于实际的量子体系必然处于开放系统中,研究如何在开放量子系统 中接近甚至达到 HL,成为量子精密测量领域的重要内容及巨大挑战。其中存在一 些关键性问题,例如:在开放量子系统中,量子资源在测量中的优势是否依旧存在?若存在,其可能达到的精度极限是多少?我们能否通过量子控制等方法来提 升开放量子系统中的测量精度,使之逼近 HL?以及在真实噪声条件下,最大纠缠 态是否依旧是最优的探针态?如何制备最优探针态?本文将针对以上问题进行实 验研究。 首先,我们实验研究了最大纠缠态在非马尔可夫纯退相位噪声下的测量精度 极限。结果表明,尽管其测量精度极限无法达到 HL,却成功超越了标准量子极限 (standard quantum limit),达到了量子芝诺效应(quantum Zeno effect, QZE)极限。 然而,非马尔可夫纯退相位噪声难以从更加复杂的噪声机制中单独区分出来,我们 为此开发了一种噪声调控技术,它可以精确地模拟非马尔可夫纯退相位噪声。在 核磁共振(nuclear magnetic resonance, NMR)体系中,我们制备了二到七个量子比 特的最大纠缠态作为探针,通过利用体系在非马尔可夫噪声下的 QZE,最大纠缠 探针态能够提升测量精度达到 QZE 极限。这与理论预测一致,并且展示了非马尔 可夫噪声下量子精密测量的效率和潜力。

随后,我们利用量子控制来提升非马尔可夫环境中的测量精度极限,使其尽 可能的逼近 HL。常见的两种非马尔可夫噪声的描述方式可以分为噪声信道和噪声 谱。我们针对这两种描述方式设计了对应的控制增强的量子精密测量方案。在多 量子比特 NMR 量子处理器中验证了这些方案的有效性。结果表明,我们的方案可 以大幅提高参数估计的精度,使其接近 HL。

考虑到真实实验环境中噪声机制的复杂性,我们进一步研究了真实实验中的 量子精密测量。首次在实验上表明,真实实验体系中存在比最大纠缠态更有效的 量子探针态。在实验中,我们提出了一种新的协议,将高效的探针性能评估策略与闭环线路学习相结合。在七比特的 NMR 量子处理器上,我们成功搜寻到了一种 在该开放量子系统中可替代最大纠缠态的最优探针态。通过与传统的探针为最大 纠缠态的量子精密测量协议相比较,我们的协议在提升测量性能方面展现了显著 优势。本研究所提出的协议不仅具有良好的可扩展性,而且特别适用于利用量子 优势来执行的短期传感任务,为量子精密测量技术在实际应用场景中的推广提供 了强有力的支持。

综上所述,本论文通过一系列开放量子系统的量子精密测量实验,探索了在 实际量子精密测量场景中实现量子优势的可行性。我们通过结合多种量子控制技 术,成功地在开放量子系统中提升了测量精度,使之逼近理论上的 HL。这些成果 为量子精密测量在实际场景中的广泛应用开辟了道路,体现了在真实环境下利用 量子优势进行精确测量的可能性和有效性。

其他摘要

Quantum metrology, which utilizes quantum resources (such as coherence, entanglement, squeezing, etc.) and their control technologies, is expected to exceed the limit of classical metrology, achieving higher precision, sensitivity and/or spatial resolution in the sensing and measurement of various physical quantities.

Leveraging these advantages, quantum metrology exhibits tremendous potential in both fundamental scientific research and practical application fields. However, the quantum probe states in quantum metrology are extremely sensitive to external environments. This leads to difficulties in achieving the Heisenberg limit (HL) of measurement precision in open quantum systems. Given that practical quantum systems inevitably operate within open systems, approaching or even reaching the HL in open quantum systems has become a significant challenge for quantum metrology. There are some critical issues, for example: In open quantum systems, does the advantage of quantum resources in measurement still exist? If so, what is the precision limit? Can we enhance the measurement precision in open quantum systems through quantum control and other methods to approach the HL? And in real experimental systems, is the maximally entangled state still the optimal probe? How to prepare the optimal probe? This thesis conducts experimental researches on the aforementioned issues.

Firstly, we conduct an experimental study on the measurement precision limit of maximally entangled states in non-Markovian pure dephasing noise. The results indicate that although the precision limit of these measurements cannot reach the HL, they successfully exceed the standard quantum limit and reach the limit of the quantum Zeno effect (QZE). However, non-Markovian pure dephasing noise is difficult to distinguish from more complex noises separately. We develop a noise control technology that can accurately simulate pure dephasing noise in a nuclear magnetic resonance (NMR) system. In the experiments, we prepare maximally entangled states of up to seven qubits and studied the dynamical behavior in non-Markovian pure dephasing noise. The results showed that by utilizing the QZE in the system under non-Markovian noise, the maximally entangled states could enhance measurement precision, reaching the QZE limit. This is consistent with theoretical predictions and demonstrates the efficiency and potential of quantum metrology in non-Markovian noise.

Subsequently, we utilize quantum control to enhance the measurement precision limit in non-Markovian environments, aiming to approach the HL. The common descriptions of non-Markovian noise include noise channels and noise spectrum. We design corresponding control-enhanced quantum metrology schemes for these two descriptions and experimentally validate their effectiveness in multi-qubit NMR quantum processors. The results indicate that our schemes can significantly improve the precision of measurement, approaching the HL. Considering the complexity of noise mechanisms in experimental environments, we conduct a profound study on quantum metrology in real conditions. This is the first experimental demonstration showing the existence of quantum probe states in real systems, which are more efficient than maximally entangled states. In the experiment, we introduced a new protocol that combines efficient probe performance evaluation strategies with closed-loop circuit learning. On a seven-qubit NMR quantum processor, we successfully find an optimal probe state that can replace the maximally entangled state in open quantum systems. Compared with traditional quantum metrology protocols using maximally entangled states, our protocol demonstrates significant advantages in enhancing measurement performance. The protocol proposed in this study not only exhibits good scalability but is also particularly suitable for short-term sensing tasks using quantum advantages, providing strong support for the widespread application of quantum metrology techniques in practical scenarios. In summary, through a series of quantum metrology experiments in open quantum systems, this paper explores the feasibility of achieving quantum advantages in real quantum metrology scenarios. By combining various quantum control techniques, we successfully enhance measurement precision in open quantum systems, approaching the theoretical HL. These achievements bring the opportunities for the broad application of quantum metrology in practical scenarios, showcasing the potential and effectiveness of precise measurement using quantum advantages in real experimental systems.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2024-06
参考文献列表

[1] DOWLING J P, MILBURN G J. Quantum technology: The second quantum revolution[J].Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2003, 361(1809): 1655-1674.
[2] LEIBFRIED D, KNILL E, SEIDELIN S, et al. Creation of a six-atom 'Schrödinger cat’state[J]. Nature, 2005, 438(7068): 639-642.
[3] LEIBFRIED D, BARRETT M D, SCHAETZ T, et al. Toward Heisenberg-limited spectroscopy with multiparticle entangled states[J]. Science, 2004, 304(5676): 1476-1478.
[4] JONES J A, KARLEN S D, FITZSIMONS J, et al. Magnetic field sensing beyond the standard quantum limit using 10-spin NOON states[J]. Science, 2009, 324(5931): 1166-1168.
[5] GARDINER C, ZOLLER P. Quantum noise: A handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics[M]. Springer Science & Business Media, 2004.
[6] GIOVANNETTI V, LLOYD S, MACCONE L. Quantum-enhanced measurements: Beating the standard quantum limit[J]. Science, 2004, 306(5700): 1330-1336.
[7] GIOVANNETTI V, LLOYD S, MACCONE L. Advances in quantum metrology[J]. NaturePhotonics, 2011, 5(4): 222-229.
[8] GIOVANNETTI V, LLOYD S, MACCONE L. Quantum metrology[J]. Physical Review Letters, 2006, 96(1): 010401.
[9] WU L A, KIMBLE H, HALL J, et al. Generation of squeezed states by parametric down conversion[J]. Physical Review Letters, 1986, 57(20): 2520.
[10] KITAGAWA M, UEDA M. Squeezed spin states[J]. Physical Review A, 1993, 47(6): 5138.
[11] MA J, WANG X, SUN C P, et al. Quantum spin squeezing[J]. Physics Reports, 2011, 509(2-3):89-165.
[12] VIDAL G, LATORRE J I, RICO E, et al. Entanglement in quantum critical phenomena[J]. Physical Review Letters, 2003, 90(22): 227902.
[13] MISHRA U, BAYAT A. Driving enhanced quantum sensing in partially accessible many-body systems[J]. Physical Review Letters, 2021, 127(8): 080504.
[14] PEZZE L, SMERZI A, OBERTHALER M K, et al. Quantum metrology with nonclassical states of atomic ensembles[J]. Reviews of Modern Physics, 2018, 90(3): 035005.
[15] ABBOTT B P, ABBOTT R, ABBOTT T, et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 2016, 116(6): 061102.
[16] AASI J, ABADIE J, ABBOTT B, et al. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light[J]. Nature Photonics, 2013, 7(8): 613-619.
[17] BAO H, DUAN J, JIN S, et al. Spin squeezing of 1011 atoms by prediction and retrodiction measurements[J]. Nature, 2020, 581(7807): 159-163.
[18] LUDLOWMA2011QUANTUM A D, BOYD M M, YE J, et al. Optical atomic clocks[J]. Re views of Modern Physics, 2015, 87(2): 637.
[19] BREWER S M, CHEN J S, HANKIN A M, et al. 27Al+ quantum-logic clock with a systematic uncertainty below 10−18[J]. Physical Review Letters, 2019, 123(3): 033201.
[20] ANDERSON M H, ENSHER J R, MATTHEWS M R, et al. Observation of Bose-Einstein condensation in a dilute atomic vapor[J]. Science, 1995, 269(5221): 198-201.
[21] MAO T W, LIU Q, LI X W, et al. Quantum-enhanced sensing by echoing spin-nematic squeezing in atomic Bose-Einstein condensate[J]. Nature Physics, 2023, 19(11): 1585-1590.
[22] HENSEN B, BERNIEN H, DRÉAU A E, et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres[J]. Nature, 2015, 526(7575): 682-686.
[23] BOTO A N, KOK P, ABRAMS D S, et al. Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit[J]. Physical Review Letters, 2000, 85(13): 2733.
[24] OCKELOEN C F, SCHMIED R, RIEDEL M F, et al. Quantum metrology with a scanning probe atom interferometer[J]. Physical Review Letters, 2013, 111(14): 143001.
[25] DEGEN C L, REINHARD F, CAPPELLARO P. Quantum sensing[J]. Reviews of Modern Physics, 2017, 89(3): 035002.
[26] CLERK A A, DEVORET M H, GIRVIN S M, et al. Introduction to quantum noise, measurement, and amplification[J]. Reviews of Modern Physics, 2010, 82(2): 1155.
[27] LAX M. Quantum noise. IV. Quantum theory of noise sources[J]. Physical Review, 1966, 145(1): 110.
[28] HORODECKI R, HORODECKI P, HORODECKI M, et al. Quantum entanglement[J]. Reviews of Modern Physics, 2009, 81(2): 865.
[29] HUELGA S F, MACCHIAVELLO C, PELLIZZARI T, et al. Improvement of frequency standards with quantum entanglement[J]. Physical Review Letters, 1997, 79(20): 3865.
[30] NISET J, FIURÁŠEK J, CERF N J. No-go theorem for Gaussian quantum error correction[J]. Physical Review Letters, 2009, 102(12): 120501.
[31] FANG K, LIU Z W. No-go theorems for quantum resource purification[J]. Physical Review Letters, 2020, 125(6): 060405.
[32] CHIN A W, HUELGA S F, PLENIO M B. Quantum metrology in non-Markovian environments[J]. Physical Review Letters, 2012, 109(23): 233601.
[33] ITANO W M, HEINZEN D J, BOLLINGER J J, et al. Quantum Zeno effect[J]. Physical Review A, 1990, 41(5): 2295.
[34] FISCHER M C, GUTIÉRREZ-MEDINA B, RAIZEN M G. Observation of the quantum Zeno and anti-Zeno effects in an unstable system[J]. Physical Review Letters, 2001, 87(4): 040402.
[35] BORREGAARD J, SØRENSEN A S. Near-Heisenberg-limited atomic clocks in the presence of decoherence[J]. Physical Review Letters, 2013, 111(9): 090801.
[36] ROSSI M A, ALBARELLI F, TAMASCELLI D, et al. Noisy quantum metrology enhanced by continuous nondemolition measurement[J]. Physical Review Letters, 2020, 125(20): 200505.
[37] KESSLER E M, LOVCHINSKY I, SUSHKOV A O, et al. Quantum error correction for metrol ogy[J]. Physical Review Letters, 2014, 112(15): 150802.
[38] YAMAMOTO K, ENDO S, HAKOSHIMA H, et al. Error-mitigated quantum metrology via virtual purification[J]. Physical Review Letters, 2022, 129(25): 250503.
[39] JIAO L, WU W, BAI S Y, et al. Quantum metrology in the noisy intermediate-scale quantum era[J]. Advanced Quantum Technologies, 2023: 2300218.
[40] YANG Y. Memory effects in quantum metrology[J]. Physical Review Letters, 2019, 123(11): 110501.
[41] ALTHERR A, YANG Y. Quantum metrology for non-Markovian processes[J]. Physical Review Letters, 2021, 127(6): 060501.
[42] LIU J, ZHANG M, CHEN H, et al. Optimal scheme for quantum metrology[J]. Advanced Quantum Technologies, 2022, 5(1): 2100080.
[43] RAO C R. Minimum variance and the estimation of several parameters[C]//Mathematical Pro-ceedings of the Cambridge Philosophical Society: Vol. 43. Cambridge University Press, 1947: 280-283.
[44] CRAMÉR H. Mathematical methods of statistics: Vol. 26[M]. Princeton University Press,1999.
[45] MYUNG I J. Tutorial on maximum likelihood estimation[J]. Journal of Mathematical Psychology, 2003, 47(1): 90-100.
[46] RAO C R. Information and the accuracy attainable in the estimation of statistical parameters [M]//Breakthroughs in Statistics: Foundations and Basic Theory. Springer, 1992: 235-247.
[47] BRAUNSTEIN S L, CAVES C M, MILBURN G J. Generalized uncertainty relations: Theory, examples, and Lorentz invariance[J]. Annals of Physics, 1996, 247(1): 135-173.
[48] BRAUNSTEIN S L, CAVES C M. Statistical distance and the geometry of quantum states[J]. Physical Review Letters, 1994, 72(22): 3439.
[49] MEYER J J, BORREGAARD J, EISERT J. A variational toolbox for quantum multi-parameter estimation[J]. npj Quantum Information, 2021, 7(1): 89.
[50] OBERKAMPF W L, DELAND S M, RUTHERFORD B M, et al. Error and uncertainty in modeling and simulation[J]. Reliability Engineering & System Safety, 2002, 75(3): 333-357.
[51] GRAHAM R L, ROTHSCHILD B L, SPENCER J H. Ramsey theory: Vol. 20[M]. John Wiley & Sons, 1991.
[52] JI Y, CHUNG Y, SPRINZAK D, et al. An electronic Mach-Zehnder interferometer[J]. Nature, 2003, 422(6930): 415-418.
[53] POST E J. Sagnac effect[J]. Reviews of Modern Physics, 1967, 39(2): 475.
[54] KOMINIS I K, KORNACK T W, ALLRED J C, et al. A subfemtotesla multichannel atomic magnetometer[J]. Nature, 2003, 422(6932): 596-599.
[55] AUSTER H, GLASSMEIER K, MAGNES W, et al. The THEMIS fluxgate magnetometer[J]. Space Science Reviews, 2008, 141: 235-264.
[56] CELEGHINI E, RASETTI M, VITIELLO G. Quantum dissipation[J]. Annals of Physics, 1992, 215(1): 156-170.
[57] HALBERTAL D, CUPPENS J, SHALOM M B, et al. Nanoscale thermal imaging of dissipation in quantum systems[J]. Nature, 2016, 539(7629): 407-410.
[58] SENITZKY I. Dissipation in quantum mechanics. The harmonic oscillator[J]. Physical Review, 1960, 119(2): 670.
[59] GOLUBEV D S, ZAIKIN A D. Quantum decoherence in disordered mesoscopic systems[J]. Physical Review Letters, 1998, 81(5): 1074.
[60] BERGER S, PECHAL M, KURPIERS P, et al. Measurement of geometric dephasing using a superconducting qubit[J]. Nature Communications, 2015, 6(1): 8757.
[61] GAMBETTA J M, CHOW J M, STEFFEN M. Building logical qubits in a superconducting quantum computing system[J]. npj Quantum Information, 2017, 3(1): 2.
[62] ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable super-conducting processor[J]. Nature, 2019, 574(7779): 505-510.
[63] GROSS C, BLOCH I. Quantum simulations with ultracold atoms in optical lattices[J]. Science, 2017, 357(6355): 995-1001.
[64] DEMILLE D. Quantum computation with trapped polar molecules[J]. Physical Review Letters, 2002, 88(6): 067901.
[65] SCHÄFER F, FUKUHARA T, SUGAWA S, et al. Tools for quantum simulation with ultracold atoms in optical lattices[J]. Nature Reviews Physics, 2020, 2(8): 411-425.
[66] ZUREK W H. Decoherence, einselection, and the quantum origins of the classical[J]. Reviews of Modern Physics, 2003, 75(3): 715.
[67] SCHLOSSHAUER M. Decoherence, the measurement problem, and interpretations of quantum mechanics[J]. Reviews of Modern Physics, 2005, 76(4): 1267.
[68] SHOR P W. Scheme for reducing decoherence in quantum computer memory[J]. Physical Review A, 1995, 52(4): R2493.
[69] ZHANG N, CHEN C, BAI S Y, et al. Non-Markovian quantum thermometry[J]. Physical Review Applied, 2022, 17(3): 034073.
[70] SMIRNE A, KOŁODYŃSKI J, HUELGA S F, et al. Ultimate precision limits for noisy frequency estimation[J]. Physical Review Letters, 2016, 116(12): 120801.
[71] BOIXO S, DATTA A, DAVIS M J, et al. Quantum metrology: Dynamics versus entanglement[J]. Physical Review Letters, 2008, 101(4): 040403.
[72] MATSUZAKI Y, BENJAMIN S C, FITZSIMONS J. Magnetic field sensing beyond the standard quantum limit under the effect of decoherence[J]. Physical Review A, 2011, 84(1): 012103.
[73] BAI K, PENG Z, LUO H G, et al. Retrieving ideal precision in noisy quantum optical metrology[J]. Physical Review Letters, 2019, 123(4): 040402.
[74] KHANEJA N, REISS T, KEHLET C, et al. Optimal control of coupled spin dynamics: Design of NMR pulse sequences by gradient ascent algorithms[J]. Journal of Magnetic Resonance, 2005, 172(2): 296-305.
[75] JONES J, KNILL E. Efficient refocusing of one-spin and two-spin interactions for NMR quan tum computation[J]. Journal of Magnetic Resonance, 1999, 141(2): 322-325.
[76] LEUNG D W, CHUANG I L, YAMAGUCHI F, et al. Efficient implementation of coupled logic gates for quantum computation[J]. Physical Review A, 2000, 61(4): 042310.
[77] VANDERSYPEN L M, CHUANG I L. NMR techniques for quantum control and computation[J]. Reviews of Modern Physics, 2005, 76(4): 1037.
[78] CORY D G, FAHMY A F, HAVEL T F. Ensemble quantum computing by NMR spectroscopy[J]. Proceedings of the National Academy of Sciences, 1997, 94(5): 1634-1639.
[79] KNILL E, CHUANG I, LAFLAMME R. Effective pure states for bulk quantum computation [J]. Physical Review A, 1998, 57(5): 3348.
[80] GERSHENFELD N A, CHUANG I L. Bulk spin-resonance quantum computation[J]. Science, 1997, 275(5298): 350-356.
[81] VANDERSYPEN L M, YANNONI C S, SHERWOOD M H, et al. Realization of logically labeled effective pure states for bulk quantum computation[J]. Physical Review Letters, 1999, 83(15): 3085.
[82] LEVITT M H. Spin dynamics: Basics of nuclear magnetic resonance[M]. John Wiley & Sons, 2013.
[83] CORY D G, PRICE M D, HAVEL T F. Nuclear magnetic resonance spectroscopy: An experimentally accessible paradigm for quantum computing[J]. Physica D: Nonlinear Phenomena, 1998, 120(1-2): 82-101.
[84] KHANEJA N, REISS T, KEHLET C, et al. Optimal control of coupled spin dynamics: Design of NMR pulse sequences by gradient ascent algorithms[J]. Journal of Magnetic Resonance, 2005, 172(2): 296-305.
[85] KNILL E, LAFLAMME R, MARTINEZ R, et al. An algorithmic benchmark for quantum information processing[J]. Nature, 2000, 404(6776): 368-370.
[86] GARDINER C, ZOLLER P. The quantum world of ultra-cold atoms and light book I: Foundations of quantum optics: Vol. 2[M]. World Scientific Publishing Company, 2014.
[87] LIU X J, LAW K T, NG T K. Realization of 2D spin-orbit interaction and exotic topological orders in cold atoms[J]. Physical Review Letters, 2014, 112(8): 086401.
[88] WU Z, ZHANG L, SUN W, et al. Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates[J]. Science, 2016, 354(6308): 83-88.
[89] ZHANG L, ZHANG L, NIU S, et al. Dynamical classification of topological quantum phases[J]. Science Bulletin, 2018, 63(21): 1385-1391.
[90] ZHANG L, ZHANG L, LIU X J. Quench-induced dynamical topology under dynamical noise[J]. Physical Review Research, 2021, 3(1): 013229.
[91] CAVES C M. Quantum-mechanical noise in an interferometer[J]. Physical Review D, 1981, 23(8): 1693.
[92] BREUER H P, PETRUCCIONE F. The theory of open quantum systems[M]. OUP Oxford, 2002.
[93] AI Q, LIAO J Q. Quantum anti-Zeno effect in artificial quantum systems[J]. Communications in Theoretical Physics, 2010, 54(6): 985.
[94] MONZ T, SCHINDLER P, BARREIRO J T, et al. 14-qubit entanglement: Creation and coherence[J]. Physical Review Letters, 2011, 106(13): 130506.
[95] HE W T, GUANG H Y, LI Z Y, et al. Quantum metrology with one auxiliary particle in a correlated bath and its quantum simulation[J]. Physical Review A, 2021, 104(6): 062429.
[96] BOIXO S, FLAMMIA S T, CAVES C M, et al. Generalized limits for single-parameter quantum estimation[J]. Physical Review Letters, 2007, 98(9): 090401.
[97] NIE X, LI J, CUI J, et al. Quantum simulation of interaction blockade in a two-site Bose–Hubbard system with solid quadrupolar crystal[J]. New Journal of Physics, 2015, 17(5): 053028.
[98] CHOI S, SUNDARAM B. Bose-Einstein condensate as a nonlinear Ramsey interferometer operating beyond the Heisenberg limit[J]. Physical Review A, 2008, 77(5): 053613.
[99] ROY S, BRAUNSTEIN S L. Exponentially enhanced quantum metrology[J]. Physical Review Letters, 2008, 100(22): 220501.
[100] NAPOLITANO M, KOSCHORRECK M, DUBOST B, et al. Interaction-based quantum metrology showing scaling beyond the Heisenberg limit[J]. Nature, 2011, 471(7339): 486-489.
[101] NAKAZATO H, NAMIKI M, PASCAZIO S. Temporal behavior of quantum mechanical sys tems[J]. International Journal of Modern Physics B, 1996, 10(03): 247-295.
[102] AI Q, LI Y, ZHENG H, et al. Quantum anti-Zeno effect without rotating wave approximation[J]. Physical Review A, 2010, 81(4): 042116.
[103] AI Q, XU D, YI S, et al. Quantum anti-Zeno effect without wave function reduction[J]. Scientific Reports, 2013, 3(1): 1752.
[104] HARRINGTON P, MONROE J, MURCH K. Quantum Zeno effects from measurement controlled qubit-bath interactions[J]. Physical Review Letters, 2017, 118(24): 240401.
[105] WANG B X, TAO M J, AI Q, et al. Efficient quantum simulation of photosynthetic light har vesting[J]. npj Quantum Information, 2018, 4(1): 52.
[106] ZHANG N N, TAO M J, HE W T, et al. Efficient quantum simulation of open quantum dynamics at various Hamiltonians and spectral densities[J]. Frontiers of Physics, 2021, 16: 1-14.
[107] CHEN X Y, ZHANG N N, HE W T, et al. Global correlation and local information flows in controllable non-Markovian open quantum dynamics[J]. npj Quantum Information, 2022, 8(1): 22.
[108] SOARE A, BALL H, HAYES D, et al. Experimental bath engineering for quantitative studies of quantum control[J]. Physical Review A, 2014, 89(4): 042329.
[109] LI J, YANG X, PENG X, et al. Hybrid quantum-classical approach to quantum optimal control[J]. Physical Review Letters, 2017, 118(15): 150503.
[110] BULUTA I, NORI F. Quantum simulators[J]. Science, 2009, 326(5949): 108-111.
[111] GEORGESCU I M, ASHHAB S, NORI F. Quantum simulation[J]. Reviews of Modern Physics, 2014, 86(1): 153.
[112] LUO S, FU S, SONG H. Quantifying non-Markovianity via correlations[J]. Physical Review A, 2012, 86(4): 044101.
[113] LU X M, WANG X, SUN C. Quantum Fisher information flow and non-Markovian processes of open systems[J]. Physical Review A, 2010, 82(4): 042103.
[114] GOODMAN J W. Statistical optics[M]. John Wiley & Sons, 2015.
[115] TAO M J, ZHANG N N, WEN P Y, et al. Coherent and incoherent theories for photosynthetic energy transfer[J]. Science Bulletin, 2020, 65(4): 318-328.
[116] PIANTINI U, SORENSEN O, ERNST R R. Multiple quantum filters for elucidating NMR coupling networks[J]. Journal of the American Chemical Society, 1982, 104(24): 6800-6801.
[117] MISRA B, SUDARSHAN E G. The Zeno’s paradox in quantum theory[J]. Journal of Mathematical Physics, 1977, 18(4): 756-763.
[118] RISSANEN J J. Fisher information and stochastic complexity[J]. IEEE Transactions on Information Theory, 1996, 42(1): 40-47.
[119] POTOČNIK A, BARGERBOS A, SCHRÖDER F A, et al. Studying light-harvesting models with superconducting circuits[J]. Nature Communications, 2018, 9(1): 904.
[120] DEMKOWICZ-DOBRZAŃSKI R, KOŁODYŃSKI J, GUŢĂ M. The elusive Heisenberg limit in quantum-enhanced metrology[J]. Nature Communications, 2012, 3(1): 1063.
[121] ESCHER B, DE MATOS FILHO R L, DAVIDOVICH L. General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology[J]. Nature Physics, 2011, 7(5): 406-411.
[122] YUAN H, FUNG C H F. Quantum parameter estimation with general dynamics[J]. npj Quantum Information, 2017, 3(1): 14.
[123] PANG S, JORDAN A N. Optimal adaptive control for quantum metrology with time-dependent Hamiltonians[J]. Nature Communications, 2017, 8(1): 14695.
[124] DUTTA T, MUKHERJEE M. A single atom noise probe operating beyond the Heisenberg limit[J]. npj Quantum Information, 2020, 6(1): 3.
[125] DEMKOWICZ-DOBRZAŃSKI R, CZAJKOWSKI J, SEKATSKI P. Adaptive quantummetrology under general Markovian noise[J]. Physical Review X, 2017, 7(4): 041009.
[126] ITHIER G, COLLIN E, JOYEZ P, et al. Decoherence in a superconducting quantum bit circuit[J]. Physical Review B, 2005, 72(13): 134519.
[127] BYLANDER J, GUSTAVSSON S, YAN F, et al. Noise spectroscopy through dynamical decoupling with a superconducting flux qubit[J]. Nature Physics, 2011, 7(7): 565-570.
[128] BROWNNUTT M, KUMPH M, RABL P, et al. Ion-trap measurements of electric-field noise near surfaces[J]. Reviews of Modern Physics, 2015, 87(4): 1419.
[129] SOARE A, BALL H, HAYES D, et al. Experimental noise filtering by quantum control[J]. Nature Physics, 2014, 10(11): 825-829.
[130] LU Y N, ZHANG Y R, LIU G Q, et al. Observing information backflow from controllable non-Markovian multichannels in diamond[J]. Physical Review Letters, 2020, 124(21): 210502.
[131] DIAL O, SHULMAN M D, HARVEY S P, et al. Charge noise spectroscopy using coher ent exchange oscillations in a singlet-triplet qubit[J]. Physical Review Letters, 2013, 110(14): 146804.
[132] PRESKILL J. Quantum computing in the NISQ era and beyond[J]. Quantum, 2018, 2: 79.
[133] MACIESZCZAK K. Zeno limit in frequency estimation with non-Markovian environments[J]. Physical Review A, 2015, 92(1): 010102.
[134] BERRADA K. Non-Markovian effect on the precision of parameter estimation[J]. Physical Review A, 2013, 88(3): 035806.
[135] LI Y L, XIAO X, YAO Y. Classical-driving-enhanced parameter-estimation precision of a non-Markovian dissipative two-state system[J]. Physical Review A, 2015, 91(5): 052105.
[136] TITUM P, SCHULTZ K, SEIF A, et al. Optimal control for quantum detectors[J]. npj Quantum Information, 2021, 7(1): 53.
[137] WANG Y S, CHEN C, AN J H. Quantum metrology in local dissipative environments[J]. New Journal of Physics, 2017, 19(11): 113019.
[138] LONG X, HE W T, ZHANG N N, et al. Entanglement-enhanced quantum metrology in colored noise by quantum Zeno effect[J]. Physical Review Letters, 2022, 129(7): 070502.
[139] NAKAJIMA T, KOJIMA Y, UEHARA Y, et al. Real-time feedback control of charge sensing for quantum dot qubits[J]. Physical Review Applied, 2021, 15(3): L031003.
[140] BAI R, YANG F, LIU P, et al. Optimized microwave sensing in broad frequency range by a fiber diamond probe[J]. Applied Physics Letters, 2022, 120(4).
[141] KAUBRUEGGER R, SILVI P, KOKAIL C, et al. Variational spin-squeezing algorithms on programmable quantum sensors[J]. Physical Review Letters, 2019, 123(26): 260505.
[142] YANG X, THOMPSON J, WU Z, et al. Probe optimization for quantum metrology via closedloop learning control[J]. npj Quantum Information, 2020, 6(1): 62.
[143] KOCH C P. Controlling open quantum systems: Tools, achievements, and limitations[J]. Journal of Physics: Condensed Matter, 2016, 28(21): 213001.
[144] DE VEGA I, ALONSO D. Dynamics of non-Markovian open quantum systems[J]. Reviews of Modern Physics, 2017, 89(1): 015001.
[145] HAASE J F, SMIRNE A, HUELGA S, et al. Precision limits in quantum metrology with open quantum systems[J]. Quantum Measurements and Quantum Metrology, 2016, 5(1): 13-39.
[146] BIERCUK M, DOHERTY A, UYS H. Dynamical decoupling sequence construction as a filter design problem[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44(15): 154002.
[147] BAI K, LUO H G, ZHANG W, et al. Non-Markovian effect on quantum optical metrology under a dissipative environment[J]. Physical Review A, 2020, 101(2): 022115.
[148] WU W, BAI S Y, AN J H. Non-Markovian sensing of a quantum reservoir[J]. Physical Review A, 2021, 103(1): L010601.
[149] SHA Y D, WU W. Continuous-variable quantum sensing of a dissipative reservoir[J]. Physical Review Research, 2022, 4(2): 023169.
[150] RIBERI F, NORRIS L M, BEAUDOIN F, et al. Frequency estimation under non-Markovian spatially correlated quantum noise[J]. New Journal of Physics, 2022, 24(10): 103011.
[151] CEREZO M, ARRASMITH A, BABBUSH R, et al. Variational quantum algorithms[J]. Nature Reviews Physics, 2021, 3(9): 625-644.
[152] DEMKOWICZ-DOBRZAŃSKI R, MACCONE L. Using entanglement against noise in quantum metrology[J]. Physical Review Letters, 2014, 113(25): 250801.
[153] MARCINIAK C D, FELDKER T, POGORELOV I, et al. Optimal metrology with programmable quantum sensors[J]. Nature, 2022, 603(7902): 604-609.
[154] ORESHKOV O, BRUN T A. Continuous quantum error correction for non-Markovian deco herence[J]. Physical Review A, 2007, 76(2): 022318.
[155] KROVI H, ORESHKOV O, RYAZANOV M, et al. Non-Markovian dynamics of a qubit coupled to an Ising spin bath[J]. Physical Review A, 2007, 76(5): 052117.
[156] HAAS H, PUZZUOLI D, ZHANG F, et al. Engineering effective Hamiltonians[J]. New Journal of Physics, 2019, 21(10): 103011.
[157] GÄRTTNER M, HAUKE P, REY A M. Relating out-of-time-order correlations to entanglement via multiple-quantum coherences[J]. Physical Review Letters, 2018, 120(4): 040402.
[158] RATH A, BRANCIARD C, MINGUZZI A, et al. Quantum Fisher information from randomized measurements[J]. Physical Review Letters, 2021, 127(26): 260501.
[159] YU M, LI D, WANG J, et al. Experimental estimation of the quantum Fisher information from randomized measurements[J]. Physical Review Research, 2021, 3(4): 043122.
[160] CEREZO M, SONE A, BECKEY J L, et al. Sub-quantum Fisher information[J]. Quantum Science and Technology, 2021, 6(3): 035008.
[161] BREUER H P, LAINE E M, PIILO J, et al. Colloquium: Non-Markovian dynamics in open quantum systems[J]. Reviews of Modern Physics, 2016, 88(2): 021002.
[162] DAS S, SUGANTHAN P N. Differential evolution: A survey of the state-of-the-art[J]. IEEE Transactions on Evolutionary Computation, 2010, 15(1): 4-31.
[163] YANG X, CHEN X, LI J, et al. Hybrid quantum-classical approach to enhanced quantum metrology[J]. Scientific Reports, 2021, 11(1): 672.
[164] FENG G, CHO F H, KATIYAR H, et al. Gradient-based closed-loop quantum optimal control in a solid-state two-qubit system[J]. Physical Review A, 2018, 98(5): 052341.
[165] XIN T, NIE X, KONG X, et al. Quantum pure state tomography via variational hybrid quantum classical method[J]. Physical Review Applied, 2020, 13(2): 024013.
[166] LU D, LI K, LI J, et al. Enhancing quantum control by bootstrapping a quantum processor of 12 qubits[J]. npj Quantum Information, 2017, 3(1): 45.
[167] YANG X, LI J, PENG X. An improved differential evolution algorithm for learning high-fidelity quantum controls[J]. Science Bulletin, 2019, 64(19): 1402-1408.
[168] PALADINO E, GALPERIN Y, FALCI G, et al. 1/f noise: Implications for solid-state quantum information[J]. Reviews of Modern Physics, 2014, 86(2): 361.
[169] YANG X D, ARENZ C, PELCZER I, et al. Assessing three closed-loop learning algorithmsby searching for high-quality quantum control pulses[J]. Physical Review A, 2020, 102(6):062605.
[170] WELCH P. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms[J]. IEEE Transactions on Audio and Electroacoustics, 1967, 15(2): 70-73.
[171] EKERT A K, ALVES C M, OI D K, et al. Direct estimations of linear and nonlinear functionals of a quantum state[J]. Physical Review Letters, 2002, 88(21): 217901.
[172] LI Z, COLOMBO S, SHU C, et al. Improving metrology with quantum scrambling[J]. Science, 2023, 380(6652): 1381-1384.
[173] ELBEN A, VERMERSCH B, VAN BIJNEN R, et al. Cross-platform verification of intermediate scale quantum devices[J]. Physical Review Letters, 2020, 124(1): 010504.
[174] BRYDGES T, ELBEN A, JURCEVIC P, et al. Probing Rényi entanglement entropy via randomized measurements[J]. Science, 2019, 364(6437): 260-263.
[175] GROSS D, LIU Y K, FLAMMIA S T, et al. Quantum state tomography via compressed sensing[J]. Physical Review Letters, 2010, 105(15): 150401.
[176] KOŁODYŃSKI J, DEMKOWICZ-DOBRZAŃSKI R. Efficient tools for quantum metrology with uncorrelated noise[J]. New Journal of Physics, 2013, 15(7): 073043.
[177] TÓTH G, APELLANIZ I. Quantum metrology from a quantum information science perspective[J]. Journal of Physics A: Mathematical and Theoretical, 2014, 47(42): 424006.
[178] ESCHER B, DE MATOS FILHO R, DAVIDOVICH L. Quantum metrology for noisy systems[J]. Brazilian Journal of Physics, 2011, 41(4): 229-247.
[179] LANG J, LIU R B, MONTEIRO T. Dynamical-decoupling-based quantum sensing: Floquet spectroscopy[J]. Physical Review X, 2015, 5(4): 041016.
[180] SEKATSKI P, SKOTINIOTIS M, DÜR W. Dynamical decoupling leads to improved scaling in noisy quantum metrology[J]. New Journal of Physics, 2016, 18(7): 073034.
[181] DÜR W, SKOTINIOTIS M, FROEWIS F, et al. Improved quantum metrology using quantum error correction[J]. Physical Review Letters, 2014, 112(8): 080801.
[182] LIU J, YUAN H. Quantum parameter estimation with optimal control[J]. Physical Review A, 2017, 96(1): 012117.
[183] HOU Z, WANG R J, TANG J F, et al. Control-enhanced sequential scheme for general quantum parameter estimation at the heisenberg limit[J]. Physical Review Letters, 2019, 123(4): 040501.
[184] XU H, LI J, LIU L, et al. Generalizable control for quantum parameter estimation through reinforcement learning[J]. npj Quantum Information, 2019, 5(1): 82.
[185] MA Z, GOKHALE P, ZHENG T X, et al. Adaptive circuit learning for quantum metrology[C]//2021 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, 2021: 419-430.
[186] MOLL N, BARKOUTSOS P, BISHOP L S, et al. Quantum optimization using variational algorithms on near-term quantum devices[J]. Quantum Science and Technology, 2018, 3(3): 030503.
[187] KANDALA A, MEZZACAPO A, TEMME K, et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets[J]. Nature, 2017, 549(7671): 242-246.
[188] ENDO S, SUN J, LI Y, et al. Variational quantum simulation of general processes[J]. Physical Review Letters, 2020, 125(1): 010501.
[189] CHEN Y Y, ZHANG P, ZHENG W, et al. Many-body echo[J]. Physical Review A, 2020, 102(1): 011301.
[190] SCHULD M, BERGHOLM V, GOGOLIN C, et al. Evaluating analytic gradients on quantum hardware[J]. Physical Review A, 2019, 99(3): 032331.
[191] HEMPEL C, MAIER C, ROMERO J, et al. Quantum chemistry calculations on a trapped-ion quantum simulator[J]. Physical Review X, 2018, 8(3): 031022.
[192] ZHU D, LINKE N M, BENEDETTI M, et al. Training of quantum circuits on a hybrid quantum computer[J]. Science Advances, 2019, 5(10): eaaw9918.
[193] EIBEN A E, SMITH J. From evolutionary computation to the evolution of things[J]. Nature, 2015, 521(7553): 476-482.
[194] FAN R, ZHANG P, SHEN H, et al. Out-of-time-order correlation for many-body localization[J]. Science Bulletin, 2017, 62(10): 707-711.
[195] LI J, FAN R, WANG H, et al. Measuring out-of-time-order correlators on a nuclear magnetic resonance quantum simulator[J]. Physical Review X, 2017, 7(3): 031011.
[196] SWINGLE B. Unscrambling the physics of out-of-time-order correlators[J]. Nature Physics, 2018, 14(10): 988-990.
[197] GÄRTTNER M, BOHNET J G, SAFAVI-NAINI A, et al. Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet[J]. Nature Physics, 2017,13(8): 781-786.
[198] LINDEN N, HERVÉ B, CARBAJO R J, et al. Pulse sequences for NMR quantum computers: How to manipulate nuclear spins while freezing the motion of coupled neighbours[J]. Chemical Physics Letters, 1999, 305(1-2): 28-34

所在学位评定分委会
物理学
国内图书分类号
O413
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765866
专题南方科技大学
理学院_物理系
推荐引用方式
GB/T 7714
龙新月. 基于核磁共振体系的开放量子系统中量子精密测量的实验研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930495-龙新月-物理系.pdf(19109KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[龙新月]的文章
百度学术
百度学术中相似的文章
[龙新月]的文章
必应学术
必应学术中相似的文章
[龙新月]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。