[1] VALIEV R Z, ALEXANDROV I V, ZHU Y T, et al. Paradox of Strength and Ductility in Metals Processed Bysevere Plastic Deformation[J]. Journal of Materials Research, 2002, 17(1): 5-8.
[2] LU K. Stabilizing nanostructures in metals using grain and twin boundary architectures[J]. Nature Reviews Materials, 2016, 1(5): 16019.
[3] LU K, LU L, SURESH S. Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale[J]. Science, 2009, 324(5925): 349-352.
[4] KOCH C C, MORRIS D G, LU K, et al. Ductility of Nanostructured Materials[J]. MRS Bulletin, 1999, 24(2): 54-58.
[5] OVID’KO I A, VALIEV R Z, ZHU Y T. Review on superior strength and enhanced ductility of metallic nanomaterials[J]. Progress in Materials Science, 2018, 94: 462540.
[6] MA E. Instabilities and ductility of nanocrystalline and ultrafine-grained metals[J]. Viewpoint Set No. 31. Mechanical Properties of Fully Dense Nanocrystalline Metals, 2003, 49(7): 663-668.
[7] ZHU Y T, LIAO X. Retaining ductility[J]. Nature Materials, 2004, 3(6): 351-352.
[8] AN X H, WU S D, WANG Z G, et al. Significance of stacking fault energy in bulk nanostructured materials: Insights from Cu and its binary alloys as model systems[J]. Progress in Materials Science, 2019, 101: 1-45.
[9] SUN L G, WU G, WANG Q, et al. Nanostructural metallic materials: Structures and mechanical properties[J]. Materials Today, 2020, 38: 114-135.
[10] WU H, FAN G. An overview of tailoring strain delocalization for strength-ductility synergy[J]. Progress in Materials Science, 2020, 113: 100675.
[11] FANG T H, LI W L, TAO N R, et al. Revealing Extraordinary Intrinsic Tensile Plasticity in Gradient Nano-Grained Copper[J]. Science, 2011, 331(6024): 1587-1590.
[12] WANG Y, CHEN M, ZHOU F, et al. High tensile ductility in a nanostructured metal[J]. Nature, 2002, 419(6910): 912-915.
[13] HE B B, HU B, YEN H W, et al. High dislocation density–induced large ductility in deformed and partitioned steels[J]. Science, 2017, 357(6355): 1029-1032.
[14] HUANG X, HANSEN N, TSUJI N. Hardening by Annealing and Softening by Deformation in Nanostructured Metals[J]. Science, 2006, 312(5771): 249-251.
[15] LU L, SHEN Y, CHEN X, et al. Ultrahigh Strength and High Electrical Conductivity in Copper[J]. Science, 2004, 304(5669): 422-426.
[16] SUN S J, TIAN Y Z, LIN H R, et al. Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure[J]. Materials & Design, 2017, 133: 122-127. 63 参考文献
[17] LIU G, ZHANG G J, JIANG F, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility[J]. Nature Materials, 2013, 12(4): 344-350.
[18] LI Z, PRADEEP K G, DENG Y, et al. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off[J]. Nature, 2016, 534(7606): 227-230.
[19] ZHAO Y H, LIAO X Z, CHENG S, et al. Simultaneously Increasing the Ductility and Strength of Nanostructured Alloys[J]. Advanced Materials, 2006, 18(17): 2280-2283.
[20] JU J W, KO Y F. Micromechanical Elastoplastic Damage Modeling of Progressive Interfacial Arc Debonding for Fiber Reinforced Composites[J]. International Journal of Damage Mechanics, 2008, 17(4): 307-356.
[21] KATTAN P I, VOYIADJIS G Z. Overall damage and elastoplastic deformation in fibrous metal matrix composites[J]. International Journal of Plasticity, 1993, 9(8): 931-949.
[22] SABISTON T, MOHAMMADI M, CHERKAOUI M, et al. Micromechanics based elasto-visco-plastic response of long fibre composites using functionally graded interphases at quasi-static and moderate strain rates[J]. Composites Part B: Engineering, 2016, 100: 31-43.
[23] TCHALLA A, AZOTI W L, KOUTSAWA Y, et al. Incremental mean-fields micromechanics scheme for non-linear response of ductile damaged composite materials[J]. Composites Part B: Engineering, 2015, 69: 169-180.
[24] DUAN J, WANG Y J, DAI L H, et al. Elastic interactions of plastic events in strained amorphous solids before yield[J]. Physical Review Materials, 2023, 7(1): 013601.
[25] JIANG H, CHENG F, HU Y, et al. Micro-mechanics modeling of compressive strength and elastic modulus enhancements in unidirectional CFRP with aramid pulp micro/nano-fiber interlays[J]. Composites Science and Technology, 2021, 206: 108664.
[26] ARMSTRONG R, ANTOLOVICH S, GRIFFITHS J, et al. Fracturing across the multiscales of diverse materials[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 373(2038): 20140474.
[27] GONZÁLEZ-VELÁZQUEZ J L. Fractography and failure analysis: Vol. 24[M]. Springer, 2018.
[28] BATES J, DEAN J S. A total rip-off—crack propagation in paper[J]. Physics Education, 2024, 59(3): 035010.
[29] KIENER D, HAN S M. 100 years after Griffith: From brittle bulk fracture to failure in 2D materials[J]. MRS bulletin, 2022, 47(8): 792-799.
[30] UENISHI K. Fracture dynamics of solid materials: from particles to the globe[J]. Philosophical Transactions of the Royal Society A, 2021, 379(2196): 20200122.
[31] HADLEY I, PISARSKI H. Materials properties for Engineering Critical Assessment: Background to the advice given in BS 7910: 2013[J]. International Journal of Pressure Vessels and Piping, 2018, 168: 191-199. 64 参考文献
[32] NAVIDTEHRANI Y, BETEGÓN C, ZIMMERMAN R W, et al. Griffith-based analysis of crack initiation location in a Brazilian test[J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 159: 105227.
[33] GDOUTOS E E, GDOUTOS E E. Crack growth based on energy balance[J]. Fracture Mechanics Criteria and Applications, 1990: 112-161.
[34] GASSER U, SCHOFIELD A, WEITZ D. Local order in a supercooled colloidal fluid observed by confocal microscopy[J]. Journal of Physics: Condensed Matter, 2002, 15(1): S375.
[35] VAN MEGAN W, UNDERWOOD S M, OTTEWILL R H, et al. Particle diffusion in concentrated dispersions[J]. Faraday Discussions of the Chemical Society, 1987, 83: 47-57.
[36] WEEKS E R, WEITZ D. Properties of cage rearrangements observed near the colloidal glass transition[J]. Physical review letters, 2002, 89(9): 095704.
[37] WEEKS E R, CROCKER J C, LEVITT A C, et al. Three-dimensional direct imaging of structural relaxation near the colloidal glass transition[J]. Science, 2000, 287(5453): 627-631.
[38] MASON T G. New fundamental concepts in emulsion rheology[J]. Current Opinion in Colloid & Interface Science, 1999, 4(3): 231-238.
[39] SCHALL P, WEITZ D A, SPAEPEN F. Structural Rearrangements That Govern Flow in Colloidal Glasses[J]. Science, 2007, 318(5858): 1895-1899.
[40] FALK M L, LANGER J S. Dynamics of viscoplastic deformation in amorphous solids[J]. Physical Review E, 1998, 57(6): 7192.
[41] FALK M L, LANGER J S. Deformation and failure of amorphous, solidlike materials[J]. Annu. Rev. Condens. Matter Phys., 2011, 2(1): 353-373.
[42] MANNING M L, LANGER J S, CARLSON J. Strain localization in a shear transformation zone model for amorphous solids[J]. Physical review E, 2007, 76(5): 056106.
[43] SHI Y, KATZ M B, LI H, et al. Evaluation of the disorder temperature and free-volume formalisms via simulations of shear banding in amorphous solids[J]. Physical review letters, 2007, 98(18): 185505.
[44] LU P J, WEITZ D A. Colloidal particles: Crystals, glasses, and gels[J]. Annu. Rev. Condens. Matter Phys., 2013, 4(1): 217-233.
[45] ANDERSON V J, LEKKERKERKER H N. Insights into phase transition kinetics from colloid science[J]. Nature, 2002, 416(6883): 811-815.
[46] PUSEY P N, VAN MEGEN W. Phase behaviour of concentrated suspensions of nearly hard colloidal spheres[J]. Nature, 1986, 320(6060): 340-342.
[47] GANAPATHY R, BUCKLEY M R, GERBODE S J, et al. Direct measurements of island growth and step-edge barriers in colloidal epitaxy[J]. Science, 2010, 327(5964): 445-448. 65 参考文献
[48] YETHIRAJ A, VAN BLAADEREN A. A colloidal model system with an interaction tunable from hard sphere to soft and dipolar[J]. Nature, 2003, 421(6922): 513-517.
[49] LEUNISSEN M E, CHRISTOVA C G, HYNNINEN A P, et al. Ionic colloidal crystals of oppositely charged particles[J]. Nature, 2005, 437(7056): 235-240.
[50] PUSEY P, ZACCARELLI E, VALERIANI C, et al. Hard spheres: crystallization and glass formation[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 367(1909): 4993-5011.
[51] VUTUKURI H R, DEMIRÖRS A F, PENG B, et al. Colloidal analogues of charged and uncharged polymer chains with tunable stiffness[J]. Angewandte Chemie (International ed. in English), 2012, 51(45): 11249.
[52] YAN Q, WANG L, ZHAO X. Artificial Defect Engineering in Three‐Dimensional Colloidal Photonic Crystals[J]. Advanced Functional Materials, 2007, 17(18): 36953706.
[53] SHIMMIN R G, VAJTAI R, SIEGEL R W, et al. Room-temperature assembly of germanium photonic crystals through colloidal crystal templating[J]. Chemistry of materials, 2007, 19(8): 2102-2107.
[54] BLANCO A, CHOMSKI E, GRABTCHAK S, et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres[J]. Nature, 2000, 405(6785): 437-440.
[55] AGUIRRE C I, REGUERA E, STEIN A. Tunable colors in opals and inverse opal photonic crystals[J]. Adv. Funct. Mater, 2011, 21: 204-210.
[56] ZHANG Y, WANG J, HUANG Y, et al. Fabrication of functional colloidal photonic crystals based on well-designed latex particles[J]. Journal of Materials Chemistry, 2011, 21(37): 14113-14126.
[57] VON FREYMANN G, KITAEV V, LOTSCH B V, et al. Bottom-up assembly of photonic crystals[J]. Chemical Society Reviews, 2013, 42(7): 2528-2554.
[58] UENO K, SAKAMOTO J, TAKEOKA Y, et al. Electrochromism based on structural colour changes in a polyelectrolyte gel[J]. Journal of Materials Chemistry, 2009, 19(27): 4778-4783.
[59] DING T, LIU Z F, SONG K, et al. Photonic crystals of oblate spheroids by blown film extrusion of prefabricated colloidal crystals[J]. Langmuir, 2009, 25(17): 10218-10222.
[60] JONSSON F, TORRES C M S, SEEKAMP J, et al. Artificially inscribed defects in opal photonic crystals[J]. Microelectronic engineering, 2005, 78: 429-435.
[61] YAN Q, ZHOU Z, ZHAO X S, et al. Inside Front Cover: Line Defects Embedded in Three‐Dimensional Photonic Crystals (Adv. Mater. 15/2005)[J]. Advanced Materials, 2005, 17(15).
[62] MASSÉ P, RECULUSA S, CLAYS K, et al. Tailoring planar defect in threedimensional colloidal crystals[J]. Chemical Physics Letters, 2006, 422(1-3): 251-255.
[63] YAN Q, TEH L K, SHAO Q, et al. Layer transfer approach to opaline hetero photonic 66 参考文献 crystals[J]. Langmuir, 2008, 24(5): 1796-1800.
[64] AKAHANE Y, ASANO T, SONG B S, et al. High-Q photonic nanocavity in a twodimensional photonic crystal[J]. nature, 2003, 425(6961): 944-947.
[65] TOKUSHIMA M, KOSAKA H, TOMITA A, et al. Lightwave propagation through a 120 sharply bent single-line-defect photonic crystal waveguide[J]. Applied physics letters, 2000, 76(8): 952-954.
[66] BENABID F, KNIGHT J C, ANTONOPOULOS G, et al. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber[J]. Science, 2002, 298(5592): 399-402.
[67] GALISTEO‐LÓPEZ J F, IBISATE M, SAPIENZA R, et al. Self‐assembled photonic structures[J]. Advanced Materials, 2011, 23(1): 30-69.
[68] WEI T, WU K, CHEN Y, et al. Improving light output of vertical-stand-type InGaN light-emitting diodes grown on a free-standing GaN substrate with self-assembled conical arrays[J]. IEEE electron device letters, 2012, 33(6): 857-859.
[69] RASTOGI V, MELLE S, CALDERÓN O G, et al. Synthesis of light‐diffracting assemblies from microspheres and nanoparticles in droplets on a superhydrophobic surface[J]. Advanced Materials, 2008, 20(22): 4263-4268.
[70] HU Y, HE L, YIN Y. Magnetically responsive photonic nanochains[J]. Angewandte Chemie International Edition, 2011, 16(50): 3747-3750.
[71] YOUNG K L, JONES M R, ZHANG J, et al. Assembly of reconfigurable onedimensional colloidal superlattices due to a synergy of fundamental nanoscale forces[J]. Proceedings of the National Academy of Sciences, 2012, 109(7): 2240-2245.
[72] LI F, YOO W C, BEERNINK M B, et al. Site-specific functionalization of anisotropic nanoparticles: From colloidal atoms to colloidal molecules[J]. Journal of the American Chemical Society, 2009, 131(51): 18548-18555.
[73] KOLLE M, SALGARD-CUNHA P M, SCHERER M R, et al. Mimicking the colourful wing scale structure of the Papilio blumei butterfly[J]. Nature nanotechnology, 2010, 5(7): 511-515.
[74] SUN C H, JIANG P, JIANG B. Broadband moth-eye antireflection coatings on silicon[J]. Applied Physics Letters, 2008, 92(6).
[75] MIN W L, BETANCOURT A P, JIANG P, et al. Bioinspired broadband antireflection coatings on GaSb[J]. Applied Physics Letters, 2008, 92(14).
[76] ZHAO X A, XU S H, ZHOU H W, 等. Effect of electrolyte concentration on effective surface charge of colloidal particles[J]. Acta Physica Sinica, 2021, 70(5): 056402.
[77] ATTARD P. Recent advances in the electric double layer in colloid science[J]. Current Opinion in Colloid & Interface Science, 2001, 6(4): 366-371.
[78] PIECH M, WALZ J Y. Depletion Interactions Produced by Nonadsorbing Charged and Uncharged Spheroids[J]. Journal of Colloid and Interface Science, 2000, 232(1): 86101. 67 参考文献
[79] GRATALE M D, STILL T, MATYAS C, et al. Tunable depletion potentials driven by shape variation of surfactant micelles[J]. Physical Review E, 2016, 93(5): 050601.
[80] SAVAGE J R, BLAIR D W, LEVINE A J, et al. Imaging the Sublimation Dynamics of Colloidal Crystallites[J]. Science, 2006, 314(5800): 795-798.
[81] GRATALE M D, MA X, DAVIDSON Z S, et al. Vibrational properties of quasi-twodimensional colloidal glasses with varying interparticle attraction[J]. Physical Review E, 2016, 94(4): 042606.
[82] MA X, LIU J, ZHANG Y, et al. Excess entropy and long-time diffusion in colloidal fluids with short-range interparticle attraction[J]. The Journal of Chemical Physics, 2019, 150(14): 144907.
[83] GAPIŃSKI J, SZYMAŃSKI J, WILK A, et al. Size and Shape of Micelles Studied by Means of SANS, PCS, and FCS[J]. Langmuir, 2010, 26(12): 9304-9314.
[84] CROCKER J C, GRIER D G. Methods of Digital Video Microscopy for Colloidal Studies[J]. Journal of Colloid and Interface Science, 1996, 179(1): 298-310.
[85] ASAKURA S, OOSAWA F. On Interaction between Two Bodies Immersed in a Solution of Macromolecules[J]. The Journal of Chemical Physics, 1954, 22(7): 12551256.
[86] BARDOSOVA M, TREDGOLD R H. Ordered layers of monodispersive colloids[J]. Journal of Materials Chemistry, 2002, 12(10): 2835-2842.
[87] LEKKERKERKER H N W, TUINIER R. Depletion Interaction[M]//LEKKERKERKER H N W, TUINIER R. Colloids and the Depletion Interaction: Vol. 833. Dordrecht: Springer Netherlands, 2011: 57-108
[2024-02-21]. https://link.springer.com/10.1007/978-94-007-1223-2_2.
[88] VRIJ A. POLYMERS AT INTERFACES AND THE INTERACTIONS IN COLLOIDAL DISPERSIONS[J].
[89] MAO Y, CATES M E, LEKKERKERKER H N W. Depletion Stabilization by Semidilute Rods[J]. Physical Review Letters, 1995, 75(24): 4548-4551.
[90] MAO Y, CATES M E, LEKKERKERKER H N W. Theory of the depletion force due to rodlike polymers[J]. The Journal of Chemical Physics, 1997, 106(9): 3721-3729.
[91] PIECH M, WALZ J Y. Depletion Interactions Produced by Nonadsorbing Charged and Uncharged Spheroids[J]. Journal of Colloid and Interface Science, 2000, 232(1): 86101.
[92] HARRIS S A, LAUGHTON C A. A simple physical description of DNA dynamics: quasi-harmonic analysis as a route to the configurational entropy[J]. Journal of Physics: Condensed Matter, 2007, 19(7): 076103.
[93] MARI R, KRZAKALA F, KURCHAN J. Jamming versus Glass Transitions[J]. Physical Review Letters, 2009, 103(2): 025701.
[94] HESS B. Similarities between principal components of protein dynamics and random diffusion[J]. Physical Review E, 2000, 62(6): 8438-8448. 68 参考文献
[95] SAHA S, MISHRA M K, REDDY C M, et al. From Molecules to Interactions to Crystal Engineering: Mechanical Properties of Organic Solids[J]. Accounts of Chemical Research, 2018, 51(11): 2957-2967.
[96] LI K, CHENG Y, FAN X. Roles of model size and particle size distribution on macromechanical properties of Lac du Bonnet granite using flat-joint model[J]. Computers and Geotechnics, 2018, 103: 43-60.
[97] PENG J, WONG L N Y, TEH C I. Influence of grain size heterogeneity on strength and microcracking behavior of crystalline rocks[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(2): 1054-1073.
[98] ALTUHAFI F N, COOP M R, GEORGIANNOU V N. Effect of Particle Shape on the Mechanical Behavior of Natural Sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(12): 04016071.
[99] AFOAKWA E O, PATERSON A, FOWLER M, et al. Microstructure and mechanical properties related to particle size distribution and composition in dark chocolate[J]. International Journal of Food Science & Technology, 2009, 44(1): 111-119.
[100]TONG H, TAN P, XU N. From Crystals to Disordered Crystals: A Hidden OrderDisorder Transition[J]. Scientific Reports, 2015, 5(1): 15378.
[101]K KREMER, G S GREST. Molecular dynamics (MD) simulations for polymers[J]. Journal of Physics: Condensed Matter, 1990, 2(S): SA295.
[102]SHAVIT A, RIGGLEMAN R A. Influence of Backbone Rigidity on Nanoscale Confinement Effects in Model Glass-Forming Polymers[J]. Macromolecules, 2013, 46(12): 5044-5052.
[103]ROEHM D, KESSELHEIM S, ARNOLD A. Hydrodynamic interactions slow down crystallization of soft colloids[J]. Soft Matter, 2014, 10(30): 5503-5509.
[104]卢亨东. 二维胶体晶体系统中的微观弹性的不均匀分布[D]. 南方科技大学.
[105]孙训方. 材料力学.1[M]. 材料力学.1, 1964.
[106]TEMPLIN R, STURM R. Som Stress-Strain Studies of Metals[J]. Journal of the Aeronautical Sciences, 1940, 7(5): 189-198.
[107]ROYLANCE D. Stress-strain curves[J]. Massachusetts Institute of Technology study, Cambridge, 2001.
修改评论