中文版 | English
题名

碳卟啉等若干新型碳龙配合物的合成

其他题名
SYNTHESIS OF MULTIPLE NOVEL CARBOLONG COMPLEXES REPRESENTED BY CARBORINS
姓名
姓名拼音
XU Binbin
学号
12131201
学位类型
博士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
夏海平
导师单位
化学系
论文答辩日期
2024-05-17
论文提交日期
2024-06-21
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

金属杂芳香化学是金属有机化学与芳香化学的交叉研究领域。碳龙化学作为其中独特且重要的部分,近年来得到了深入的研究和发展。经十年努力,本课题组构筑了一系列结构新颖、应用广泛的碳龙配合物骨架。传统的7C-12C碳龙配合物骨架研究已经相对透彻,碳龙配合物的应用需要更多新颖的结构,并且目前已知的碳环金属杂芳香化合物中,全碳环的碳卟啉从未被报道。本论文以低碳数的碳龙化合物为起始原料,结合“碳链增长法”和“一锅法”,合成了一系列以碳卟啉为代表的新型锇、铑碳龙化合物。主要内容如下:

利用碳链增长法,以炔丙醇/醚作为C3合成子,与锇杂戊搭烯并环丙烯发生 [3+3] 环加成反应,构筑了氧杂金属杂戊搭烯并苯化合物。通过同位素标记实验对该反应的机理进行研究,证实了产物的氧原子来自炔丙醇。随后利用还原法,成功将氧杂金属杂戊搭烯并苯化合物还原为锇杂戊搭烯并苯炔化合物。核磁、单晶数据结合理论计算证实了该类物质的芳香性。它们不仅是首例平面型11C-碳龙配合物,更是首例金属卡拜键位于非五元环中的碳龙配合物。本文为金属卡拜的构建提供了一种新思路。

随后本文探究了锇杂戊搭烯并苯炔化合物丰富多样的反应性,包括亲电、亲核、氧化、金属化等反应,得到了一系列锇杂戊搭烯并苯衍生物。除此之外,在与对甲基苯磺酰氯的反应中,发现了三键从六元环迁移至更具环张力的五元环的反常现象;在与炔烃的 [2+2]反应中,生成了金属杂戊搭烯并苯并环丁二烯产物,该产物是首例13C-碳龙化合物。本文还对这一系列反应产物的吸收光谱与光热性能进行了测试,考察它们在光功能材料领域的应用价值。

此外,利用碳链增长法,将锇杂戊搭炔并苯化合物的卡拜键与炔基锂试剂发生亲核反应,所生成反应产物再与另一分子炔烃发生环加成反应,可得[55753]全碳五并环产物。该产物不仅是首例含七元环结构的碳龙配合物,同时也是首例15C-碳龙配合物,还是首例金属位于环中心的轮烯配合物,由于与卟啉的结构具有相似性,但只利用了碳原子与金属配位,在此我们称其为“碳卟啉”。随后本文通过该产物的衍生化反应成功合成了[55735] [55555] 两种不同的环系,其中[55555]环系产物是首例一个金属原子被五个芳香环共享的化合物,计算表明该化合物具有很强的芳香性,同时其结构和光谱性质与卟啉具有相似性,证明了其潜在的应用潜力。

最后,利用一锅法策略,成功合成了一系列β位氧、氮、碳取代的铑杂戊搭烯衍生物,并对产物的吸收光谱进行测试。该研究丰富了铑杂戊搭烯化合物官能团的种类,研究了它们在光电材料领域的潜在应用前景。

本论文成功构建了一系列结构新颖的锇、铑杂环配合物,对其进行了详细的表征,并对部分重要结构进行了芳香性计算及吸收光谱和光热性能的测试,为其应用打下基础。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] GOMES J A N F, MALLION R B. Aromaticity and ring currents[J]. Chemical Reviews, 2001, 101(5): 1349–1384.
[2] CYRAÑSKI M K, KRYGOWSKI T M, KATRITZKY A R, et al. To what extent can aromaticity be defined uniquely?[J]. The Journal of Organic Chemistry, 2002, 67(4): 1333–1338.
[3] FERNÁNDEZ I, FRENKING G, MERINO G. Aromaticity of metallabenzenes and related compounds[J]. Chemical Society Reviews, 2015, 44(18): 6452–6463.
[4] KRYGOWSKI T M, CYRAŃSKI M K. Structural aspects of aromaticity[J]. Chemical Reviews, 2001, 101(5): 1385–1420.
[5] THORN D L, HOFFMANN R. Delocalization in metallocycles[J]. 1979.
[6] XIA H, HE G, ZHANG H, et al. Osmabenzenes from the reactions of HC≡CCH(OH)C≡CH with OsX2(PPh3)3 (X = Cl, Br)[J]. Journal of the American Chemical Society, 2004, 126(22): 6862–6863.
[7] GONG L, LIN Y, WEN T B, et al. Formation of four conjugated osmacyclic species in a one-pot reaction[J]. Organometallics, 2008, 27(11): 2584–2589.
[8] GONG L, CHEN Z, LIN Y, et al. Osmabenzenes from osmacycles containing an η2‐coordinated olefin[J]. Chemistry – A European Journal, 2009, 15(25): 6258–6266.
[9] ZHANG H, FENG L, GONG L, et al. Synthesis and characterization of stable ruthenabenzenes starting from HC≡CCH(OH)C≡CH[J]. Organometallics, 2007, 26(10): 2705–2713.
[10] BOSCH H W, HUNG H U, NIETLISPACH D, et al. General route to the half-open ruthenium metallocenes C5Me5Ru(pentadienyl) and C5Me5Ru(diene)Cl. X-ray structures of an optically active half-open metallocene and of a dimetallic ruthenabenzene complex[J]. Organometallics, 1992, 11(6): 2087–2098.
[11] EFFERTZ U, ENGLERT U, PODEWILS F, et al. Reaction of pentadienyl complexes with metal carbonyls: synthetic, structural, and theoretical studies of metallabenzene π-complexes[J]. Organometallics, 2003, 22(2): 264–274.
[12] ENGLERT U, PODEWILS F, SCHIFFERS I, et al. The first homoleptic metallabenzene sandwich complex[J]. Angewandte Chemie International Edition, 1998, 37(15): 2134–2136.
[13] BLEEKE J R, XIE Y F, PENG W J, et al. Metallabenzene: synthesis, structure, and spectroscopy of a 1-irida-3,5-dimethylbenzene complex[J]. Journal of the American Chemical Society, 1989, 111(11): 4118–4120.
[14] ÁLVAREZ E, PANEQUE M, POVEDA M L, et al. Formation of iridabenzenes by coupling of iridacyclopentadienes and alkenes[J]. Angewandte Chemie International Edition, 2006, 45(3): 474–477.
[15] PANEQUE M, POVEDA M L, RENDÓN N, et al. The synthesis of iridabenzenes by the coupling of iridacyclopentadienes and olefins[J]. European Journal of Inorganic Chemistry, 2007, 2007(18): 2711–2720.
[16] VIVANCOS Á, HERNÁNDEZ Y A, PANEQUE M, et al. Formation of β-metallanaphthalenes by the coupling of a benzo-iridacyclopentadiene with olefins[J]. Organometallics, 2015, 34(1): 177–188.
[17] VIVANCOS Á, PANEQUE M, POVEDA M L, et al. Building a parent iridabenzene structure from acetylene and dichloromethane on an iridium center[J]. Angewandte Chemie International Edition, 2013, 52(38): 10068–10071.
[18] ILG K, PANEQUE M, POVEDA M L, et al. Vinylidene compounds from the reactions of Me3SiC≡CSiMe3 with TpMe2Ir precursors. Protonation to alkylidene and iridabenzene structures[J]. Organometallics, 2006, 25(9): 2230–2236.
[19] CHIN C S, KIM M, LEE H, et al. Regio- and stereoselective C−C bond formation between alkynes: synthesis of linear dienynes from alkynes[J]. Organometallics, 2002, 21(22): 4785–4793.
[20] CHIN C S, LEE H. New iridacyclohexadienes and iridabenzenes by
[2+2+1] cyclotrimerization of alkynes and facile interconversion between iridacyclohexadienes and iridabenzenes[J]. Chemistry – A European Journal, 2004, 10(18): 4518–4522.
[21] CHIN C S, LEE H, EUM M-S. Iridabenzenes from iridacyclopentadienes: unusual C−C bond formation between unsaturated hydrocarbyl ligands[J]. Organometallics, 2005, 24(20): 4849–4852.
[22] CLARK G R, JOHNS P M, ROPER W R, et al. A stable iridabenzene formed from an iridacyclopentadiene where the additional ring-carbon atom is derived from a thiocarbonyl ligand[J]. Organometallics, 2008, 27(3): 451–454.
[23] WU H-P, WEAKLEY T J R, HALEY M M. Regioselective formation of β-alkyl-α-phenyliridabenzenes via unsymmetrical 3-vinylcyclopropenes: probing steric and electronic influences by varying the alkyl ring substituent[J]. Chemistry – A European Journal, 2005, 11(4): 1191–1200.
[24] JACOB V, LANDORF C W, ZAKHAROV L N, et al. Platinabenzenes: synthesis, properties, and reactivity studies of a rare class of metalla-aromatics[J]. Organometallics, 2009, 28(17): 5183–5190.
[25] LANDORF C W, JACOB V, WEAKLEY T J R, et al. Rational synthesis of platinabenzenes[J]. Organometallics, 2004, 23(6): 1174–1176.
[26] BERTLING U, ENGLERT U, SALZER A. From triple-decker to metallabenzene: a new generation of sandwich complexes[J]. Angewandte Chemie International Edition in English, 1994, 33(9): 1003–1004.
[27] KRALIK M S, RHEINGOLD A L, ERNST R D. (Pentadienyl)molybdenum carbonyl chemistry: conversion of a pentadienyl ligand to a coordinated metallabenzene complex[J]. Organometallics, 1987, 6(12): 2612–2614.
[28] ASHE A J I, DIEPHOUSE T R, EL-SHEIKH M Y. Stabilization of stibabenzene and bismabenzene by 4-alkyl substituents[J]. Journal of the American Chemical Society, 1982, 104(21): 5693–5699.
[29] ISHII T, SUZUKI K, NAKAMURA T, et al. An isolable bismabenzene: synthesis, structure, and reactivity[J]. Journal of the American Chemical Society, 2016, 138(39): 12787–12790.
[30] KAIYA C, SUZUKI K, YAMASHITA M. A monomeric stannabenzene: synthesis, structure, and electronic properties[J]. Angewandte Chemie International Edition, 2019, 58(23): 7749–7752.
[31] BARISIC D, SCHNEIDER D, MAICHLE-MÖSSMER C, et al. Formation and reactivity of an aluminabenzene ligand at pentadienyl-supported rare-earth metals[J]. Angewandte Chemie International Edition, 2019, 58(5): 1515–1518.
[32] ELLIOTT G P, ROPER W R, WATERS J M. Metallacyclohexatrienes or ‘metallabenzenes.’ synthesis of osmabenzene derivatives and X-ray crystal structure of [Os(CSCHCHCHCH)(CO)(PPh3)2][J]. Journal of the Chemical Society, Chemical Communications, 1982(14): 811–813.
[33] RICKARD C E F, ROPER W R, WOODGATE S D, et al. Reaction between the thiocarbonyl complex, Os(CS)(CO)(PPh3)3, and propyne: crystal structure of a new sulfur-substituted osmabenzene[J]. Journal of Organometallic Chemistry, 2001, 623(1): 109–115.
[34] POON K C, LIU L, GUO T, et al. Synthesis and characterization of rhenabenzenes[J]. Angewandte Chemie International Edition, 2010, 49(15): 2759–2762.
[35] WEI W, SUNG H H Y, WILLIAMS I D, et al. Reactions of alkyl-substituted rhenacyclobutadiene complexes with electron-rich alkynes[J]. European Journal of Inorganic Chemistry, 2022, 2022(23): e202200279.
[36] PROFILET R D, FANWICK P E, ROTHWELL I P. 1,3-dimetallabenzene derivatives of niobium or tantalum[J]. Angewandte Chemie International Edition in English, 1992, 31(9): 1261–1263.
[37] RILEY P N, PROFILET R D, SALBERG M M, et al. ‘1,3-dimetallabenzene’ derivatives of niobium and tantalum[J]. Polyhedron, 1998, 17(5): 773–779.
[38] WEN T B, ZHOU Z Y, JIA G. Synthesis and characterization of a metallabenzyne[J]. Angewandte Chemie International Edition, 2001, 40(10): 1951–1954.
[39] WEN T B, HUNG W Y, SUNG H H Y, et al. Syntheses of metallabenzynes from an allenylcarbene complex[J]. Journal of the American Chemical Society, 2005, 127(9): 2856–2857.
[40] WEN T B, LEE K-H, CHEN J, et al. Preparation of osmium η3-allenylcarbene complexes and their uses for the syntheses of osmabenzyne complexes[J]. Organometallics, 2016, 35(10): 1514–1525.
[41] ZHAO Q, ZHU J, HUANG Z-A, et al. Conversions of osmabenzyne and isoosmabenzene[J]. Chemistry – A European Journal, 2012, 18(37): 11597–11603.
[42] CHEN J, SHI C, SUNG H H Y, et al. Conversion of metallabenzynes into carbene complexes[J]. Angewandte Chemie International Edition, 2011, 50(32): 7295–7299.
[43] LIU B, XIE H, WANG H, et al. Selective synthesis of osmanaphthalene and osmanaphthalyne by intramolecular C-H activation[J]. Angewandte Chemie International Edition, 2009, 48(30): 5461–5464.
[44] RUAN W, LEUNG T-F, SHI C, et al. Facile synthesis of polycyclic metallaarynes[J]. Chemical Science, 2018, 9(27): 5994–5998.
[45] CHEN J, SUNG H H Y, WILLIAMS I D, et al. Synthesis and characterization of a rhenabenzyne complex[J]. Angewandte Chemie International Edition, 2011, 50(45): 10675–10678.
[46] ZHAO Q, CAO X-Y, WEN T B, et al. From osmium hydrido vinylidene to osmacycles: the key role of osmabutadiene intermediates[J]. Chemistry – An Asian Journal, 2013, 8(1): 269–275.
[47] PLANTEVIN V, GALLUCCI J C, WOJCICKI A. Insertion of NH into the rhenium-carbon bonds of a Fischer-type rhenacyclobutadiene. Preparation and characterization of azarhenacyclic complexes[J]. Inorganica Chimica Acta, 1994, 222(1): 199–205.
[48] LU G-L, ROPER W R, WRIGHT L J, et al. A 2-iridathiophene from reaction between IrCl(CS)(PPh3)2 and Hg(CHCHPh)2[J]. Journal of Organometallic Chemistry, 2005, 690(4): 972–981.
[49] LIU B, WANG H, XIE H, et al. Osmapyridine and osmapyridinium from a formal
[4+2] cycloaddition reaction[J]. Angewandte Chemie International Edition, 2009, 48(30): 5430–5434.
[50] ZHU C, XIA H. Carbolong chemistry: a story of carbon chain ligands and transition metals[J]. Accounts of Chemical Research, 2018, 51(7): 1691–1700.
[51] ZHU C, LI S, LUO M, et al. Stabilization of anti-aromatic and strained five-membered rings with a transition metal[J]. Nature Chemistry, 2013, 5(8): 698–703.
[52] ZHU C, LUO M, ZHU Q, et al. Planar Möbius aromatic pentalenes incorporating 16 and 18 valence electron osmiums[J]. Nature Communications, 2014, 5(1): 3265.
[53] ZHU C, ZHU J, ZHOU X, et al. Isolation of an eleven‐atom polydentate carbon‐chain chelate obtained by cycloaddition of a cyclic osmium carbyne with an alkyne[J]. Angewandte Chemie International Edition, 2018, 57(12): 3154–3157.
[54] ZHU C, ZHOU X, XING H, et al. σ‐Aromaticity in an unsaturated ring: osmapentalene derivatives containing a metallacyclopropene unit[J]. Angewandte Chemie International Edition, 2015, 54(10): 3102–3106.
[55] ZHU C, YANG Y, LUO M, et al. Stabilizing two classical antiaromatic frameworks: demonstration of photoacoustic imaging and the photothermal effect in metalla‐aromatics[J]. Angewandte Chemie International Edition, 2015, 54(21): 6181–6185.
[56] ZHU C, WU J, LI S, et al. Synthesis and characterization of a metallacyclic framework with three fused five‐membered rings[J]. Angewandte Chemie International Edition, 2017, 56(31): 9067–9071.
[57] ZHU C, YANG C, WANG Y, et al. CCCCC pentadentate chelates with planar Möbius aromaticity and unique properties[J]. Science Advances, 2016, 2(8): e1601031.
[58] HUA Y, LUO M, LU Z, et al. Experimental and theoretical evidences for the formation of transition metal complexes with five coplanar metal–carbon σ bonds[J]. National Science Review, 2023, 10(12): nwad325.
[59] ZHUO Q, LIN J, HUA Y, et al. Multiyne chains chelating osmium via three metal-carbon σ bonds[J]. Nature Communications, 2017, 8(1): 1912.
[60] ZHUO Q, ZHANG H, HUA Y, et al. Constraint of a ruthenium-carbon triple bond to a five-membered ring[J]. Science Advances, 2018, 4(6): eaat0336.
[61] LIN J, LUO M, XIA H. The reactivities of novel rhodium CCC-type pincer complexes[J]. Chinese Science Bulletin, 2021, 66(25): 3333–3341.
[62] LI J, LU Z, HUA Y, et al. Carbolong chemistry: nucleophilic aromatic substitution of a triflate functionalized iridapentalene[J]. Chemical Communications, 2021, 57(68): 8464–8467.
[63] SCHROCK R R. High oxidation state multiple metal−carbon bonds[J]. Chemical Reviews, 2002, 102(1): 145–180.
[64] EHRHORN H, TAMM M. Well‐Defined alkyne metathesis catalysts: developments and recent applications[J]. Chemistry – A European Journal, 2019, 25(13): 3190–3208.
[65] FÜRSTNER A. The ascent of alkyne metathesis to strategy-level status[J]. Journal of the American Chemical Society, 2021, 143(38): 15538–15555.
[66] VAN SANTEN R A, MARKVOORT A J, FILOT I A W, et al. Mechanism and microkinetics of the Fischer–Tropsch reaction[J]. Physical Chemistry Chemical Physics, 2013, 15(40): 17038.
[67] WEN T B, NG S M, HUNG W Y, et al. Protonation and bromination of an osmabenzyne: reactions leading to the formation of new metallabenzynes[J]. Journal of the American Chemical Society, 2003, 125(4): 884–885.
[68] HUNG W Y, LIU B, SHOU W, et al. Electrophilic substitution reactions of metallabenzynes[J]. Journal of the American Chemical Society, 2011, 133(45): 18350–18360.
[69] HUNG W Y, ZHU J, WEN T B, et al. Osmabenzenes from the reactions of a dicationic osmabenzyne complex[J]. Journal of the American Chemical Society, 2006, 128(42): 13742–13752.
[70] LUO M, ZHU C, CHEN L, et al. Halogenation of carbyne complexes: isolation of unsaturated metallaiodirenium ion and metallabromirenium ion[J]. Chemical Science, 2016, 7(3): 1815–1818.
[71] ZHOU X, WU J, HAO Y, et al. Rational design and synthesis of unsaturated Se‐containing osmacycles with σ‐aromaticity[J]. Chemistry – A European Journal, 2018, 24(10): 2389–2395.
[72] WANG H, RUAN Y, LIN Y-M, et al. Direct amidation of metallaaromatics: access to N-functionalized osmapentalynes via a 1,5-bromoamidated intermediate[J]. Chemical Science, 2021, 12(18): 6315–6322.
[73] LUO M, CAI Y, LIN X, et al. Synthesis, characterization, and reactivity of metalla‐chalcogenirenium compounds[J]. Chinese Journal of Chemistry, 2021, 39(6): 1558–1564.
[74] ZHOU X, LI Y, SHAO Y, et al. Reactions of cyclic osmacarbyne with coinage metal complexes[J]. Organometallics, 2018, 37(11): 1788–1794.
[75] CUI F-H, HUA Y, LIN Y-M, et al. Selective difunctionalization of unactivated aliphatic alkenes enabled by a metal–metallaaromatic catalytic system[J]. Journal of the American Chemical Society, 2022, 144(5): 2301–2310.
[76] CHEN S, LIU L, GAO X, et al. Addition of alkynes and osmium carbynes towards functionalized dπ–pπ conjugated systems[J]. Nature Communications, 2020, 11(1): 4651.
[77] ZHU C, ZHU Q, FAN J, et al. A metal‐bridged tricyclic aromatic system: synthesis of osmium polycyclic aromatic complexes[J]. Angewandte Chemie International Edition, 2014, 53(24): 6232–6236.
[78] TANG C, ZHANG S, LU Z, et al. Construction of a metallacyclopentadiene ring through the attack of carbanions to M≡C bond followed by C-H activation [J]. Chinese Journal of Chemistry, 2024, 42(3): 235–242.
[79] LUO M, LONG L, ZHANG H, et al. Reactions of isocyanides with metal carbyne complexes: isolation and characterization of metallacyclopropenimine intermediates[J]. Journal of the American Chemical Society, 2017, 139(5): 1822–1825.
[80] WANG H, LIN Y, CHEN S, et al. Metallacycle expansion and annulation: access to tetrazolo‐fused osmacycles by reaction of cyclic osmium carbyne with sodium azide[J]. Chinese Journal of Chemistry, 2021, 39(12): 3435–3442.
[81] LU Z, ZHU C, CAI Y, et al. Metallapentalenofurans and lactone‐fused metallapentalynes[J]. Chemistry – A European Journal, 2017, 23(26): 6426–6431.
[82] DENG Z, ZHU C, HUA Y, et al. Synthesis and characterization of metallapentalenoxazetes by the
[2+2] cycloaddition of metallapentalynes with nitrosoarenes[J]. Chemical Communications, 2019, 55(44): 6237–6240.
[83] LU Z, ZHU Q, CAI Y, et al. Access to tetracyclic aromatics with bridgehead metals via metalla-click reactions[J]. Science Advances, 2020, 6(3): eaay2535.
[84] LIN J, DING L, ZHUO Q, et al. Formal
[2+2+2] cycloaddition reaction of a metal–carbyne complex with nitriles: synthesis of a metallapyrazine complex[J]. Organometallics, 2019, 38(9): 2264–2271.
[85] HUANG F, ZHENG X, LIN X, et al. Extension of the Simmons–Smith reaction to metal-carbynes: efficient synthesis of metallacyclopropenes with σ-aromaticity[J]. Chemical Science, 2020, 11(37): 10159–10166.
[86] ZHANG M, YANG X, ZHANG K, et al. Osmaindenes: synthesis and reversible mechanochromism characteristics[J]. Chemistry – A European Journal, 2021, 27(59): 14645–14652.
[87] ZHANG M, LIN L, YANG X, et al. Nucleophilic reactions of osmanaphthalynes with PMe3 and H2O[J]. Chemistry – A European Journal, 2021, 27(36): 9328–9335. DOI:10.1002/chem.202100176.
[88] RAO J, DONG S, YANG C, et al. A triplet iron carbyne complex[J]. Journal of the American Chemical Society, 2023, 145(47): 25766–25775.
[89] MISHRA S, NAIR S R, BAIRE B. Recent approaches for the synthesis of pyridines and (iso)quinolines using propargylic alcohols[J]. Organic & Biomolecular Chemistry, 2022, 20(31): 6037–6056.
[90] ELLIOTT G P, MCAULEY N M, ROPER W R, et al. An osmium containing benzene analog, Os(CSCHCHCH)(CO)(PPh3)2, carbonyl(5-thioxo-1,3-pentadiene-1,5-diyl-C1,C5,S)-bis(triphenylphosphine)osmium, and its precursors[M/OL]//Inorganic Syntheses. John Wiley & Sons, Ltd, 1989: 184–189.
[91] HUANG S, ZENG Z, ZHANG N, et al. Organocatalytic asymmetric deoxygenation of sulfones to access chiral sulfinyl compounds[J]. Nature Chemistry, 2023, 15(2): 185–193.
[92] LI Q, FEI J, RUAN K, et al. Reshaping aromatic frameworks: expansion of aromatic system drives metallabenzenoids to metallapentalenes[J]. Chemical Science, 2023, 14(21): 5672–5680.
[93] FALLAH-BAGHER-SHAIDAEI H, WANNERE C S, CORMINBOEUF C, et al. Which NICS aromaticity index for planar π rings is best?[J]. Organic Letters, 2006, 8(5): 863–866.
[94] GEUENICH D, HESS K, KÖHLER F, et al. Anisotropy of the induced current density (acid), a general method to quantify and visualize electronic delocalization[J]. Chemical Reviews, 2005, 105(10): 3758–3772.
[95] SCHLEYER P von R, PÜHLHOFER F. Recommendations for the evaluation of aromatic stabilization energies[J]. Organic Letters, 2002, 4(17): 2873–2876.
[96] DOLOMANOV O V, BOURHIS L J, GILDEA R J, et al. OLEX2: a complete structure solution, refinement and analysis program[J]. Journal of Applied Crystallography, 2009, 42(2): 339–341.
[97] SHELDRICK G M. SHELXT – integrated space-group and crystal-structure determination[J]. Acta Crystallographica Section A: Foundations and Advances, 2015, 71(1): 3–8
[98] SHELDRICK G M. Crystal structure refinement with SHELXL[J]. Acta Crystallographica Section C: Structural Chemistry, 2015, 71(1): 3–8.
[99] ENGEL P F, PFEFFER Michel. Carbon-carbon and carbon-heteroatom coupling reactions of metallacarbynes[J]. Chemical Reviews, 1995, 95(7): 2281–2309.
[100]JIA G. Recent progress in the chemistry of osmium carbyne and metallabenzyne complexes[J]. Coordination Chemistry Reviews, 2007, 251(17): 2167–2187.
[101]BUIL M L, CARDO J J F, ESTERUELAS M A, et al. Square-planar alkylidyne–osmium and five-coordinate alkylidene–osmium complexes: controlling the transformation from hydride-alkylidyne to alkylidene[J]. Journal of the American Chemical Society, 2016, 138(30): 9720–9728.
[102]JIA G. Progress in the chemistry of metallabenzynes[J]. Accounts of Chemical Research, 2004, 37(7): 479–486.
[103]陈江溪, 何国梅. 金属苯炔的合成与化学性质[J]. 有机化学, 2013, 33(04): 792.
[104]NG S M, HUANG X, WEN T B, et al. Theoretical studies on the stabilities of metallabenzynes[J]. Organometallics, 2003, 22(19): 3898–3904.
[105]CUI F-H, LI Q, GAO L-H, et al. Condensed osmaquinolines with NIR-II absorption synthesized by aryl C-H annulation and aromatization[J]. Angewandte Chemie International Edition, 2022, 61(48): e202211734.
[106]KROTO H W, HEATH J R, O’BRIEN S C, et al. C60: buckminsterfullerene[J]. Nature, 1985, 318(6042): 162–163.
[107]IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56–58.
[108]NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666–669.
[109]TOGANOH M, FURUTA H. Creation from confusion and fusion in the porphyrin world─the last three decades of n-confused porphyrinoid chemistry[J]. Chemical Reviews, 2022, 122(9): 8313–8437.
[110]MACK J. Expanded, contracted, and isomeric porphyrins: theoretical aspects[J]. Chemical Reviews, 2017, 117(4): 3444–3478.
[111]SARMA T, PANDA P K. Annulated isomeric, expanded, and contracted porphyrins[J]. Chemical Reviews, 2017, 117(4): 2785–2838.
[112]SZYSZKO B, BIAŁEK M J, PACHOLSKA-DUDZIAK E, et al. Flexible porphyrinoids[J]. Chemical Reviews, 2017, 117(4): 2839–2909.
[113]TANAKA T, OSUKA A. Chemistry of meso-aryl-substituted expanded porphyrins: aromaticity and molecular twist[J]. Chemical Reviews, 2017, 117(4): 2584–2640.
[114]DING Y, ZHU W-H, XIE Y. Development of ion chemosensors based on porphyrin analogues[J]. Chemical Reviews, 2017, 117(4): 2203–2256.
[115]ZHONG Y, CHENG B, PARK C, et al. Wafer-scale synthesis of monolayer two-dimensional porphyrin polymers for hybrid superlattices[J]. Science, 2019, 366(6471): 1379–1384.
[116]TSUDA A, OSUKA A. Fully conjugated porphyrin tapes with electronic absorption bands that reach into infrared[J]. Science, 2001, 293(5527): 79–82.
[117]HIROTO S, MIYAKE Y, SHINOKUBO H. Synthesis and functionalization of porphyrins through organometallic methodologies[J]. Chemical Reviews, 2017, 117(4): 2910–3043.
[118]ZHANG W, LAI W, CAO R. Energy-related small molecule activation reactions: oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin- and corrole-based systems[J]. Chemical Reviews, 2017, 117(4): 3717–3797.
[119]COLLMAN J P, DEVARAJ N K, DECRÉAU R A, et al. A cytochrome c oxidase model catalyzes oxygen to water reduction under rate-limiting electron flux[J]. Science, 2007, 315(5818): 1565–1568.
[120]COLLMAN J P, FU L, HERRMANN P C, et al. A functional model related to cytochrome c oxidase and its electrocatalytic four-electron reduction of O2[J]. Science, 1997, 275(5302): 949–951.
[121]BIAŁEK M J, HUREJ K, FURUTA H, et al. Organometallic chemistry confined within a porphyrin-like framework[J]. Chemical Society Reviews, 2023, 52(6): 2082–2144.
[122]SONDHEIMER Franz, WOLOVSKY Reuven, AMIEL Yaacov. Unsaturated macrocyclic compounds. XXIII.1 the synthesis of the fully conjugated macrocyclic polyenes cycloöctadecanonaene (
[18]annulene),2 cyclotetracosadodecaene (
[24]annulene), and cyclotriacontapentadecaene (
[30]annulene)[J]. Journal of the American Chemical Society, 1962, 84(2): 274–284.
[123]SPITLER E L, JOHNSON C A, HALEY M M. Renaissance of annulene chemistry[J]. Chemical Reviews, 2006, 106(12): 5344–5386.
[124]MOLL J F, PEMBERTON R P, GUTIERREZ M G, et al. Configuration change in
[14]annulene requires Möbius antiaromatic bond shifting[J]. Journal of the American Chemical Society, 2007, 129(2): 274–275.
[125]PEMBERTON R P, MCSHANE C M, CASTRO C, et al. Dynamic processes in
[16]annulene:  Möbius bond-shifting routes to configuration change[J]. Journal of the American Chemical Society, 2006, 128(51): 16692–16700.
[126]AJAMI D, OECKLER O, SIMON A, et al. Synthesis of a Möbius aromatic hydrocarbon[J]. Nature, 2003, 426(6968): 819–821.
[127]DOMÍNGUEZ G, PÉREZ-CASTELLS J. Recent advances in
[2+2+2] cycloaddition reactions[J]. Chemical Society Reviews, 2011, 40(7): 3430–3444.
[128]SHIBATA Y, TANAKA K. Rhodium-catalyzed
[2+2+2] cycloaddition of alkynes for the synthesis of substituted benzenes: catalysts, reaction scope, and synthetic applications[J]. Synthesis, 2012, 44(03): 323–350.
[129]FENSTERBANK L, MALACRIA M. Molecular complexity from polyunsaturated substrates: the gold catalysis approach[J]. Accounts of Chemical Research, 2014, 47(3): 953–965.
[130]黄凡平. 锇杂戊搭烯/炔的合成及性能研究[D/OL]. 厦门大学, 2021
[2024–03–22].
[131]XU S, HUANG H, YAN Z, et al. Pd(0)-catalyzed intramolecular “Ylide-Ullmann-type” cyclization of carbonyl-stabilized phosphonium ylides and access to phosphachromones by exocyclic P-C cleavage[J]. Organic Letters, 2019, 21(24): 10018–10022.
[132]LANG R, DU X, HUANG Y, et al. Single-atom catalysts based on the metal–oxide interaction[J]. Chemical Reviews, 2020, 120(21): 11986–12043.
[133]GHOSH T K, NAIR N N. Alumina-supported Rh, Rh2, and RhI(CO) as catalysts for hydrogen evolution from water[J]. Surface Science, 2015, 632: 20–27.
[134]LUO M, CHEN D, LI Q, et al. Unique properties and emerging applications of carbolong metallaaromatics[J]. Accounts of Chemical Research, 2023, 56(8): 924–937.
[135]ZHUO Q, ZHANG H, DING L, et al. Rhodapentalenes: pincer complexes with internal aromaticity[J]. iScience, 2019, 19: 1214–1224.
[136]LI J, ZHUO Q, ZHUO K, et al. Synthesis and reactivity studies of irida-carbolong complexes[J]. Acta Chimica Sinica, 2021, 79(1): 71.
[137]WANG J, LI J, ZHOU Y, et al. Tuning an electrode work function using organometallic complexes in inverted perovskite solar cells[J]. Journal of the American Chemical Society, 2021, 143(20): 7759–7768.
[138]BLEEKE J R, BEHM R. Synthesis, structure, and reactivity of iridacyclohexadienone and iridaphenol complexes1[J]. Journal of the American Chemical Society, 1997, 119(36): 8503–8511.
[139]HAN F, WANG T, LI J, et al. m‐Metallaphenol: synthesis and reactivity studies[J]. Chemistry – A European Journal, 2014, 20(15): 4363–4372.
[140]WEI J, CAO B, TSE C-W, et al. Chiral cis-iron(II) complexes with metal- and ligand-centered chirality for highly regio- and enantioselective alkylation of N-heteroaromatics[J]. Chemical Science, 2020, 11(3): 684–693.

所在学位评定分委会
化学
国内图书分类号
O627.8
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765881
专题南方科技大学
理学院_化学系
推荐引用方式
GB/T 7714
徐宾彬. 碳卟啉等若干新型碳龙配合物的合成[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12131201-徐宾彬-化学系.pdf(36878KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[徐宾彬]的文章
百度学术
百度学术中相似的文章
[徐宾彬]的文章
必应学术
必应学术中相似的文章
[徐宾彬]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。