中文版 | English
题名

蒙脱石层间阳离子类型对甲烷水合物生长特性的影响研究

其他题名
STUDY ON THE INFLUEMCE OF INTERLAYER CATION TYPES OF MONTMORILLONITE ON THE GROWTH CHARACTERISTICS OF METHANE HYDRATE
姓名
姓名拼音
SHI Ruicuan
学号
12132938
学位类型
硕士
学位专业
07 理学
学科门类/专业学位类别
07 理学
导师
朱金龙
导师单位
物理系
论文答辩日期
2024-05-09
论文提交日期
2024-06-23
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

  天然气水合物因其储量大、能量密度高、分布范围广、产物清洁等优点被认为是最具开发潜力的替代能源之一。天然气水合物中约80%分布在海底沉积物中,蒙脱石沉积物的重要组成部分,其为片层状矿物,具有高比表面积层间含有可交换阳离子,这种特性使得蒙脱石影响水分子的活度和有序排列,进而可能对水合物的结构及其动力学产生影响。此外,由于天然气水合物包含的客体分子中甲烷比例达到99.9%,又称其为甲烷水合物(Methane HydrateMH)。因此,研究蒙脱石对MH生长特性的影响规律,将为海底沉积物中天然气水合物的赋存和开采提供一定理论参考

  本文分别基于水合物动力学装置和拉曼成像装置开展了蒙脱石悬浮液中MH生成的宏观及微观动力学实验,总结了蒙脱石层间阳离子类型对MH生成动力学的影响规律;又基于低温X射线衍射、红外光谱和拉曼光谱表征了冻结过程中含水蒙脱石结构变化和其中生成的MH的微观结构,得到了蒙脱石层间阳离子类型对冰和MH结构的影响规律。研究结果如下:

  (1钠基蒙脱石和钙基蒙脱石对MH的成核和生长具有抑制作用,而钾基蒙脱石对其无明显影响。含水钙基蒙脱石和钠基蒙脱石中冰在-20 ℃下开始明显生成,而在含水钾基蒙脱石中冰在0 ℃开始生成,表明在蒙脱石层间,Ca2+Na+抑制了冰的形成,而K+对冰的形成无明显影响

  (2)含水蒙脱石中冰和MH的形成导致蒙脱石片层间脱水和片层结构局部坍塌,进而形成微孔结构,且此种结构破坏不可恢复。冰晶和MH主要形成于微孔中,并受微孔壁的限制致使晶面间距偏小

  (3CH4分子在含水蒙脱石中生成的MH大小笼中的占据率比值低于纯MH样品中,且层间阳离子电荷密度越高,笼占比越低;此外在含水蒙脱石中生成的MH小笼中CH4C-H振动拉曼峰位高于MH样品,且层间阳离子电荷密度越高,峰位越高。

  本文开展了不同层间阳离子类型的蒙脱石对MH生成动力学及晶体结构的实验研究,得到了蒙脱石对MH生长特性的影响规律,为海底沉积物中天然气水合物的赋存和开发提供一定理论参考。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] 苏健, 梁英波, 丁麟, 等. 碳中和目标下我国能源发展战略探讨[J]. 中国科学院院刊, 2021, 36(9): 1001-1009.
[2] 邹才能, 赵群, 张国生, 等. 能源革命: 从化石能源到新能源[J]. 天然气工业, 2016, 36(1): 1-10.
[3] 李洪言, 赵朔, 林傲丹, 等. 2019 年全球能源供需分析 ——基于《BP 世界能源统计年鉴(2020)》[J]. 天然气与石油, 2020, 38(6): 9.
[4] JIMING H, BENTAI W. Research on environment protection strategy in new era[J]. Strategic Study of Chinese Academy of Engineering, 2015, 17(8): 30-38.
[5] MAKOGON Y F, HOLDITCH S, MAKOGON T Y. Natural gas-hydrates—Apotential energy source for the 21st Century[J]. Journal of petroleum science andengineering, 2007, 56(1-3): 14-31.
[6] GAJANAYAKE S M, GAMAGE R P, LI X-S, HUPPERT H. Natural gas hydrates–Insights into a paradigm-shifting energy resource[J]. Energy Reviews, 2023, 2(1):100013.
[7] LIU J-W, LI X-S. Recent advances on natural gas hydrate exploration anddevelopment in the South China Sea[J]. Energy & fuels, 2021, 35(9): 7528-7552.
[8] PARK S-S, KIM N-J. Study on methane hydrate formation using ultrasonic waves[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(5): 1668-1672.
[9] 陈 光 进 , 孙 长 宇 , 马 庆 兰 . 气 体 水 合 物 科 学 与 技 术 : Gas hydrate science andtechnology[M]. 化学工业出版社, 2020.
[10] CLENNELL M B, HOVLAND M, BOOTH J S, et al. Formation of natural gashydrates in marine sediments: 1. Conceptual model of gas hydrate growthconditioned by host sediment properties[J]. Journal of Geophysical Research: SolidEarth, 1999, 104(B10): 22985-23003.
[11] 甘华阳, 王家生. 天然气水合物潜在的灾害和环境效应[J]. 地质灾害与环境保护, 2004, 15(4): 5-8.
[12] KOH D Y, KANG H, KIM D O, et al. Recovery of methane from gas hydratesintercalated within natural sediments using CO2 and a CO2/N2 gas mixture[J]. ChemSusChem, 2012, 5(8): 1443-1448.
[13] LYU X, LI Q, GE Y, et al. Fundamental characteristics of gas hydrate-bearingsediments in the Shenhu area, South China Sea[J]. Frontiers in Energy, 2021, 15:367-373.
[14] 宁伏龙, 梁金强, 吴能友, 等. 中国天然气水合物赋存特征[J]. 天然气工业, 2020, 40(8): 25. 63参考文献
[15] 付少英, 陆敬安. 神狐海域天然气水合物的特征及其气源[J]. 海洋地质动态, 2010, 26(9): 6-10.
[16] 赵杏媛, 张有瑜. 黏土矿物与黏土矿物分析[J]. 北京: 海洋出版社, 1990
[17] 陈珊珊, 孙运宝, 吴时国. 南海北部神狐海域海底滑坡在地震剖面上的识别及形成机制[J]. 海洋地质前沿, 2012, 28(6): 40-45.
[18] BOZORGIAN A. An overview of methane gas hydrate formation[J]. Journal ofEngineering in Industrial Research, 2021, 2: 166-177.
[19] KOH C A, SLOAN E D, SUM A K, WU D T. Fundamentals and applications of gashydrates[J]. Annual review of chemical and biomolecular engineering, 2011, 2:237-257.
[20] KIDA M, JIN Y, YONEDA J, et al. Crystallographic and geochemical properties ofnatural gas hydrates accumulated in the National Gas Hydrate Program Expedition02 drilling sites in the Krishna-Godavari Basin off India[J]. Marine and PetroleumGeology, 2019, 108: 471-481.
[21] BROSETA D, RUFFINE L, DESMEDT A. Gas Hydrates 1: Fundamentals, Characterization and Modeling[M]. John Wiley & Sons, 2017.
[22] JI Y, HOU J, CUI G, et al. Experimental study on methane hydrate formation in apartially saturated sandstone using low-field NMR technique[J]. Fuel, 2019, 251:82-90.
[23] YIN Z, KHURANA M, TAN H K, LINGA P. A review of gas hydrate growth kineticmodels[J]. Chemical Engineering Journal, 2018, 342: 9-29.
[24] WANG W, JIANG K, LI Y, et al. Kinetics of methane gas hydrate formation withmicroscale sand in an autoclave with windows[J]. Fuel, 2017, 209: 85-95.
[25] MAEDA N, MAEDA N. Nucleation of gas hydrates[M]. Springer, 2020.
[26] RAMLøY U-B. Aspects of natural cold tolerance in ectothermic animals[J]. Humanreproduction, 2000, 15(suppl_5): 26-46.
[27] WANG Y, HU B, ZHAN J, et al. Effects of starchy seed crystals on theretrogradation of rice starch[J]. Food chemistry, 2020, 318: 126487.
[28] KASHCHIEV D, FIROOZABADI A. Nucleation of gas hydrates[J]. Journal ofcrystal growth, 2002, 243(3-4): 476-489.
[29] METAXAS P J, LIM V W, BOOTH C, et al. Gas hydrate formation probabilitydistributions: Induction times, rates of nucleation and growth[J]. Fuel, 2019, 252:448-457.
[30] KASHCHIEV D, FIROOZABADI A. Induction time in crystallization of gashydrates[J]. Journal of crystal growth, 2003, 250(3-4): 499-515.
[31] HU P, WU G, ZI M, et al. Effects of modified metal surface on the formation ofmethane hydrate[J]. Fuel, 2019, 255: 115720.
[32] LIANG S, HALL K W, LAAKSONEN A, et al. Characterizing key features in the64参考文献formation of ice and gas hydrate systems[J]. Philosophical Transactions of theRoyal Society A, 2019, 377(2146): 20180167.
[33] KHURANA M, YIN Z, LINGA P. A review of clathrate hydrate nucleation[J]. ACSSustainable Chemistry & Engineering, 2017, 5(12): 11176-11203.
[34] KUMARI N, MOHAN C. Basics of clay minerals and their characteristicproperties[J]. Clay Clay Miner, 2021, 24(1)
[35] SOUTHALL J, HUBBARD H S A, JOHNSTON S, et al. Ionic conductivity andviscosity correlations in liquid electrolytes for incorporation into PVDF gelelectrolytes[J]. Solid State Ionics, 1996, 85(1-4): 51-60.
[36] RENARD I, LI H, MARSAN B T. Ionic properties of non-aqueous liquid andPVDF-based gel electrolytes containing a cesium thiolate/disulfide redox couple[J]. Electrochimica acta, 2003, 48(7): 831-844.
[37] TOMBáCZ E, SZEKERES M. Surface charge heterogeneity of kaolinite in aqueoussuspension in comparison with montmorillonite[J]. Applied Clay Science, 2006, 34(1-4): 105-124.
[38] DOI A, EJTEMAEI M, NGUYEN A V. Effects of ion specificity on the surfaceelectrical properties of kaolinite and montmorillonite[J]. Minerals Engineering, 2019, 143: 105929.
[39] YANG L, XIANG B, ZHAO H, et al. Influence of inorganic and organic salts onthe hydration mechanism of montmorillonite based on molecular simulation[J]. Scientific reports, 2023, 13(1): 9090.
[40] YI H, JIA F, ZHAO Y, et al. Surface wettability of montmorillonite (0 0 1) surfaceas affected by surface charge and exchangeable cations: a molecular dynamicstudy[J]. Applied surface science, 2018, 459: 148-154.
[41] SEPPäLä A, PUHAKKA E, OLIN M. Effect of layer charge on the crystallineswelling of Na+, K+ and Ca2+ montmorillonites: DFT and molecular dynamicsstudies[J]. Clay Minerals, 2016, 51(2): 197-211.
[42] LEROY P, TOURNASSAT C, BERNARD O, et al. The electrophoretic mobility ofmontmorillonite. Zeta potential and surface conductivity effects[J]. Journal ofColloid and Interface Science, 2015, 451: 21-39.
[43] YAN H, ZHANG Z. Effect and mechanism of cation species on the gel propertiesof montmorillonite[J]. Colloids and Surfaces A: Physicochemical and EngineeringAspects, 2021, 611: 125824.
[44] CHA S, OUAR H, WILDEMAN T, SLOAN E. A third-surface effect on hydrateformation[J]. The Journal of Physical Chemistry, 1988, 92(23): 6492-6494.
[45] WANG R, LIAO B, WANG J, et al. Microscopic molecular insights into methanehydrate growth on the surfaces of clay minerals: Experiments and moleculardynamics simulations[J]. Chemical Engineering Journal, 2023, 451: 138757. 65参考文献
[46] YAN K-F, LI X-S, CHEN Z-Y, et al. Molecular dynamics simulation of the crystalnucleation and growth behavior of methane hydrate in the presence of the surfaceand nanopores of porous sediment[J]. Langmuir, 2016, 32(31): 7975-7984.
[47] LI Y, CHEN M, SONG H, et al. Effect of cations (Na+, K+, and Ca2+) on methanehydrate formation on the external surface of montmorillonite: insights frommolecular dynamics simulation[J]. ACS Earth and Space Chemistry, 2020, 4(4):572-582.
[48] LI Y, CHEN M, LIU C, et al. Effects of layer-charge distribution of 2: 1 clayminerals on methane hydrate formation: a molecular dynamics simulation study[J]. Langmuir, 2020, 36(13): 3323-3335.
[49] FANG B, Lü T, NING F, et al. Facilitating gas hydrate dissociation kinetics and gasmigration in clay interlayer by surface cations shielding effects[J]. Fuel, 2022, 318:123576.
[50] MI F, HE Z, ZHAO Y, et al. Effects of surface property of mixed clays on methanehydrate formation in nanopores: A molecular dynamics study[J]. Journal of Colloidand Interface Science, 2022, 627: 681-691.
[51] SLOAN JR E D. Fundamental principles and applications of natural gas hydrates[J]. Nature, 2003, 426(6964): 353-359.
[52] YAN K, LI X, XU C, et al. Molecular dynamics simulation of the intercalationbehaviors of methane hydrate in montmorillonite[J]. Journal of molecular modeling, 2014, 20: 1-11.
[53] TANG H, LI Y, BAO W, et al. Methane hydrate formation in clay mineralsuspensions containing glycine: Experimental study and molecular dynamicssimulation[J]. Journal of Molecular Liquids, 2023, 390: 123124.
[54] YEON S-H, SEOL J, KOH D-Y, et al. Abnormal methane occupancy of natural gashydrates in deep sea floor sediments[J]. Energy & Environmental Science, 2011, 4(2): 421-424.
[55] YEON S-H, SEOL J, SEO Y-J, et al. Effect of interlayer ions on methane hydrateformation in clay sediments[J]. The Journal of Physical Chemistry B, 2009, 113(5):1245-1248.
[56] GUGGENHEIM S, VAN GROOS A F K. New gas-hydrate phase: Synthesis andstability of clay–methane hydrate intercalate[J]. Geology, 2003, 31(7): 653-656.
[57] TITILOYE J, SKIPPER N. Molecular dynamics simulation of methane in sodiummontmorillonite clay hydrates at elevated pressures and temperatures[J]. MolecularPhysics, 2001, 99(10): 899-906.
[58] LI Y, CHEN M, SONG H, et al. Methane hydrate formation in the stacking ofkaolinite particles with different surface contacts as nanoreactors: A moleculardynamics simulation study[J]. Applied Clay Science, 2020, 186: 105439.
[59] MARTOS-VILLA R, GUGGENHEIM S, MATA M P, et al. Interaction of methane66参考文献hydrate complexes with smectites: Experimental results compared to molecularmodels[J]. American Mineralogist, 2014, 99(2-3): 401-414.
[60] YAN K, LI X, CHEN Z, et al. Methane hydrate formation and dissociationbehaviors in montmorillonite[J]. Chinese Journal of Chemical Engineering, 2019, 27(5): 1212-1218.
[61] DAS R S, AGRAWAL Y. Raman spectroscopy: Recent advancements, techniquesand applications[J]. Vibrational spectroscopy, 2011, 57(2): 163-176.
[62] COLTHUP N. Introduction to infrared and Raman spectroscopy[M]. Elsevier, 2012.
[63] WEHLING R L. Infrared spectroscopy[J]. Food analysis, 2010, 4: 407-420.
[64] ALI A, CHIANG Y W, SANTOS R M. X-ray diffraction techniques for mineralcharacterization: A review for engineers of the fundamentals, applications, andresearch directions[J]. Minerals, 2022, 12(2): 205.
[65] 祝有海, 张光学, 卢振权, 等. 南海天然气水合物成矿条件与找矿前景[J]. 石油学报, 2001, 22(5): 6.
[66] GAIKWAD N, SANGWAI J, LINGA P, KUMAR R. Separation of coal minemethane gas mixture via sII and sH hydrate formation[J]. Fuel, 2021, 305: 121467.
[67] SMITH J M. Introduction to chemical engineering thermodynamics[Z]. ACSPublications. 1950
[68] NGUYEN N N, NGUYEN A V. The dual effect of sodium halides on the formationof methane gas hydrate[J]. Fuel, 2015, 156: 87-95.
[69] SUM A K, BURRUSS R C, SLOAN E D. Measurement of clathrate hydrates viaRaman spectroscopy[J]. The Journal of Physical Chemistry B, 1997, 101(38):7371-7377.
[70] RIPMEESTER J, RATCLIFFE C. Low-temperature cross-polarization/magic anglespinning carbon-13 NMR of solid methane hydrates: structure, cage occupancy, andhydration number[J]. The Journal of Physical Chemistry, 1988, 92(2): 337-339.
[71] LIU C, YE Y, MENG Q, et al. The characteristics of gas hydrates recovered fromShenhu Area in the South China Sea[J]. Marine Geology, 2012, 307: 22-27.
[72] COLLINS M, RATCLIFFE C, RIPMEESTER J. Nuclear magnetic resonancestudies of guest species in clathrate hydrates: line-shape anisotropies, chemicalshifts, and the determination of cage occupancy ratios and hydration numbers[J]. Journal of Physical Chemistry, 1990, 94(1): 157-162.
[73] LI C, XU Y, YANG Y, et al. Evolution of chemical bonding and crystallineswelling–shrinkage of montmorillonite upon temperature changes probed by in situfourier transform infrared spectroscopy and X-ray diffraction[J]. Langmuir, 2022, 38(46): 14227-14237.
[74] MAKOGON Y F. Natural gas hydrates–A promising source of energy[J]. Journal ofnatural gas science and engineering, 2010, 2(1): 49-59. 67参考文献68
[75] CLARK G, GRIM R, BRADLEY W. A study of the behavior of montmorilloniteupon wetting[J]. Zeitschrift für Kristallographie-Crystalline Materials, 1937, 97(1- 6): 216-222.
[76] NORRISH K, RAUSELL-COLOM J. Effect of freezing on the swelling of clayminerals[J]. Clay Minerals Bulletin, 1962, 5(27): 9-16.
[77] YAKOBI-HANCOCK J, LADINO L, ABBATT J. Feldspar minerals as efficientdeposition ice nuclei[J]. Atmospheric Chemistry and Physics, 2013, 13(22): 11175- 11185.
[78] WILSON M J. A handbook of determinative methods in clay mineralogy[J]. (NoTitle), 1987
[79] FENTER P, TENG H, GEISSBüHLER P, et al. Atomic-scale structure of theorthoclase (001)–water interface measured with high-resolution X-rayreflectivity[J]. Geochimica et Cosmochimica Acta, 2000, 64(21): 3663-3673.
[80] SALZMANN C G, RADAELLI P G, HALLBRUCKER A, et al. The preparationand structures of hydrogen ordered phases of ice[J]. Science, 2006, 311(5768):1758-1761.
[81] YESILBAS M, LEE C C, BOILY J-F. Ice and cryosalt formation in salinemicroporous clay gels[J]. ACS Earth and Space Chemistry, 2018, 2(4): 314-319.
[82] LI F, SKINNER J. Infrared and Raman line shapes for ice Ih. II. H2O and D2O[J]. The Journal of chemical physics, 2010, 133(24)
[83] SHI L, GRUENBAUM S, SKINNER J. Interpretation of IR and Raman line shapesfor H2O and D2O ice Ih[J]. The Journal of Physical Chemistry B, 2012, 116(47):13821-13830.
[84] SLATER B, MICHAELIDES A. Surface premelting of water ice[J]. Nature ReviewsChemistry, 2019, 3(3): 172-188.
[85] SA J-H, KWAK G-H, HAN K, et al. Gas hydrate inhibition by perturbation ofliquid water structure[J]. Scientific reports, 2015, 5(1): 11526.

所在学位评定分委会
物理学
国内图书分类号
O469
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765868
专题南方科技大学
理学院_物理系
推荐引用方式
GB/T 7714
史瑞昕. 蒙脱石层间阳离子类型对甲烷水合物生长特性的影响研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132938-史瑞昕-物理系.pdf(8989KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[史瑞昕]的文章
百度学术
百度学术中相似的文章
[史瑞昕]的文章
必应学术
必应学术中相似的文章
[史瑞昕]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。