[1] JESSEN F, KNUFINKE M, BELL S C, et al. Trapping of ultracold atoms in a 3He/4He dilutionrefrigerator[J/OL]. Applied Physics B, 2014, 116(3): 665-671. DOI: 10.1007/s00340-013-5750-5.
[2] ADAM R, ADANE A, ADE P A R, et al. The NIKA2 large-field-of-view millimetre continuumcamera for the 30 m IRAM telescope[J/OL]. Astronomy Astrophysics, 2018, 609. DOI: 10.1051/0004-6361/201731503.
[3] LVOVSKY Y, STAUTNER E W, ZHANG T. Novel technologies and configurations of superconductingmagnets for MRI[J/OL]. SUPERCONDUCTOR SCIENCE & TECHNOLOGY,2013, 26(9). DOI: 10.1088/0953-2048/26/9/093001.
[4] STROUSE G F, TEW W L. Assessment of Uncertainties of Calibration of Resistance Thermometersat the National Institute of Standards and Technology[Z]. 1994.
[5] RUSBY R L, FELLMUTH B, ENGERT J, et al. Realization of the 3He Melting PressureScale, PLTS-2000[J/OL]. Journal of Low Temperature Physics, 2007, 149(3): 156-175. DOI:10.1007/s10909-007-9502-y.
[6] RUSBY R, HEAD D, COUSINS D, et al. European Dissemination of the Ultra-low TemperatureScale, PLTS-2000[J]. American Institute of Physics, 2003.
[7] BALLE C, CASAS-CUBILLOS J, THERMEAU J P. Cryogenic Thermometer Calibration Facilityat CERN[J/OL]. Adv. Cryog. Eng., A, 1998, 43: 741-748. https://cds.cern.ch/record/340497. DOI: 10.1007/978-1-4757-9047-4_92.
[8] PAL S, KAR R, MANDAL A, et al. Development of an experimental variable temperature setupfor a temperature range from 2.2K to 325K for cost-effective temperature sensor calibration[J]. Measurement Science and Technology, 2017, 28(5): 055013.
[9] SHIMAZAKI T, K., TOYODA, et al. Realization of the 3He Vapor-Pressure Temperature Scaleand Development of a Liquid-He-Free Calibration Apparatus[J]. International Journal of Thermophysics,2011, 32(11-12): 2171-2182.
[10] 中国科学院计算机网络信息中心. 低温计量站仪器–中国科学院理化技术研究所ipc.cas.cn[EB/OL]. 2022. http://www.ipc.cas.cn/kyzb/ggjsfwzx/dwjlzyq/.
[11] 陈灼民, 钱静, 龙风, 等. 全超导托卡马克装置(EAST) 的技术诊断系统[J/OL]. 低温与超导, 2007: 93-95+102. DOI: 10.16711/j.1001-7100.2007.02.001.
[12] 翁捷敏, 黄永华. 基于G-M 低温制冷机的低温温度计标定系统[J/OL]. 低温与超导, 2013,41: 5-10. DOI: 10.16711/j.1001-7100.2013.02.002.
[13] 李畏, 黄永华, 杨朴凡. 基于G-M 制冷机的低温温度计全自动标定系统[J]. 低温工程,2018: 11-16.
[14] 宋欣, 石晓倩, 郭方准. 基于G-M 制冷机的低温温度计标定系统[J]. 真空与低温, 2021, 27:390-394.
[15] 金海, 丁骄, 李成哲, 等. 1 K 以下绝热去磁温度计标定平台的研究[J]. 真空与低温, 2023,29: 72-77.
[16] PRESTON-THOMAS H. International Temperature Scale of 1990 (ITS-90)[J]. Metrologia,1990, 27(1): 3-10.
[17] SCHUSTER G, HECHTFISCHER D, FELLMUTH B. Thermometry below 1 K[J]. Reportson Progress in Physics, 1994, 57(2): 187-230.
[18] J, FISCHER, B, et al. Temperature metrology[J]. Reports on Progress in Physics, 2005.
[19] FELLMUTH B, HECHTFISCHER D, HOFFMANN A. PTB-96: The Ultra-Low TemperatureScale of PTB: volume 684[EB/OL]. 2003. DOI: 10.1063/1.1627103.
[20] SOULEN R, FOGLE W, COLWELL J. Measurements of absolute temperature below 0.75 Kusing a Josephson-junction noise thermometer[J/OL]. Journal of Low Temperature Physics,1994, 94: 385-487. DOI: 10.1007/BF00753823.
[21] NI W, XIA J, ADAMS E, et al. 3He melting pressure temperature scale below 25 mK[J/OL].Journal of Low Temperature Physics - J LOW TEMP PHYS, 1995, 99: 167-182. DOI: 10.1007/BF00753627.
[22] RUSBY R L, DURIEUX M, REESINK A L, et al. The Provisional Low Temperature Scale from0.9 mK to 1 K, PLTS-2000[J]. Journal of Low Temperature Physics, 2002, 126(1): 633-642.
[23] PTB.DE. The Provisional Low-temperature Scale of 2000, PLTS-2000[EB/OL]. [Accessed20-01-2024]. https://www.ptb.de/cms/en/ptb/fachabteilungen/abt7/fb-74/ag-744/the-provisional-low-temperature-scale-of-2000-plts-2000.html.
[24] IHAS G G, FREDERICK L, MCFARLAND J P. Low Temperature Thermometry in HighMagnetic Fields[J]. Journal of Low Temperature Physics, 1998, 113(5-6): 963-968.
[25] WILLEKERS R, MATHU F, MEIJER H, et al. Thick film thermometers with predictable RTcharacteristics and very low magnetoresistance below 1 K[J/OL]. Cryogenics, 1990, 30(4):351-355. DOI: 10.1016/0011-2275(90)90315-4.
[26] WATANABE M, MORISHITA M, OOTUKA Y. Magnetoresistance of RuO2-based resistancethermometers below 0.3 K[J/OL]. Cryogenics, 2001, 41(3): 143-148. DOI: 10.1016/S0011-2275(01)00066-2.
[27] MYERS S A, LI H, CSáTHY G A. A ruthenium oxide thermometer for dilution refrigeratorsoperating down to 5 mK[J/OL]. Cryogenics, 2021, 119: 103367. DOI: 10.1016/j.cryogenics.2021.103367.
[28] SüßER M, WüCHNER F. Behavior of CERNOX temperature sensors at static magnetic fieldsup to 15 T[J/OL]. Cryogenics, 2000, 40(6): 413-415. DOI: 10.1016/S0011-2275(00)00055-2.
[29] BRANDT B, LIU D, RUBIN L. Low temperature thermometry in high magnetic fields.: VII.:Cernox™ sensors to 32 T[J/OL]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1999, 70(1, 1):104-110. DOI: 10.1063/1.1149549.
[30] COURTS S S, COURTS B R. Stability of Cernox® temperature sensors stored at room temperatureover a 29-year period[J/OL]. CRYOGENICS, 2023, 129. DOI: 10.1016/j.cryogenics.2022.103616.
[31] KRAUSE J K, SWINEHART P R. Reliable Wide-Range Diode Thermometry[M/OL]. Boston,MA: Springer US, 1986: 1247-1254. DOI: 10.1007/978-1-4613-2213-9_139.
[32] FOGLE W E, HORNUNG E W, MAYBERRY M C, et al. Experiments with powdered CMNthermometers between 10 mK and 4 K, and a comparison with an NBS SRM 768 fixed pointdevice[J]. Physica B+c, 1981, 109(82): 2129-2131.
[33] GREYWALL D S, BUSCH P A. Fast cerium magnesium nitrate (CMN) thermometer for thelow millikelvin temperature range[J]. Review of Scientific Instruments, 1989, 60(3): 471-473.
[34] MOHANDAS P, HEAD D I, RUSBY R L. A powdered CMN thermometer for high accuracymeasurements in the range 0.01 to 1 K[J/OL]. Czechoslovak Journal of Physics, 1996, 46(5):2867-2868. DOI: 10.1007/BF02570420.
[35] HDLEIDEN. CMN1000 thermometer — hdleiden.home.xs4all.nl[EB/OL]. Accessed 23-01-2024. https://hdleiden.home.xs4all.nl/srd1000/cmn1000.htm.
[36] WIKUS P, CANAVAN E, HEINE S T, et al. Magnetocaloric materials and the optimization ofcooling power density[J/OL]. Cryogenics, 2014, 62: 150-162. DOI: 10.1016/j.cryogenics.2014.04.005.
[37] STOLEN R J, Jr, DOVE R B. Standard reference materials: srm 768: temperature referencestandard for use below 0. 5 k[EB/OL]. 1979. https://www.osti.gov/biblio/5507455.
[38] FOGLE W E, HORNUNG E W, MAYBERRY M C, et al. Experiments with powdered CMNthermometers between 10 mK and 4 K, and a comparison with an NBS SRM 768 fixed pointdevice[J]. Physica B & C, 1982, 109(1-3): 2129-2131.
[39] BOSCH W A, VAN DER HARK J J M, PöLL J, et al. SRD1000 with improved referencepoints for thermometry below 1K[J/OL]. Journal of Low Temperature Physics, 2005, 138(3):935-940. DOI: 10.1007/s10909-005-2328-6.
[40] BOSCH W A, CHINCHURE A, FLOKSTRA J, et al. SRD1000: a superconductive referencedevice for thermometry below 1K[J/OL]. Physica B: Condensed Matter, 2003, 329-333: 1562-1563. DOI: 10.1016/S0921-4526(02)02295-0.
[41] BOSCH W A, FLOKSTRA J, DE GROOT G E, et al. First Prototypes of the SuperconductiveReference Device SRD1000[J/OL]. AIP Conference Proceedings, 2003, 684(1): 155-160. DOI:10.1063/1.1627117.
[42] SOULEN R J, MARSHAK H. The establishment of a temperature scale from 0.01 K to 0.05 Kusing noise and 60Co γ-ray anisotropy thermometers[J/OL]. Cryogenics, 1980, 20(7): 408-412.DOI: 10.1016/S0011-2275(80)80050-6.
[43] MARSHAK H. Nuclear Orientation Thermometry.[J]. Journal of research of the NationalBureau of Standards, 1983, 88 3: 175-217.
[44] HAAS W D, WIERSMA E C, KRAMERS H. Experiments on adiabatic cooling of paramagneticsalts in magnetic fields[J]. Physica D: Nonlinear Phenomena, 1934, 1: 1-13.
[45] De Haas W, WIERSMA E, KRAMERS H. Experiments on adiabatic cooling of paramagneticsalts in magnetic fields[J/OL]. Physica, 1934, 1(1): 1-13. https://www.sciencedirect.com/science/article/pii/S0031891434900021. DOI: 10.1016/S0031-8914(34)90002-1.
[46] WHEATLEY J C, RAPP R E, JOHNSON R T. Principles and methods of dilution refrigeration.II[J/OL]. Journal of Low Temperature Physics, 1971, 4(1): 1-39. DOI: 10.1007/BF00628435.
[47] WHEATLEY J C, VILCHES O E, ABEL W R. Principles and methods of dilution refrigeration[J/OL]. Physics, 1968, 4: 1-64. https://api.semanticscholar.org/CorpusID:126273196.
[48] BATEY G. 50 years of dilution refrigeration Continuous innovation of ultra low temperatureresearch tools[EB/OL]. 2015. https://epsassets.manchester.ac.uk/medialand/physics/DilutionRefrigerationConf50Yrs/Batey.pdf.
[49] BETTS, DAVID S. An Introduction to Millikelvin Technology[J]. American Journal of Physics,1990, 58(5): 510.
[50] POBELL F. Matter and Methods at Low Temperatures[M]. Matter and methods at low temperatures/, 2007.
[51] LAKE SHORE CRYOTRONICS I. Temperature Measurement and Control Catalog[EB/OL].2018. https://www.lakeshore.com/docs/default-source/product-downloads/lakeshoretc_l.pdf.
[52] GENTILE D, HASSENZAHL W, POLAK M. Temperature measurements using a monofilamentarysuperconducting NbTi wire in the current sharing state[J/OL]. Cryogenics, 1980, 20:37-40. DOI: 10.1016/0011-2275(80)90066-1.
[53] BRESCHI M, TREVISANI L, BOTTURA L, et al. Comparing the thermal stability of NbTiand Nb3Sn wires[J/OL]. Superconductor Science and Technology, 2009, 22: 025019. DOI:10.1088/0953-2048/22/2/025019.
[54] WOODCRAFT A, VENTURA G, MARTELLI V, et al. Thermal conductance at millikelvintemperatures of woven ribbon cable with phosphor-bronze clad superconducting wires[J/OL].Cryogenics, 2010, 50: 465–468. DOI: 10.1016/j.cryogenics.2010.06.001.
[55] CASEY A, ARNOLD F, LEVITIN L, et al. Current Sensing Noise Thermometry: A fast practicalsolution to low temperature measurement[Z]. 2013.
[56] ABE S, MATSUMOTO K. Nuclear Demagnetization for Ultra-low temperatures[J/OL]. Cryogenics,2014, 62. DOI: 10.1016/j.cryogenics.2014.04.004.
[57] VERMEULEN G, FROSSATI G. Powerful dilution refrigerator for use in the study of polarizedliquid 3He and nuclear cooling[J/OL]. Cryogenics, 1987, 27: 139-147. DOI: 10.1016/0011-2275(87)90070-1.
[58] ZHANG P, LI J, GUO Q, et al. NbTi superconducting wires and applications[M/OL]. 2019:279-296. DOI: 10.1016/B978-0-12-815820-3.00010-1.
[59] MITCHELL N, BESSETTE D, FUJIEDA H, et al. Improvements to the ITER Magnets toExtend the Plasma Operating Window[J/OL]. Fusion Science and Technology, 2009, 56: 676-684. DOI: 10.13182/FST09-A8987.
[60] W. J. Experimental Techniques for Low-Temperature Measurements[M]. Oxford UniversityPress, Oxford, UK, 2006.
[61] BAT”KO I, FLACHBART K, SOMORA M, et al. Design of RuO2-based thermometers for themillikelvin temperature range[J]. Cryogenics, 1995, 35(2): 105-108.
[62] SHKLOVSKII B I, EFROS A L. Variable-Range Hopping Conduction[M/OL]. Berlin, Heidelberg:Springer Berlin Heidelberg, 1984: 202-227. DOI: 10.1007/978-3-662-02403-4_9.
修改评论