[1] 苏健, 梁英波, 丁麟, 等. 碳中和目标下我国能源发展战略探讨[J]. 中国科学院院刊, 2021, 36(9): 1001-1009.
[2] 邹才能, 赵群, 张国生, 等. 能源革命: 从化石能源到新能源[J]. 天然气工业, 2016, 36(1): 1-10.
[3] 李洪言, 赵朔, 林傲丹, 等. 2019 年全球能源供需分析 ——基于《BP 世界能源统计年鉴(2020)》[J]. 天然气与石油, 2020, 38(6): 9.
[4] JIMING H, BENTAI W. Research on environment protection strategy in new era[J]. Strategic Study of Chinese Academy of Engineering, 2015, 17(8): 30-38.
[5] MAKOGON Y F, HOLDITCH S, MAKOGON T Y. Natural gas-hydrates—Apotential energy source for the 21st Century[J]. Journal of petroleum science andengineering, 2007, 56(1-3): 14-31.
[6] GAJANAYAKE S M, GAMAGE R P, LI X-S, HUPPERT H. Natural gas hydrates–Insights into a paradigm-shifting energy resource[J]. Energy Reviews, 2023, 2(1):100013.
[7] LIU J-W, LI X-S. Recent advances on natural gas hydrate exploration anddevelopment in the South China Sea[J]. Energy & fuels, 2021, 35(9): 7528-7552.
[8] PARK S-S, KIM N-J. Study on methane hydrate formation using ultrasonic waves[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(5): 1668-1672.
[9] 陈 光 进 , 孙 长 宇 , 马 庆 兰 . 气 体 水 合 物 科 学 与 技 术 : Gas hydrate science andtechnology[M]. 化学工业出版社, 2020.
[10] CLENNELL M B, HOVLAND M, BOOTH J S, et al. Formation of natural gashydrates in marine sediments: 1. Conceptual model of gas hydrate growthconditioned by host sediment properties[J]. Journal of Geophysical Research: SolidEarth, 1999, 104(B10): 22985-23003.
[11] 甘华阳, 王家生. 天然气水合物潜在的灾害和环境效应[J]. 地质灾害与环境保护, 2004, 15(4): 5-8.
[12] KOH D Y, KANG H, KIM D O, et al. Recovery of methane from gas hydratesintercalated within natural sediments using CO2 and a CO2/N2 gas mixture[J]. ChemSusChem, 2012, 5(8): 1443-1448.
[13] LYU X, LI Q, GE Y, et al. Fundamental characteristics of gas hydrate-bearingsediments in the Shenhu area, South China Sea[J]. Frontiers in Energy, 2021, 15:367-373.
[14] 宁伏龙, 梁金强, 吴能友, 等. 中国天然气水合物赋存特征[J]. 天然气工业, 2020, 40(8): 25. 63参考文献
[15] 付少英, 陆敬安. 神狐海域天然气水合物的特征及其气源[J]. 海洋地质动态, 2010, 26(9): 6-10.
[16] 赵杏媛, 张有瑜. 黏土矿物与黏土矿物分析[J]. 北京: 海洋出版社, 1990
[17] 陈珊珊, 孙运宝, 吴时国. 南海北部神狐海域海底滑坡在地震剖面上的识别及形成机制[J]. 海洋地质前沿, 2012, 28(6): 40-45.
[18] BOZORGIAN A. An overview of methane gas hydrate formation[J]. Journal ofEngineering in Industrial Research, 2021, 2: 166-177.
[19] KOH C A, SLOAN E D, SUM A K, WU D T. Fundamentals and applications of gashydrates[J]. Annual review of chemical and biomolecular engineering, 2011, 2:237-257.
[20] KIDA M, JIN Y, YONEDA J, et al. Crystallographic and geochemical properties ofnatural gas hydrates accumulated in the National Gas Hydrate Program Expedition02 drilling sites in the Krishna-Godavari Basin off India[J]. Marine and PetroleumGeology, 2019, 108: 471-481.
[21] BROSETA D, RUFFINE L, DESMEDT A. Gas Hydrates 1: Fundamentals, Characterization and Modeling[M]. John Wiley & Sons, 2017.
[22] JI Y, HOU J, CUI G, et al. Experimental study on methane hydrate formation in apartially saturated sandstone using low-field NMR technique[J]. Fuel, 2019, 251:82-90.
[23] YIN Z, KHURANA M, TAN H K, LINGA P. A review of gas hydrate growth kineticmodels[J]. Chemical Engineering Journal, 2018, 342: 9-29.
[24] WANG W, JIANG K, LI Y, et al. Kinetics of methane gas hydrate formation withmicroscale sand in an autoclave with windows[J]. Fuel, 2017, 209: 85-95.
[25] MAEDA N, MAEDA N. Nucleation of gas hydrates[M]. Springer, 2020.
[26] RAMLøY U-B. Aspects of natural cold tolerance in ectothermic animals[J]. Humanreproduction, 2000, 15(suppl_5): 26-46.
[27] WANG Y, HU B, ZHAN J, et al. Effects of starchy seed crystals on theretrogradation of rice starch[J]. Food chemistry, 2020, 318: 126487.
[28] KASHCHIEV D, FIROOZABADI A. Nucleation of gas hydrates[J]. Journal ofcrystal growth, 2002, 243(3-4): 476-489.
[29] METAXAS P J, LIM V W, BOOTH C, et al. Gas hydrate formation probabilitydistributions: Induction times, rates of nucleation and growth[J]. Fuel, 2019, 252:448-457.
[30] KASHCHIEV D, FIROOZABADI A. Induction time in crystallization of gashydrates[J]. Journal of crystal growth, 2003, 250(3-4): 499-515.
[31] HU P, WU G, ZI M, et al. Effects of modified metal surface on the formation ofmethane hydrate[J]. Fuel, 2019, 255: 115720.
[32] LIANG S, HALL K W, LAAKSONEN A, et al. Characterizing key features in the64参考文献formation of ice and gas hydrate systems[J]. Philosophical Transactions of theRoyal Society A, 2019, 377(2146): 20180167.
[33] KHURANA M, YIN Z, LINGA P. A review of clathrate hydrate nucleation[J]. ACSSustainable Chemistry & Engineering, 2017, 5(12): 11176-11203.
[34] KUMARI N, MOHAN C. Basics of clay minerals and their characteristicproperties[J]. Clay Clay Miner, 2021, 24(1)
[35] SOUTHALL J, HUBBARD H S A, JOHNSTON S, et al. Ionic conductivity andviscosity correlations in liquid electrolytes for incorporation into PVDF gelelectrolytes[J]. Solid State Ionics, 1996, 85(1-4): 51-60.
[36] RENARD I, LI H, MARSAN B T. Ionic properties of non-aqueous liquid andPVDF-based gel electrolytes containing a cesium thiolate/disulfide redox couple[J]. Electrochimica acta, 2003, 48(7): 831-844.
[37] TOMBáCZ E, SZEKERES M. Surface charge heterogeneity of kaolinite in aqueoussuspension in comparison with montmorillonite[J]. Applied Clay Science, 2006, 34(1-4): 105-124.
[38] DOI A, EJTEMAEI M, NGUYEN A V. Effects of ion specificity on the surfaceelectrical properties of kaolinite and montmorillonite[J]. Minerals Engineering, 2019, 143: 105929.
[39] YANG L, XIANG B, ZHAO H, et al. Influence of inorganic and organic salts onthe hydration mechanism of montmorillonite based on molecular simulation[J]. Scientific reports, 2023, 13(1): 9090.
[40] YI H, JIA F, ZHAO Y, et al. Surface wettability of montmorillonite (0 0 1) surfaceas affected by surface charge and exchangeable cations: a molecular dynamicstudy[J]. Applied surface science, 2018, 459: 148-154.
[41] SEPPäLä A, PUHAKKA E, OLIN M. Effect of layer charge on the crystallineswelling of Na+, K+ and Ca2+ montmorillonites: DFT and molecular dynamicsstudies[J]. Clay Minerals, 2016, 51(2): 197-211.
[42] LEROY P, TOURNASSAT C, BERNARD O, et al. The electrophoretic mobility ofmontmorillonite. Zeta potential and surface conductivity effects[J]. Journal ofColloid and Interface Science, 2015, 451: 21-39.
[43] YAN H, ZHANG Z. Effect and mechanism of cation species on the gel propertiesof montmorillonite[J]. Colloids and Surfaces A: Physicochemical and EngineeringAspects, 2021, 611: 125824.
[44] CHA S, OUAR H, WILDEMAN T, SLOAN E. A third-surface effect on hydrateformation[J]. The Journal of Physical Chemistry, 1988, 92(23): 6492-6494.
[45] WANG R, LIAO B, WANG J, et al. Microscopic molecular insights into methanehydrate growth on the surfaces of clay minerals: Experiments and moleculardynamics simulations[J]. Chemical Engineering Journal, 2023, 451: 138757. 65参考文献
[46] YAN K-F, LI X-S, CHEN Z-Y, et al. Molecular dynamics simulation of the crystalnucleation and growth behavior of methane hydrate in the presence of the surfaceand nanopores of porous sediment[J]. Langmuir, 2016, 32(31): 7975-7984.
[47] LI Y, CHEN M, SONG H, et al. Effect of cations (Na+, K+, and Ca2+) on methanehydrate formation on the external surface of montmorillonite: insights frommolecular dynamics simulation[J]. ACS Earth and Space Chemistry, 2020, 4(4):572-582.
[48] LI Y, CHEN M, LIU C, et al. Effects of layer-charge distribution of 2: 1 clayminerals on methane hydrate formation: a molecular dynamics simulation study[J]. Langmuir, 2020, 36(13): 3323-3335.
[49] FANG B, Lü T, NING F, et al. Facilitating gas hydrate dissociation kinetics and gasmigration in clay interlayer by surface cations shielding effects[J]. Fuel, 2022, 318:123576.
[50] MI F, HE Z, ZHAO Y, et al. Effects of surface property of mixed clays on methanehydrate formation in nanopores: A molecular dynamics study[J]. Journal of Colloidand Interface Science, 2022, 627: 681-691.
[51] SLOAN JR E D. Fundamental principles and applications of natural gas hydrates[J]. Nature, 2003, 426(6964): 353-359.
[52] YAN K, LI X, XU C, et al. Molecular dynamics simulation of the intercalationbehaviors of methane hydrate in montmorillonite[J]. Journal of molecular modeling, 2014, 20: 1-11.
[53] TANG H, LI Y, BAO W, et al. Methane hydrate formation in clay mineralsuspensions containing glycine: Experimental study and molecular dynamicssimulation[J]. Journal of Molecular Liquids, 2023, 390: 123124.
[54] YEON S-H, SEOL J, KOH D-Y, et al. Abnormal methane occupancy of natural gashydrates in deep sea floor sediments[J]. Energy & Environmental Science, 2011, 4(2): 421-424.
[55] YEON S-H, SEOL J, SEO Y-J, et al. Effect of interlayer ions on methane hydrateformation in clay sediments[J]. The Journal of Physical Chemistry B, 2009, 113(5):1245-1248.
[56] GUGGENHEIM S, VAN GROOS A F K. New gas-hydrate phase: Synthesis andstability of clay–methane hydrate intercalate[J]. Geology, 2003, 31(7): 653-656.
[57] TITILOYE J, SKIPPER N. Molecular dynamics simulation of methane in sodiummontmorillonite clay hydrates at elevated pressures and temperatures[J]. MolecularPhysics, 2001, 99(10): 899-906.
[58] LI Y, CHEN M, SONG H, et al. Methane hydrate formation in the stacking ofkaolinite particles with different surface contacts as nanoreactors: A moleculardynamics simulation study[J]. Applied Clay Science, 2020, 186: 105439.
[59] MARTOS-VILLA R, GUGGENHEIM S, MATA M P, et al. Interaction of methane66参考文献hydrate complexes with smectites: Experimental results compared to molecularmodels[J]. American Mineralogist, 2014, 99(2-3): 401-414.
[60] YAN K, LI X, CHEN Z, et al. Methane hydrate formation and dissociationbehaviors in montmorillonite[J]. Chinese Journal of Chemical Engineering, 2019, 27(5): 1212-1218.
[61] DAS R S, AGRAWAL Y. Raman spectroscopy: Recent advancements, techniquesand applications[J]. Vibrational spectroscopy, 2011, 57(2): 163-176.
[62] COLTHUP N. Introduction to infrared and Raman spectroscopy[M]. Elsevier, 2012.
[63] WEHLING R L. Infrared spectroscopy[J]. Food analysis, 2010, 4: 407-420.
[64] ALI A, CHIANG Y W, SANTOS R M. X-ray diffraction techniques for mineralcharacterization: A review for engineers of the fundamentals, applications, andresearch directions[J]. Minerals, 2022, 12(2): 205.
[65] 祝有海, 张光学, 卢振权, 等. 南海天然气水合物成矿条件与找矿前景[J]. 石油学报, 2001, 22(5): 6.
[66] GAIKWAD N, SANGWAI J, LINGA P, KUMAR R. Separation of coal minemethane gas mixture via sII and sH hydrate formation[J]. Fuel, 2021, 305: 121467.
[67] SMITH J M. Introduction to chemical engineering thermodynamics[Z]. ACSPublications. 1950
[68] NGUYEN N N, NGUYEN A V. The dual effect of sodium halides on the formationof methane gas hydrate[J]. Fuel, 2015, 156: 87-95.
[69] SUM A K, BURRUSS R C, SLOAN E D. Measurement of clathrate hydrates viaRaman spectroscopy[J]. The Journal of Physical Chemistry B, 1997, 101(38):7371-7377.
[70] RIPMEESTER J, RATCLIFFE C. Low-temperature cross-polarization/magic anglespinning carbon-13 NMR of solid methane hydrates: structure, cage occupancy, andhydration number[J]. The Journal of Physical Chemistry, 1988, 92(2): 337-339.
[71] LIU C, YE Y, MENG Q, et al. The characteristics of gas hydrates recovered fromShenhu Area in the South China Sea[J]. Marine Geology, 2012, 307: 22-27.
[72] COLLINS M, RATCLIFFE C, RIPMEESTER J. Nuclear magnetic resonancestudies of guest species in clathrate hydrates: line-shape anisotropies, chemicalshifts, and the determination of cage occupancy ratios and hydration numbers[J]. Journal of Physical Chemistry, 1990, 94(1): 157-162.
[73] LI C, XU Y, YANG Y, et al. Evolution of chemical bonding and crystallineswelling–shrinkage of montmorillonite upon temperature changes probed by in situfourier transform infrared spectroscopy and X-ray diffraction[J]. Langmuir, 2022, 38(46): 14227-14237.
[74] MAKOGON Y F. Natural gas hydrates–A promising source of energy[J]. Journal ofnatural gas science and engineering, 2010, 2(1): 49-59. 67参考文献68
[75] CLARK G, GRIM R, BRADLEY W. A study of the behavior of montmorilloniteupon wetting[J]. Zeitschrift für Kristallographie-Crystalline Materials, 1937, 97(1- 6): 216-222.
[76] NORRISH K, RAUSELL-COLOM J. Effect of freezing on the swelling of clayminerals[J]. Clay Minerals Bulletin, 1962, 5(27): 9-16.
[77] YAKOBI-HANCOCK J, LADINO L, ABBATT J. Feldspar minerals as efficientdeposition ice nuclei[J]. Atmospheric Chemistry and Physics, 2013, 13(22): 11175- 11185.
[78] WILSON M J. A handbook of determinative methods in clay mineralogy[J]. (NoTitle), 1987
[79] FENTER P, TENG H, GEISSBüHLER P, et al. Atomic-scale structure of theorthoclase (001)–water interface measured with high-resolution X-rayreflectivity[J]. Geochimica et Cosmochimica Acta, 2000, 64(21): 3663-3673.
[80] SALZMANN C G, RADAELLI P G, HALLBRUCKER A, et al. The preparationand structures of hydrogen ordered phases of ice[J]. Science, 2006, 311(5768):1758-1761.
[81] YESILBAS M, LEE C C, BOILY J-F. Ice and cryosalt formation in salinemicroporous clay gels[J]. ACS Earth and Space Chemistry, 2018, 2(4): 314-319.
[82] LI F, SKINNER J. Infrared and Raman line shapes for ice Ih. II. H2O and D2O[J]. The Journal of chemical physics, 2010, 133(24)
[83] SHI L, GRUENBAUM S, SKINNER J. Interpretation of IR and Raman line shapesfor H2O and D2O ice Ih[J]. The Journal of Physical Chemistry B, 2012, 116(47):13821-13830.
[84] SLATER B, MICHAELIDES A. Surface premelting of water ice[J]. Nature ReviewsChemistry, 2019, 3(3): 172-188.
[85] SA J-H, KWAK G-H, HAN K, et al. Gas hydrate inhibition by perturbation ofliquid water structure[J]. Scientific reports, 2015, 5(1): 11526.
修改评论