中文版 | English
题名

基于区块链去中心化并行计算技术的地球电磁场大规模三维快速模拟

其他题名
LARGE-SCALE 3D FAST SIMULATION OF GEO-ELECTROMAGNETIC FIELD USING BLOCKCHAIN-BASED DECENTRALIZED PARALLEL COMPUTING TECHNOLOGY
姓名
姓名拼音
ZHANG Yuchao
学号
12132715
学位类型
硕士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
杨迪琨
导师单位
地球与空间科学系
论文答辩日期
2024-05-14
论文提交日期
2024-06-23
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

电磁场三维模拟在矿产勘探、地下水和环境监测等领域具有广泛的应用前景。然而,电磁场三维模拟由于计算量大、计算任务复杂等挑战,传统的模拟方法面临着诸多限制。本文结合观测分解框架,将大型电磁问题分解为多个互不相关的独立子问题,适用于大规模并行求解。尽管传统的并行计算方法(如MPI等)在提升效率方面取得了一定进展,但由于稳健性、扩展性和灵活性的不足,仍然难以满足对大规模、高精度和复杂现实模拟的需求。为应对这些挑战,本文提出了一种基于区块链的并行计算框架。该框架构建了一个去中心化的并行计算网络,允许计算节点通过种子节点灵活加入,并与网络中的其他节点协同完成计算任务。该框架对并行计算流程进行了精细且优化的设计,涵盖了节点加入并行计算网络、动态任务分配与计算,以及点对点信息交换等关键环节,旨在确保计算任务能够高效、均衡地分配给各个节点,共同完成计算任务。同时,我们成功运用基于区块链的并行计算框架解决了地球物理电磁场三维模拟问题,为电磁场三维模拟的高性能计算提供了一种新颖且高效的解决思路。

该框架主要针对可拆分为多个互不相关子问题的求解任务,将这些小问题分配给区块链网络中的多个节点进行并行计算,节点之间通过信息交换和共识机制协作完成计算任务。首先,我们设计并实现了基于区块链的并行计算框架,经过初步测试,验证了其可行性和潜在优势。随后,我们进一步优化了计算流程和模块,并针对线性方程求解计算任务和电磁数据计算任务在不同场景下进行了测试。这些测试覆盖了不同任务规模和计算资源规模、计算资源的动态调整以及网络故障等多种情况,旨在全面评估框架的性能和稳定性。同时,我们还对加拿大TKC真实地电模型进行了模拟,以验证框架在实际应用中的效果

研究结果表明,基于区块链的并行计算框架在电磁场三维模拟中展现出了一定的优势。相较于传统方法,新框架在稳健性、扩展性和灵活性方面均实现了显著提升。该框架能够在多样的并行计算环境下,采用灵活的并行策略,实现高效、可靠的大规模并行计算,为电磁场高性能计算开辟了全新的路径。

其他摘要

The 3D simulation of geo-electromagnetic fields has wide applications in mineral exploration, groundwater, and environmental monitoring. However, traditional simulation methods face various limitations due to challenges such as large computational workload and complexity of tasks. This paper combines the survey decomposition framework to decompose large geo-electromagnetic problems into multiple independent sub-problems suitable for large-scale parallel solving. Despite the progress made by traditional parallel computing methods (such as MPI) in improving efficiency, their lack of robustness, scalability, and flexibility still makes it challenging to meet the demands of large-scale, high-precision, and complex real-world simulations. To address these challenges, this paper proposes a blockchain-based parallel computing framework. The framework constructs a decentralized parallel computing network, allowing computing nodes to join flexibly through seed nodes and collaborate with other nodes in the network to complete computing tasks. The framework has been finely optimized for the parallel computing process, covering key aspects such as node joining in the parallel computing network, dynamic task allocation and computation, and peer-to-peer information exchange, aiming to ensure an efficient and balanced distribution of computing tasks to all nodes for collective task completion. Additionally, we successfully applied the blockchain-based parallel computing framework to solve the problem of 3D electromagnetic field simulation in geophysical exploration, providing a novel and efficient solution for high-performance computing of electromagnetic field simulation.

This framework is primarily designed for solving tasks that can be divided into multiple independent subproblems. These subproblems are distributed to various nodes within the blockchain network for parallel computation. The nodes collaborate to complete the computational tasks through information exchange and consensus mechanisms. Firstly, we designed and implemented a blockchain-based parallel computing framework. Through preliminary testing, we verified its feasibility and potential advantages. Subsequently, we optimized the computing process and modules and conducted tests on solving linear equations and electromagnetic data computing tasks under different scenarios. These tests covered various situations, such as different task scales and computing resource scales, dynamic adjustment of computing resources, and network failures, aiming to evaluate the performance and stability of the framework comprehensively. Additionally, we simulated the real geoelectrical model of Canada’s TKC to verify the framework's effectiveness in practical applications.

The research results show that the blockchain-based parallel computing framework demonstrates certain advantages in simulating 3D electromagnetic fields. The new framework has significantly improved robustness, scalability, and flexibility compared to traditional methods. The framework can adopt flexible parallel strategies in diverse parallel computing environments to achieve efficient and reliable large-scale parallel computing and pave the path for high-performance computing of electromagnetic fields.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1]Li S, Liu B, Xu X, et al. An overview of ahead geological prospecting in tunneling[J]. Tunnelling and Underground Space Technology, 2017, 63: 69-94.
[2]Danielsen J E, Auken E, Jørgensen F, et al. The application of the transient electromagnetic method in hydrogeophysical surveys[J]. Journal of applied geophysics, 2003, 53(4): 181-198.
[3]Belova M, Iakovleva E, Popov A. Mining and environmental monitoring at open-pit mineral deposits[J]. Journal of Ecological Engineering, 2019, 20(5): 172-178.
[4]Chen H, Han P, Hattori K. Recent advances and challenges in the seismo-electromagnetic study: A brief review[J]. Remote Sensing, 2022, 14(22): 5893.
[5]Commer M, Newman G A. parallel finite-difference approach for 3D transient electromagnetic modeling with galvanic sources[J]. Geophysics, 2004, 69: 1192–1202.
[6]Yang D K, Oldenburg D W, Haber E. 3-D inversion of airborne electromagnetic data parallelized and accelerated by local mesh and adaptive soundings[J]. Geophys. J. Int., 2014, 196(3): 1492-1507.
[7]Grayver A V. Parallel three-dimensional magnetotelluric inversion using adaptive finite-element method. Part I: theory and synthetic study[J]. Geophysical Journal International, 2015, 202(1): 584-603.
[8]Commer, M., Newman, G., 2004. A parallel finite-difference approach for 3D transient electromagnetic modeling with galvanic sources. Geophysics 69, 1192-1202.
[9]Gropp W, Lusk E, Doss N, et al. A high-performance, portable implementation of the MPI message passing interface standard[J]. Parallel computing, 1996, 22(6): 789-828.
[10]D. L. Alumbaugh, G. A. Newman, L. Prevost and J. N. Shadid, "Three-dimensional wideband electromagnetic modeling on massively parallel computers," in Radio Science, vol. 31, no. 1, pp. 1-23, Jan.-Feb. 1996, doi: 10.1029/95RS02815.
[11]Alumbaugh D L, Newman G A. Three-dimensional massively parallel electromagnetic inversion—II. Analysis of a crosswell electromagnetic experiment[J]. Geophysical Journal International, 1997, 128(2): 355-363.
[12]Newman G A, Alumbaugh D L. Three-dimensional massively parallel electromagnetic inversion—I. Theory[J]. Geophysical journal international, 1997, 128(2): 345-354.
[13]Newman G A, Alumbaugh D L. Three-dimensional electromagnetic modeling and inversion on massively parallel computers[R]. Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 1996.
[14]Lin C, Tan H, Tong T. Parallel rapid relaxation inversion of 3D magnetotelluric data[J]. Applied Geophysics, 2009, 6: 77-83.
[15]李焱,胡祥云,吴桂桔,叶益信,廖国忠.基于MPI的二维大地电磁正演的并行计算[J].地震地质,2010,32(03):392-401.
[16]Grayver A V, Streich R, Ritter O. Three-dimensional parallel distributed inversion of CSEM data using a direct forward solver[J]. Geophysical Journal International, 2013, 193(3): 1432-1446.
[17]秦策,王绪本,赵宁.基于二次场方法的并行三维大地电磁正反演研究[J].地球物理学报,2017,60(06):2456-2468.
[18]王堃鹏,王绪本,曹辉,蓝星,段长生,罗威,原健龙.基于交叉梯度结构约束的大地电磁主轴各向异性并行三维反演[J].地球物理学报,2021,64(04):1305-1319.
[19]Key K, Ovall J. A parallel goal-oriented adaptive finite element method for 2.5-D electromagnetic modelling[J]. Geophysical Journal International, 2011, 186(1): 137-154.
[20]Key K. Marine EM inversion using unstructured grids: a 2D parallel adaptive finite element algorithm[C]//SEG International Exposition and Annual Meeting. SEG, 2012: SEG-2012-1294.
[21]Qin C, Wang X, Zhao N. EMFEM: A parallel 3D modeling code for frequency-domain electromagnetic method using goal-oriented adaptive finite element method[J]. Computers & Geosciences, 2023, 178: 105403.
[22]Castillo Reyes O. Edge-elements formulation of 3D CSEM in geophysics: a parallel approach[J]. 2017.
[23]Castillo-Reyes O, de la Puente J, Cela J M. PETGEM: A parallel code for 3D CSEM forward modeling using edge finite elements[J]. Computers & Geosciences, 2018, 119: 123-136.
[24]Dagum L, Menon R. OpenMP: an industry standard API for shared-memory programming[J]. IEEE computational science and engineering, 1998, 5(1): 46-55.
[25]Liu Y H, Yin C C, Ren X Y, et al. 3D parallel inversion of time-domain airborne EM data[J]. Applied Geophysics, 2016, 13(4): 701-711.
[26]Zhang B, Engebretsen K W, Fiandaca G, et al. 3D inversion of time-domain electromagnetic data using finite elements and a triple mesh formulation[J]. Geophysics, 2021, 86(3): E257-E267.
[27]Dai S, Ling J, Chen Q, et al. Three-dimensional numerical modeling of direct current resistivity methods in mixed space-wavenumber domain[J]. Journal of Applied Geophysics, 2022, 198: 104535.
[28]Owens J D, Houston M, Luebke D, et al. GPU computing[J]. Proceedings of the IEEE, 2008, 96(5): 879-899.
[29]Liu S, Chen C, Sun H. Fast 3D transient electromagnetic forward modeling using BEDS-FDTD algorithm and GPU parallelization[J]. Geophysics, 2022, 87(5): E359-E375.
[30]Fu N, Tai H M. Accelerated Geophysical Inversion for Airborne Transient Electromagnetic Data Using GPU[C]//2023 IEEE International Conference on Industrial Technology (ICIT). IEEE, 2023: 1-5.
[31]白洪涛,范翠松,李昂,等.基于OpenMP+ MPI的2.5维电磁场正演并行化方法[J].石油地球物理勘探,2015,50(1):170-176.
[32]王胜昌,汤井田,肖晓,张林成,任政勇,周聪,皇祥宇.基于MPI和OpenMP可控源电磁法三维有限元正演并行模拟[J].工程地球物理学报,2017,14(05):507-518.
[33]任运通,李貅,齐彦福等.基于MPI+OpenMP的时间域航空电磁快速正演算法[J].物探与化探,2020,44(02):290-299.
[34]Cai H, Liu M, Zhou J, et al. Effective 3D-transient electromagnetic inversion using finite-element method with a parallel direct solver[J]. Geophysics, 2022, 87(6): E377-E392.
[35]张帆. 基于MPI和GPU直流电法和大地电磁法三维正演的并行算法研究[D].中国地质大学(北京),2011.
[36]Chowdhury M U, Suchana K, Alam S M E, et al. Blockchain application in banking system[J]. Journal of Software Engineering and Applications, 2021, 14(7): 298-311.
[37]Kassen M. Blockchain and e-government innovation: Automation of public information processes[J]. Information Systems, 2022, 103: 101862.
[38]Attaran M. Blockchain technology in healthcare: Challenges and opportunities[J]. International Journal of Healthcare Management, 2022, 15(1): 70-83.
[39]Andoni M, Robu V, Flynn D, et al. Blockchain technology in the energy sector: A systematic review of challenges and opportunities[J]. Renewable and sustainable energy reviews, 2019, 100: 143-174.
[40]Esposito C, Ficco M, Gupta B B. Blockchain-based authentication and authorization for smart city applications[J]. Information Processing & Management, 2021, 58(2): 102468.
[41]Shae Z, Tsai J. Transform blockchain into distributed parallel computing architecture for precision medicine[C]//2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS). IEEE, 2018: 1290-1299.
[42]Yan B, Chen P, Li X, et al. Nebula: A blockchain based decentralized sharing computing platform[C]//Blockchain and Trustworthy Systems: First International Conference, BlockSys 2019, Guangzhou, China, December 7–8, 2019, Proceedings 1. Springer Singapore, 2020: 715-731.
[43]Perrons R K, Cosby T. Applying blockchain in the geoenergy domain: The road to interoperability and standards[J]. Applied Energy, 2020, 262: 114545.
[44]Nakamoto S. Bitcoin: A peer-to-peer electronic cash system[J]. 2008.
[45]Buterin V. Ethereum white paper[J]. GitHub repository, 2013, 1: 22-23.
[46]Luu L, Narayanan V, Zheng C, et al. A secure sharding protocol for open blockchains[C]//Proceedings of the 2016 ACM SIGSAC conference on computer and communications security. 2016: 17-30.
[47]Chaer A, Salah K, Lima C, et al. Blockchain for 5G: Opportunities and challenges[C]//2019 IEEE Globecom Workshops (GC Wkshps). IEEE, 2019: 1-6.
[48]Nguyen D C, Pathirana P N, Ding M, et al. Blockchain for 5G and beyond networks: A state of the art survey[J]. Journal of Network and Computer Applications, 2020, 166: 102693.
[49]Salah K, Rehman M H U, Nizamuddin N, et al. Blockchain for AI: Review and open research challenges[J]. IEEE access, 2019, 7: 10127-10149.
[50]Xuan T R, Ness S. Integration of Blockchain and AI: Exploring Application in the Digital Business[J]. Journal of Engineering Research and Reports, 2023, 25(8): 20-39.
[51]Parameswaran M, Susarla A, Whinston A B. P2P networking: an information sharing alternative[J]. Computer, 2001, 34(7): 31-38.
[52]Lashkari B, Musilek P. A comprehensive review of blockchain consensus mechanisms[J]. IEEE access, 2021, 9: 43620-43652.
[53]Zheng Z, Xie S, Dai H N, et al. An overview on smart contracts: Challenges, advances and platforms[J]. Future Generation Computer Systems, 2020, 105: 475-491.
[54]Guo H, Yu X. A survey on blockchain technology and its security[J]. Blockchain: research and applications, 2022, 3(2): 100067.
[55]Oldenburg D W, McGillivray P R, Ellis R G. Generalized subspace methods for large-scale inverse problems[J]. Geophys. J. Int., 1993, 114(1): 12–20.
[56]Oldenburg D W, Li Y. Inversion of induced polarization data[J]. Geophysics, 1994a, 59(9): 1327–1341.
[57]Oldenburg D W, Li Y. Subspace linear inverse method[J]. Inverse Problems, 1994b, 10(4): 915.
[58]Commer M, Newman G A, Carazzone J J, et al. Massively parallel electrical-conductivity imaging of hydrocarbons using the IBM Blue Gene/L supercomputer[J]. IBM Journal of Research and Development, 2008, 52(1.2): 93–103.
[59]Fournier D, Kang S, McMillan M S, et al. Inversion of airborne geophysics over the DO-27/DO-18 kimberlites—Part 2: Electromagnetics[J]. Interpretation, 2017, 5(3): T313-T325.

所在学位评定分委会
物理学
国内图书分类号
P31
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765879
专题南方科技大学
理学院_地球与空间科学系
推荐引用方式
GB/T 7714
张宇超. 基于区块链去中心化并行计算技术的地球电磁场大规模三维快速模拟[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132715-张宇超-地球与空间科学(4562KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张宇超]的文章
百度学术
百度学术中相似的文章
[张宇超]的文章
必应学术
必应学术中相似的文章
[张宇超]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。