[1] 楼东, 谷树忠, 钟赛香. 中国海洋资源现状及海洋产业发展趋势分析[J]. 资源科学, 2005(5): 20-26.
[2] 韦荣伟. 水下机器人发展趋势及前景[J]. 现代制造技术与装备, 2018(2): 175-176.
[3] 徐会希, 姜成林. 基于 USV 与 AUV 异构平台协同海洋探测系统研究综述(英文)[J]. 中国科学院大学学报, 2021, 38(2): 145-159.
[4] TEAGUE J, ALLEN M J, SCOTT T B. The potential of low-cost ROV for use in deep-sea mineral, ore prospecting and monitoring[J]. Ocean Engineering, 2018, 147(1): 333-339.
[5] 曹少华, 张春晓, 王广洲, 等. 智能水下机器人的发展现状及在军事上的应用[J]. 船舶工程, 2019, 41(2): 79-84+89.
[6] NEIRA J, SEQUEIROS C, HUAMANI R, et al. Review on unmanned underwater robotics,structure designs, materials, sensors, actuators, and navigation control[J]. Journal of Robotics,2021, 2021: 5542920.
[7] 李硕, 刘健, 徐会希, 等. 我国深海自主水下机器人的研究现状[J]. 中国科学: 信息科学,2018, 48(9): 1152-1164.
[8] ZHANG Y, ZHANG Q, ZHANG A, et al. Development and experiments of a novel deep-sea resident ROV[C]//2021 6th International Conference on Control and Robotics Engineering(ICCRE). IEEE, 2021: 129-134.
[9] CHRIST R D, WERNLI SR R L. The ROV manual: a user guide for remotely operated vehicles[M]. Butterworth-Heinemann, 2013: 10-20.
[10] 商承超, 王伟, 谢广明, 等. 水下机器人定位方法综述[J]. 兵工自动化, 2013, 32(12): 46-50.
[11] 刘甜甜, 秦峰, 朱晓勇, 等. 水下自主导航机器人系统[J]. 兵工自动化, 2012, 31(11): 66-72.
[12] 刘赫, 高兴, 张成刚, 等. 具有水样采集功能的观测型水下机器人的设计[J]. 吉林大学学报(信息科学版), 2020, 38(6): 737-743.
[13] AMRAN I Y, ISA K, KADIR H A, et al. Development of autonomous underwater vehicle for water quality measurement application[C]//National Technical Seminar on Unmanned System Technology. Springer, 2019: 139-161.
[14] YANG X, WU Z, YU J. Design and implementation of a robotic shark with a novel embedded vision system[C]//2016 IEEE International Conference on Robotics and Biomimetics (ROBIO).IEEE, 2016: 841-846.
[15] 林兴华, 武建国, 秦青, 等. 水下机器人基于侧线机理对目标感知方法的研究[J]. 船舶力学, 2020, 24(5): 559-569.
[16] SIVČEV S, COLEMAN J, OMERDIĆ E, et al. Underwater manipulators: a review[J]. OceanEngineering, 2018, 163(17): 431-450.
[17] 徐杨. 海生物抓取捕捞水下机器人运动规划研究[D]. 哈尔滨工程大学, 2020: 10-20.
[18] CHUTIA S, KAKOTY N M, DEKA D. A review of underwater robotics, navigation, sensing techniques and applications[C]//Proceedings of the 2017 3rd International Conference on Advances in Robotics. 2017: 1-6.
[19] 王雷. 水下机器人运动控制研究[D]. 中国科学技术大学, 2018: 11-22.
[20] GÓMEZ Á, ARISTIZÁBAL L M, ZULUAGA C A, et al. Development and implementation of a high-level control system for the underwater remotely operated vehicle Visor3[J]. IFAC-PapersOnLine, 2017, 50(1): 1151-1156.
[21] ZHANG B, JI D, LIU S, et al. Autonomous underwater vehicle navigation: a review[J]. Ocean Engineering, 2023, 273(7): 113861.
[22] KARIMI H R, LU Y. Guidance and control methodologies for marine vehicles: a survey[J].Control Engineering Practice, 2021, 111(6): 104785.
[23] YAN J, GUO Z, YANG X, et al. Finite-time tracking control of autonomous underwater vehicle without velocity measurements[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2021, 52(11): 6759-6773.
[24] TIJJANI A S, CHEMORI A, CREUZE V. A survey on tracking control of unmanned underwatervehicles: experiments-based approach[J]. Annual Reviews in Control, 2022, 54(2): 125-147.
[25] LIU J, ZHAO M, QIAO L. Adaptive barrier Lyapunov function-based obstacle avoidance control for an autonomous underwater vehicle with multiple static and moving obstacles[J]. Ocean engineering, 2022, 243(1): 110303.
[26] PINHEIRO P M, NETO A A, GRANDO R B, et al. Trajectory planning for hybrid unmanned aerial underwater vehicles with smooth media transition[J]. Journal of Intelligent & Robotic Systems, 2022, 104(3): 46.
[27] MU X, HE B, WU S, et al. A practical INS/GPS/DVL/PS integrated navigation algorithm and its application on Autonomous Underwater Vehicle[J]. Applied Ocean Research, 2021, 106(1):102441.
[28] CAO X, REN L, SUN C. Research on obstacle detection and avoidance of autonomous underwater vehicle based on forward-looking sonar[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 34(11): 9198-9208.
[29] HUANG H, TANG Q, LI J, et al. A review on underwater autonomous environmental perception and target grasp, the challenge of robotic organism capture[J]. Ocean Engineering, 2020, 195(1): 106644.
[30] DINAKARAN R, ZHANG L, LI C T, et al. Robust and fair undersea target detection with automated underwater vehicles for biodiversity data collection[J]. Remote Sensing, 2022, 14(15): 3680.
[31] PERKINS W, BRADY L. CURV III (Cable-Controlled Underwater Recovery Vehicle) characteristics and mission applications.[R]. NOSC/TD-651. NAVAL OCEAN SYSTEMS CENTER SAN DIEGO CA, 1984.
[32] KYO M, HIYAZAKI E, TSUKIOKA S, et al. The sea trial of ‘KAIKO’, the full ocean depth research ROV[C]//Challenges of Our Changing Global Environment. Conference Proceedings.OCEANS’95 MTS/IEEE: Vol. 3. IEEE, 1995: 1991-1996.
[33] KHATIB O, YEH X, BRANTNER G, et al. Ocean one: a robotic avatar for oceanic discovery[J]. IEEE Robotics & Automation Magazine, 2016, 23(4): 20-29.
[34] BRANTNER G. Human-robot collaboration in challenging environments[M]. Stanford University, 2018: 63-78.
[35] YEH X. Development of an underwater humanoid robotic diver[D]. Stanford University, 2017.
[36] WILBY A, LO E. Low-cost, open-source hovering autonomous underwater vehicle (HAUV) for marine robotics research based on the BlueROV2[C]//2020 IEEE/OES Autonomous Underwater Vehicles Symposium (AUV). IEEE, 2020: 1-5.
[37] 连琏, 马厦飞, 陶军. “海马”号 4500 米级 ROV 系统研发历程[J]. 船舶与海洋工程, 2015,31(1): 9-12.
[38] 任峰, 张莹, 张丽婷, 等. “海龙 Ⅲ”号 ROV 系统深海试验与应用研究[J]. 海洋技术学报,2019, 38(2): 30-35.
[39] 祖祎. 小型水下机器人运动控制系统研究与仿真[D]. 沈阳工业大学, 2022: 34-41.
[40] 孙海超, 邓彦松. 基于矢量控制的开架式水下机器人[J]. 兵工自动化, 2022, 41(10): 75-78.
[41] ZHAO S, YUH J. Experimental study on advanced underwater robot control[J]. IEEE transactions on robotics, 2005, 21(4): 695-703.
[42] DE KRUIF B J, COZIJN H, VAN DER SCHAAF H, et al. Control design for a multi-regime 6-DOF underwater vehicle; development of MARIN’s modular AUV[J]. IFAC-PapersOnLine,2019, 52(21): 230-235.
[43] GAVRILINA E, VELTISHEV V, KROPOTOV A. Attitude control system of a highly maneuverable hybrid ROV for ship-hull inspection[C]//OCEANS 2021: San Diego–Porto. IEEE,2021: 1-6.
[44] BORASE R P, MAGHADE D, SONDKAR S, et al. A review of PID control, tuning methods and applications[J]. International Journal of Dynamics and Control, 2021, 9(2): 818-827.
[45] 王建华, 宋燕, 魏国亮, 等. 串级 PID 控制在水下机器人俯仰控制系统中的应用[J]. 上海理工大学学报, 2017, 39(3): 229-235.
[46] NGUYEN A T, TANIGUCHI T, ECIOLAZA L, et al. Fuzzy control systems: past, present and future[J]. IEEE Computational Intelligence Magazine, 2019, 14(1): 56-68.
[47] 张国良. 模糊控制及其 MATLAB 应用[M]. 西安交通大学出版社, 2002: 61-89.
[48] KHODAYARI M H, BALOCHIAN S. Modeling and control of autonomous underwater vehicle (AUV) in heading and depth attitude via self-adaptive fuzzy PID controller[J]. Journal of Marine Science and Technology, 2015, 20(3): 559-578.
[49] XIE Y, ZHU A, HUANG Z, et al. Research on the control performance of depth-fixed motion of underwater vehicle based on fuzzy-PID[J]. Journal of Robotics, 2023, 2023: 4168433.
[50] PAN X, XU G, HUANG Z, et al. Adaptive fuzzy control design based on nonlinear system of underwater vehicle[C]//Proceedings of the International Offshore and Polar Engineering Conference. Shanghai, China, 2022: 1175 - 1181.
[51] DING H, WANG D. Autonomous underwater vehicle heading control based on sliding mode fuzzy control[C]//Proceedings of the Second International Conference on Modelling and Simulation. 2009: 505-508.
[52] TANAKITKORN K, WILSON P A, TURNOCK S R, et al. Sliding mode heading control of an overactuated, hover-capable autonomous underwater vehicle with experimental verification[J]. Journal of Field Robotics, 2018, 35(3): 396-415.
[53] HONG E Y, SOON H G, CHITRE M. Depth control of an autonomous underwater vehicle,STARFISH[C]//OCEANS’10 IEEE SYDNEY. IEEE, 2010: 1-6.
[54] SARHADI P, NOEI A R, KHOSRAVI A. Adaptive integral feedback controller for pitch and yaw channels of an AUV with actuator saturations[J]. ISA transactions, 2016, 65(6): 284-295.
[55] GUO S, DU J, LIN X, et al. Adaptive fuzzy sliding mode control for spherical underwater robots[C]//2012 IEEE International Conference on Mechatronics and Automation. IEEE, 2012:1681-1685.
[56] ZHU X, TAN F. Attitude control method of six degree of freedom autonomous underwater vehicle based on RBF neural network[C]//Proceedings of the 7th International Conference on Robotics and Artificial Intelligence. 2021: 70-75.
[57] WU Y, WEI Y, AN D, et al. A hybrid control strategy based on neural network and PID for underwater robot hovering[C]//2023 26th International Conference on Computer Supported Cooperative Work in Design (CSCWD). IEEE, 2023: 1843-1848.
[58] MAKAVITA C D, NGUYEN H D, RANMUTHUGALA D, et al. Composite model reference adaptive control for an unmanned underwater vehicle[J]. Underwater Technology, 2015, 33(2):81-93.
[59] YU W, LIANG Q, XIONG N, et al. MPC-based motion control of underwater vehicle with fixed depth[C]//EEI 2022; 4th International Conference on Electronic Engineering and Informatics.VDE, 2022: 1-4.
[60] 韩京清. 自抗扰控制技术: 估计补偿不确定因素的控制技术[M]. 国防工业出版社, 2008:17-41.
[61] 韩京清. 自抗扰控制器及其应用[J]. 控制与决策, 1998, 13(1): 19-23.
[62] 黄健. 自抗扰技术在水下航行体横滚姿态控制中的应用研究[J]. 船舶工程, 2014, 36(S1):131-134.
[63] 赵兴隆, 商蕾, 乔玉蓬. 基于自抗扰控制的小型 ROV 姿态与深度控制研究[J]. 中国修船,2022, 35(2): 42-46.
[64] FOSSEN T I. Handbook of marine craft hydrodynamics and motion control[M]. John Wiley & Sons, 2011: 69-108.
[65] 张赫, 庞永杰, 李晔. 潜水器水动力系数计算方法研究[J]. 武汉理工大学学报 (交通科学与工程版), 2011, 35(1): 15-18.
[66] 刘和平. 浅水水下机器人设计与控制技术工程研究[D]. 上海大学, 2009: 65-81.
修改评论