题名 | 基于Optix库的GPU端流场数据本地可视化研究 |
其他题名 | Research on in-situ visualization of GPU-side flow field data based on Optix library
|
姓名 | |
姓名拼音 | FENG Honglei
|
学号 | 12132391
|
学位类型 | 硕士
|
学位专业 | 080103 流体力学
|
学科门类/专业学位类别 | 08 工学
|
导师 | |
导师单位 | 力学与航空航天工程系;力学与航空航天工程系
|
论文答辩日期 | 2024-05-14
|
论文提交日期 | 2024-06-19
|
学位授予单位 | 南方科技大学
|
学位授予地点 | 深圳
|
摘要 | 工业软件是工业发展走向数字化时代、转向智能制造的基石,是工业走向现代化的灵魂,是工业变革的核心动力。可视化作为工业软件的重要组成部分,发挥着重要的作用。 可视化可以分为离线可视化(Offline Visualization)和原位可视化(In-situ Visualization)两种。前者是常见的可视化方式,先将数据存储在磁盘上,再在计算时从磁盘读取数据进行可视化渲染;后者直接在芯片上进行处理,省去了存储的开销,可以更快获得可视化结果,并且in-situ可视化可以突破存储限制,完成高时空分辨率的可视化。随着计算机的不断发展,越来越多的高性能计算依赖GPU(Graphics Processing Unit)。把GPU数据传输到CPU(Central Processing Unit)再保存到磁盘上做传统的离线可视化的方法已经极大拖慢GPU高性能计算速度,离线可视化已经不能满足使用者的需求。同时GPU本就是图形处理器,擅长处理可视化渲染计算,在可视化渲染方面的计算效率远比CPU的可视化渲染计算速率更快。因此对数据在GPU上进行in-situ可视化的需求愈发强烈。 本文利用NVIDIA的函数库Optix,在GPU上利用CUDA(Compute Unified Device Architecture)和C++编程语言混合编程,设计并开发可以在GPU上对流场数据进行in-situ可视化体渲染的程序模块。利用计算流场时的网格作为体素的划分,将网格上的标量数据作为体素的信息。上述做法既节省将数据划分为体素的时间,也节省数据空间位置转换的开销。从视角位置射出光线,光线依次穿过流体网格,根据流场数据与体素信息之间的关系,计算网格处的体素信息,并对光线所有穿过网格处的体素信息进行积分计算。为了更好的显示数据的关系,将网格上的标量数据进行归一化,再将归一化后的数据映射到色带和透明度函数上,通过对色带和透明度函数的调整可视化渲染不同的重点。该程序模块可以对GPU上得到的流场数据直接在GPU上进行可视化渲染,充分利用GPU图形渲染方面的优势,而且由于程序不用经过CPU存储到磁盘,节省数据传输的时间,极大加快可视化速率,更适合在高性能计算机集群上对大规模流场数据使用,缓解大量流场数据可视化耗时的问题。in-situ可视化渲染得出的结果与成熟离线可视化软件渲染的结果效果相当。测试不同用例时,in-situ可视化渲染花费时间远小于离线可视化所需时间,满足大规模流场的可视化需求。 |
其他摘要 | Industrial software is the cornerstone of industrial development in the digital age and intelligent manufacturing, the soul of industrial modernization and the core driving force of industrial transformation. As an important part of industrial software, visualization plays an important role. Visualization of flow field can be divided into offline visualization and in-situ visualization. The former is a common visualization method, which stores the data on the disk first, and then reads the data from the disk for visual rendering during calculation; the latter is processed directly on the chip, which saves the storage cost and can obtain the visualization result faster. In-situ visualization can break through the storage limitations and complete the visualization at high spatio-temporal resolution. With the continuous development of computers, more and more high-performance computing relies on GPU. The traditional method of transferring GPU data to CPU and then saving it to disk for offline visualization has greatly slowed down the high-performance computing speed of GPUs, and offline visualization can no longer meet the needs of its users. At the same time, the GPU is a graphics processor, which is good at processing visual rendering calculation, and its calculation efficiency in visual rendering is much faster than that of the CPU. Therefore, there is a growing demand for in-situ visualization of data on GPUs. In this paper, NVIDIA's function library Optix is used, and CUDA and C++ programming languages are mixed on the GPU to design and develop a program module that can render in-situ visualization of flow field data on the GPU. The grid when calculating the flow field is used as the division of voxels, and the scalar data on the grid is used as the information of voxels. The above method not only saves the time of dividing data into voxels, but also saves the overhead of data space position transformation. Light rays are emitted from the visual angle and pass through the fluid grid in turn. According to the relationship between flow field data and voxel information, the voxel information at the grid is calculated, and the voxel information at all the places where the light rays pass through the grid is integrated. In order to better show the relationship between data, the scalar data on the grid is normalized, and then the normalized data is mapped to the color band and transparency function, and different key points are visually rendered by adjusting the color band and transparency function. This program module can directly visualize the flow field data obtained from GPU, making full use of the advantages of GPU graphics rendering. Moreover, because the program does not need to be stored on disk through CPU, it saves the time of data transmission and greatly speeds up the visualization rate. It is more suitable for the use of large-scale flow field data in high-performance computer clusters, and relieves the time-consuming problem of visualization of a large number of flow field data. In-situ visual rendering results are equivalent to those rendered by mature offline visualization software. When testing different use cases, in-situ visualization rendering takes much less time than offline visualization, which meets the visualization requirements of large-scale flow fields. |
关键词 | |
其他关键词 | |
语种 | 中文
|
培养类别 | 独立培养
|
入学年份 | 2021
|
学位授予年份 | 2024-06
|
参考文献列表 | [1] Altair Engineering Inc. CFD 仿真解决方案 | Altair[EB/OL]. 2023 |
所在学位评定分委会 | 力学
|
国内图书分类号 | TP37
|
来源库 | 人工提交
|
成果类型 | 学位论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/765882 |
专题 | 南方科技大学 工学院_力学与航空航天工程系 |
推荐引用方式 GB/T 7714 |
冯宏磊. 基于Optix库的GPU端流场数据本地可视化研究[D]. 深圳. 南方科技大学,2024.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
12132391-冯宏磊-力学与航空航天(23038KB) | 学位论文 | -- | 限制开放 | CC BY-NC-SA | 请求全文 |
个性服务 |
原文链接 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
导出为Excel格式 |
导出为Csv格式 |
Altmetrics Score |
谷歌学术 |
谷歌学术中相似的文章 |
[冯宏磊]的文章 |
百度学术 |
百度学术中相似的文章 |
[冯宏磊]的文章 |
必应学术 |
必应学术中相似的文章 |
[冯宏磊]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论