中文版 | English
题名

铁钴基催化剂的构筑及其在锌-空气电池中的应用

其他题名
CONSTRUCTION AND APPLICATION OF IRON-COBALT BASED CATALYSTS FOR ZINC- AIR BATTERIES
姓名
姓名拼音
JIAO Chuanlai
学号
11930770
学位类型
博士
学位专业
070205 凝聚态物理
学科门类/专业学位类别
07 理学
导师
王湘麟
导师单位
材料科学与工程系
论文答辩日期
2023-12-29
论文提交日期
2024-06-21
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

    锌-空气电池(Zinc-air batteries, ZABs)因具有出色的理论容量,较高的安全性以及廉价的工艺成本等优势,在新一代的能源储存领域受到了较大的关注。然而,ZABs 的输出功率受限于氧还原反应(Oxygen Reduction Reaction, ORR ) 速率, 其快速充电能力则取决于析氧反应( Oxygen Evolution Reaction, OER)活性,因此,制备一种高效、稳定的双功能催化剂是ZABs 广泛应用的关键。为了满足高功率密度和快速充电ZABs 的需求,本研究从活性位点设计和催化剂载体构筑两个方面出发,利用理论计算及原位拉曼测试,深入地研究了铁钴基催化剂的反应机理,确定了ORR 和OER 的活性位点;同时,通过碳载体的优化,成功地将两种高效的催化活性位点整合到一种催化剂中,制备出性能卓越且稳定的铁钴基双功能催化剂,实现了高功率密度和快速充电ZABs 的应用。论文的主要研究内容和结果如下:
    在生物质玉米须多孔碳载体上,我们精确调控催化剂从铁纳米颗粒到铁单原子,用于提高ORR 和OER 性能。其中,分级多孔结构和中空管状形貌具有暴露更多活性位点、提高电子传输速率和促进反应物质传递的优势,是ORR 和OER 活性提升的关键因素。而且,铁单原子的高负载量(4.3 wt.%)和超高的N掺杂量(10 wt.%)也可以弥补传统Fe-N-C 催化剂在OER 方面性能的不足,从而增强本征的OER 性能。将制备的催化剂组装为柔性ZABs 的空气电极时,其表现出101 mW cm-2 的高峰值功率密度,放电-充电的电压差为0.73 V,循环寿命超过44 小时,展现出巨大的潜力。通过简单的水热法,成功地在碳布上合成了碳酸钴(CoCO3)和氢氧氧铁(FeOOH)复合催化剂(CoCO3@FeOOH/CC)。通过原位电化学活化的方法,使CoFe2O4/CoFeOOH 催化剂(R-CoCO3@FeOOH/CC)在OER 电流密度为50 和500 mA cm-2 时的过电位显著降低,分别为190 和238 mV。通过原位拉曼光谱分析和显微镜观察,高性能的OER 活性位点为CoOOH和FeOOH。基于R-CoCO3@FeOOH/CC 较高的OER 性能,其自支撑的ZABs在5 mA cm-2 持续运行下的电压仅为1.74 V。这些发现为高性能的铁钴基OER 催化剂的设计和应用提供了宝贵的参考。
    最终,我们构建了准超疏水催化剂,其中CoFe 纳米颗粒(CoFe NP)和CoFe 单原子(CoFe SA)分别负载在沸石咪唑酯骨架(ZIF)衍生碳和中空碳管上(CoFe NP@SA)。其中,CoFe SA 对ORR 具有很高的活性,同时原位拉曼光谱也证明了CoFe NP 通过电化学重构过程转变为CoOOH 和FeOOH,提升了OER 活性。此外,催化剂的疏水-亲空气表面可以排斥水分子,以创建丰富的固-液-气三相反应界面,并暴露活性位点,从而促进反应分子/离子在界面之间的扩散和氧气吸附。因此,CoFe NP@SA 催化剂表现出极低的ORR/OER 电位差为0.6 V。当其组装为ZABs 时,在50 mA cm-2的高电流密度下,展示出2.09 V 的低电位差,并且在1200 小时内具有良好的稳定性。这一方法为实现高功率密度和快速充电的ZABs 铺平了道路。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2024-07
参考文献列表

[1] FARGHALI M, OSMAN A I, MOHAMED I M A, et al. Strategies to save energy in the context of the energy crisis: a review [J]. Environmental Chemistry Letters, 2023, 21(4): 2003-2039.
[2] ZHU C, SHI Q, FENG S, et al. Single-Atom Catalysts for Electrochemical Water Splitting [J]. ACS Energy Letters, 2018, 3(7): 1713-1721.
[3] GEBRESLASE G A, MARTíNEZ-HUERTA M V, LáZARO M J. Recent progress on bimetallic NiCo and CoFe based electrocatalysts for alkaline oxygen evolution reaction: A review [J]. Journal of Energy Chemistry, 2022, 67: 101-137.
[4] REN B, CAO J, ZHANG H, et al. Recent progress in the development of single-atom electrocatalysts for highly efficient hydrogen evolution reactions [J]. Materials Chemistry Frontiers, 2023, 7(16): 3209-3231.
[5] WANG S, CHEN S, MA L, et al. Recent progress in cobalt-based carbon materials as oxygen electrocatalysts for zinc-air battery applications [J]. Materials Today Energy, 2021, 20: 100659.
[6] HAO Y, HU F, CHEN Y, et al. Recent Progress of Electrospun Nanofibers for Zinc-Air Batteries [J]. Advanced Fiber Materials, 2021, 4(2): 185-202.
[7] 张仙智. 习近平新时代能源国家战略研究 [J]. 上海经济研究, 2019, 1: 15-19.
[8] ZHAO X, MU H, LI N, et al. Optimization and analysis of an integrated energy system based on wind power utilization and on-site hydrogen refueling station [J]. International Journal of Hydrogen Energy, 2023, 48(57): 21531-21543.
[9] NETO P B L, SAAVEDRA O R, OLIVEIRA D Q. The effect of complementarity between solar, wind and tidal energy in isolated hybrid microgrids [J]. Renewable Energy, 2020, 147: 339-355.
[10] HEREHER M, EL KENAWY A M. Exploring the potential of solar, tidal, and wind energy resources in Oman using an integrated climatic-socioeconomic approach [J]. Renewable Energy, 2020, 161: 662-675.
[11] AMIR M, DESHMUKH R G, KHALID H M, et al. Energy storage technologies: An integrated survey of developments, global economical/environmental effects, optimal scheduling model, and sustainable adaption policies [J]. Journal of Energy Storage, 2023, 72: 108694.
[12] WANG F, OUYANG D, ZHOU Z, et al. Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage [J]. Journal of Energy Chemistry, 2021, 57: 247-280.
[13] TAN K M, BABU T S, RAMACHANDARAMURTHY V K, et al. Empowering smart grid: A comprehensive review of energy storage technology and application with renewable energy integration [J]. Journal of Energy Storage, 2021, 39: 102591.
[14] DUH Y-S, LIN Y-C, HO T-C, et al. Experimental study on the runaway behaviors of Panasonic 21,700 LiNi0.8Co0.15Al0.05O2 battery used in electric vehicle under thermal failure [J]. Journal of Thermal Analysis and Calorimetry, 2022, 147(21): 12005-12018.
[15] WOOD D L, LI J, AN S J. Formation Challenges of Lithium-Ion Battery Manufacturing [J]. Joule, 2019, 3(12): 2884-2888.
[16] TAO L, CHENG Y, LU C, et al. Lithium-ion battery capacity fading dynamics modelling for formulation optimization: A stochastic approach to accelerate the design process [J]. Applied Energy, 2017, 202: 138-152.
[17] JIN S. An Analysis of the Influence of New Guidelines for Government Subsidies on China’s New Energy Automobile Industry-A Case Study of BYD [J]. IOP Conference Series: Earth and Environmental Science, 2019, 252(5): 052140.
[18] LYU P, LIU X, QU J, et al. Recent advances of thermal safety of lithium ion battery for energy storage [J]. Energy Storage Materials, 2020, 31: 195-220.
[19] JIA Y, LI J, YUAN C, et al. Data‐Driven Safety Risk Prediction of Lithium‐Ion Battery [J]. Advanced Energy Materials, 2021, 11(18): 202003868.
[20] HU D, CHEN L, TIAN J, et al. Research Progress of Lithium Plating on Graphite Anode in Lithium‐Ion Batteries [J]. Chinese Journal of Chemistry, 2020, 39(1): 165-173.
[21] OLABI A G, SAYED E T, WILBERFORCE T, et al. Metal-Air Batteries-A Review [J]. Energies, 2021, 14(21): 7373.
[22] WANG C, YU Y, NIU J, et al. Recent Progress of Metal-Air Batteries-A Mini Review [J]. Applied Sciences, 2019, 9(14): 2787.
[23] LI T, HUANG M, BAI X, et al. Metal-air batteries: A review on current status and future applications [J]. Progress in Natural Science: Materials International, 2023, 33(2): 151-171.
[24] ZHAO S, LIU T, WANG J, et al. Anti-CO2 strategies for extending Zinc-Air Batteries’ Lifetime: A review [J]. Chemical Engineering Journal, 2022, 450: 138207.
[25] HOSSEINI S, MASOUDI SOLTANI S, LI Y-Y. Current status and technical challenges of electrolytes in zinc-air batteries: An in-depth review [J]. Chemical Engineering Journal, 2021, 408: 127241.
[26] WANG C, RAN S, SUN W, et al. Biomass-derived carbon materials with controllable preparation and their applications in zinc-air batteries: A mini review [J]. Electrochemistry Communications, 2023, 154: 107557.
[27] CHANG J, YANG Y. Recent advances in zinc–air batteries: self-standing inorganic nanoporous metal films as air cathodes [J]. Chemical Communications, 2023, 59(39): 5823-5838.
[28] XU H-M, HUANG C-J, SHUAI T-Y, et al. Noble metal-free N-doped carbon-based electrocatalysts for air electrode of rechargeable zinc-air battery [J]. Science China Materials, 2023, 66(8): 2953-3003.
[29] SUO N, CAO L, QIN X, et al. Research progress of Pt and Pt-based cathode electrocatalysts for proton-exchange membrane fuel cells [J]. Chinese Physics B, 2022, 31(12): 128108.
[30] HUSSAIN S, ERIKSON H, KONGI N, et al. Oxygen reduction reaction on nanostructured Pt-based electrocatalysts: A review [J]. International Journal of Hydrogen Energy, 2020, 45(56): 31775-31797.
[31] WANG W, JIA Q, MUKERJEE S, et al. Recent Insights into the Oxygen-Reduction Electrocatalysis of Fe/N/C Materials [J]. ACS Catalysis, 2019, 9(11): 10126-10141.
[32] YANG H, YI X, FAN F, et al. Co single atoms building bifunctional catalysts for zinc-air batteries [J]. Materials Letters, 2023, 348: 134590.
[33] ZHAO S, LIU T, ZUO Y, et al. High-Power-Density and High-Energy-Efficiency Zinc-Air Flow Battery System for Long-Duration Energy Storage [J]. Chemical Engineering Journal, 2023, 470: 144091.
[34] ZHU J, ZI S, ZHANG N, et al. Surface Reconstruction of Covellite CuS Nanocrystals for Enhanced OER Catalytic Performance in Alkaline Solution [J]. Small, 2023, 19(37): 2301762.
[35] ZHANG Y L, GOH K, ZHAO L, et al. Advanced non-noble materials in bifunctional catalysts for ORR and OER toward aqueous metal-air batteries [J]. Nanoscale, 2020, 12(42): 21534-21559.
[36] LI Y, ZHENG G, LIU G, et al. A review on electrode and electrolyte for lithium ion batteries under low temperature [J]. Electroanalysis, 2023, 35(9): e202300042.
[37] WANG P, JIA T, WANG B. Review-Recent Advance in Self-Supported Electrocatalysts for Rechargeable Zinc-Air Batteries [J]. Journal of the Electrochemical Society, 2020, 167(11): 110564.
[38] WANG Q, KAUSHIK S, XIAO X, et al. Sustainable zinc-air battery chemistry: advances, challenges and prospects [J]. Chemical Society Reviews, 2023, 52(17): 6139-6190.
[39] LIU J-N, ZHAO C-X, WANG J, et al. A brief history of zinc-air batteries: 140 years of epic adventures [J]. Energy & Environmental Science, 2022, 15(11): 4542-4553.
[40] ZHU X, HU C, AMAL R, et al. Heteroatom-doped carbon catalysts for zinc-air batteries: progress, mechanism, and opportunities [J]. Energy & Environmental Science, 2020, 13(12): 4536-4563.
[41] YANG H B, MIAO J, HUNG S-F, et al. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst [J]. Science Advances, 2016, 2(4): e1501122.
[42] QIN Y, OU Z, XU C, et al. Progress of carbon-based electrocatalysts for flexible zinc-air batteries in the past 5 years: recent strategies for design, synthesis and performance optimization [J]. Nanoscale Research Letters, 2021, 16(1): 92.
[43] JIAO C, XU Z, SHAO J, et al. High‐Density Atomic Fe-N4/C in Tubular, Biomass‐Derived, Nitrogen‐Rich Porous Carbon as AirElectrodes for Flexible Zn-Air Batteries [J]. Advanced Functional Materials, 2023, 33(20): 2213897.
[44] SHARMA V, KUMAR DAS D, GUPTA R K, et al. Synthesis strategies and structural and electronic properties of MXenes-based nanomaterials for ORR: A mini review [J]. Inorganic Chemistry Communications, 2022, 141: 109496.
[45] DIAS G D S, COSTA J M, ALMEIDA NETO A F D. Transition metal chalcogenides carbon-based as bifunctional cathode electrocatalysts for rechargeable zinc-air battery: An updated review [J]. Advances in Colloid and Interface Science, 2023, 315: 102891.
[46] CHANG H, CONG S, WANG L, et al. Research Progress of Bifunctional Oxygen Reactive Electrocatalysts for Zinc-Air Batteries [J]. Nanomaterials, 2022, 12(21): 3834.
[47] ZENG F, MEBRAHTU C, LIAO L, et al. Stability and deactivation of OER electrocatalysts: A review [J]. Journal of Energy Chemistry, 2022, 69: 301-329.
[48] WU Q, LIU Q, ZHOU Y, et al. Carbon Defect-Induced Reversible Carbon-Oxygen Interfaces for Efficient Oxygen Reduction [J]. ACS Applied Materials & Interfaces, 2018, 10(46): 39735-39744.
[49] YAN D, LI Y, HUO J, et al. Defect Chemistry of Nonprecious-Metal Electrocatalysts for Oxygen Reactions [J]. Advanced Materials, 2017, 29(48): 1606459.
[50] LIU H, CHENG J, LU Z, et al. Significant enhancement of the oxygen reduction activity of self-heteroatom doped coal derived carbon through oxidative pretreatment [J]. Electrochimica Acta, 2019, 312: 22-30.
[51] QUíLEZ-BERMEJO J, MORALLóN E, CAZORLA-AMORóS D. Metal-free heteroatom-doped carbon-based catalysts for ORR: A critical assessment about the role of heteroatoms [J]. Carbon, 2020, 165: 434-454.
[52] LEE J-S M, SARAWUTANUKUL S, SAWANGPHRUK M, et al. Porous Fe-N-C Catalysts for Rechargeable Zinc-Air Batteries from an Iron-Imidazolate Coordination Polymer [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(4): 4030-4036.
[53] CHENG W, YUAN P, LV Z, et al. Boosting defective carbon by anchoring well-defined atomically dispersed metal-N4 sites for ORR, OER and Zn-air batteries [J]. Applied Catalysis B: Environmental, 2020, 260: 118198.
[54] DUAN X, REN S, PAN N, et al. MOF-derived Fe,Co@N-C bifunctional oxygen electrocatalysts for Zn-air batteries [J]. Journal of Materials Chemistry A, 2020, 8(18): 9355-9363.
[55] SONG Z, ZHANG L, DOYLE‐DAVIS K, et al. Recent Advances in MOF‐Derived Single Atom Catalysts for Electrochemical Applications [J]. Advanced Energy Materials, 2020, 10(38): 2001561.
[56] XU D, STEVENS M B, COSBY M R, et al. Earth-Abundant Oxygen Electrocatalysts for Alkaline Anion-Exchange-Membrane Water Electrolysis: Effects of Catalyst Conductivity and Comparison with Performance in Three-Electrode Cells [J]. ACS Catalysis, 2018, 9(1): 7-15.
[57] KHAN M D, WARCZAK M, SHOMBE G B, et al. Molecular Precursor Routes for Ag-Based Metallic, Intermetallic, and Metal Sulfide Nanoparticles: Their Comparative ORR Activity Trend at Solid|Liquid and Liquid|Liquid Interfaces [J]. Inorganic Chemistry, 2023, 62(21): 8379-8388.
[58] ZHOU L, ZHANG C, ZHANG Y, et al. Host Modification of Layered Double Hydroxide Electrocatalyst to Boost the Thermodynamic and Kinetic Activity of Oxygen Evolution Reaction [J]. Advanced Functional Materials, 2021, 31(15): 2009743.
[59] HERNáNDEZ-GóMEZ Á, LANGARICA-CORDOBA D, MARTINEZ-RODRIGUEZ P R, et al. PEM Fuel Cell Emulators: A Review [J]. Electronics, 2023, 12(13): 2812.
[60] NANADEGANI F S, SUNDEN B. Review of exergy and energy analysis of fuel cells [J]. International Journal of Hydrogen Energy, 2023, 48(84): 32875-32942.
[61] LIMANI N, BOUDET A, SCORSONE E, et al. Low loading ORR selectivity evaluation of Pt-free catalysts with scanning electrochemical microscopy [J]. Electrochemistry Communications, 2023, 153: 107538.
[62] MAN I C, SU H Y, CALLE‐VALLEJO F, et al. Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces [J]. ChemCatChem, 2011, 3(7): 1159-1165.
[63] ZAGAL J H, KOPER M T. Reactivity Descriptors for the Activity of Molecular MN4 Catalysts for the Oxygen Reduction Reaction [J]. Angewandte Chemie International Edition, 2016, 55(47): 14510-14521.
[64] ZHANG J, ZHANG Q, FENG X. Support and Interface Effects in Water‐Splitting Electrocatalysts [J]. Advanced Materials, 2019, 31(31): 23145.
[65] GOPI S, KATHIRESAN M, YUN K. Metal-organic and porous organic framework in electrocatalytic water splitting [J]. Journal of Industrial and Engineering Chemistry, 2023, 126: 127-136.
[66] BOPPELLA R, TAN J, YUN J, et al. Anion-mediated transition metal electrocatalysts for efficient water electrolysis: Recent advances and future perspectives [J]. Coordination Chemistry Reviews, 2021, 427: 213552.
[67] HU C, XU J, TAN Y, et al. Recent advances of ruthenium-based electrocatalysts for hydrogen energy [J]. Trends in Chemistry, 2023, 5(3): 225-239.
[68] KANDEL M R, PAN U N, PAUDEL D R, et al. Hybridized bimetallic phosphides of Ni-Mo, Co-Mo, and Co-Ni in a single-ultrathin-3D-nanosheets for efficient HER and OER in alkaline media [J]. Composites Part B: Engineering, 2022, 239: 109992.
[69] SUN Y, LUO J, ZHANG M, et al. Electron Delocalization of Au Nanoclusters Triggered by Fe Single Atoms Boosts Alkaline Overall Water Splitting [J]. ACS Applied Materials & Interfaces, 2023, 15(8): 10696-10708.
[70] TSAI F-T, DENG Y-T, PAO C-W, et al. The HER/OER mechanistic study of an FeCoNi-based electrocatalyst for alkaline water splitting [J]. Journal of Materials Chemistry A, 2020, 8(19): 9939-9950.
[71] LAI W-H, ZHANG L-F, HUA W-B, et al. General π-Electron-Assisted Strategy for Ir, Pt, Ru, Pd, Fe, Ni Single-Atom Electrocatalysts with Bifunctional Active Sites for Highly Efficient Water Splitting [J]. Angewandte Chemie International Edition, 2019, 58(34): 11868-11873.
[72] FEI H, DONG J, ARELLANO-JIMéNEZ M J, et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation [J]. Nature Communications, 2015, 6(1): 8668.
[73] XUE Y, HUANG B, YI Y, et al. Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution [J]. Nature Communications, 2018, 9(1): 1460.
[74] JIANG P, HUANG H, DIAO J, et al. Improving electrocatalytic activity of iridium for hydrogen evolution at high current densities above 1000 mA cm-2 [J]. Applied Catalysis B: Environmental, 2019, 258: 117965.
[75] XIONG Y, HE P. A review on electrocatalysis for alkaline oxygen evolution reaction (OER) by Fe-based catalysts [J]. Journal of Materials Science, 2023, 58(5): 2041-2067.
[76] TRASATTI S. Electrocatalysis in the anodic evolution of oxygen and chlorine [J]. Electrochimica Acta, 1984, 29(11): 1503-1512.
[77] ROSSMEISL J, LOGADOTTIR A, NøRSKOV J K. Electrolysis of water on (oxidized) metal surfaces [J]. Chemical Physics, 2005, 319(1): 178-184.
[78] FANG Y, LIU Z. Electrochemical reactions at the electrode/solution interface: Theory and applications to water electrolysis and oxygen reduction [J]. Science China Chemistry, 2010, 53(3): 543-552.
[79] CHEN J, LI H, CHEN S, et al. Co-Fe-Cr (oxy)Hydroxides as Efficient Oxygen Evolution Reaction Catalysts [J]. Angewandte Chemie International Edition, 2021, 11: 2003412.
[80] DING J, WANG P, JI S, et al. N-doped mesoporous FeNx/carbon as ORR and OER bifunctional electrocatalyst for rechargeable zinc-air batteries [J]. Electrochimica Acta, 2019, 296: 653-661.
[81] XU L H, LU K K, LI J, et al. Co2+‐coordinated NH2‐carbon Quantum Dots Hybrid Precursor for the Rational Synthesis of Co-CoOx/Co-N-C ORR Catalyst [J]. ChemCatChem, 2020, 12(11): 3082-3087.
[82] GUO D, HAN S, WANG J, et al. MIL-100-Fe derived N-doped Fe/Fe3C@C electrocatalysts for efficient oxygen reduction reaction [J]. Applied Surface Science, 2018, 434: 1266-1273.
[83] JIANG W-J, GU L, LI L, et al. Understanding the High Activity of Fe-N-C Electrocatalysts in Oxygen Reduction: Fe/Fe3C Nanoparticles Boost the Activity of Fe-Nx [J]. Journal of the American Chemical Society, 2016, 138(10): 3570-3578.
[84] SHEN H, THOMAS T, RASAKI S A, et al. Oxygen Reduction Reactions of Fe-N-C Catalysts: Current Status and the Way Forward [J]. Electrochemical Energy Reviews, 2019, 2(2): 252-276.
[85] RAUF M, ZHAO Y-D, WANG Y-C, et al. Insight into the different ORR catalytic activity of Fe/N/C between acidic and alkaline media: Protonation of pyridinic nitrogen [J]. Electrochemistry Communications, 2016, 73: 71-74.
[86] QIAN Y, LIU Z, ZHANG H, et al. Active Site Structures in Nitrogen-Doped Carbon-Supported Cobalt Catalysts for the Oxygen Reduction Reaction [J]. ACS Applied Materials & Interfaces, 2016, 8(48): 32875-32886.
[87] YANG M, CHEN H, YANG D, et al. High-performance electrocatalyst for oxygen reduction reaction derived from copolymer networks and iron(ii) acetate [J]. RSC Advances, 2016, 6(99): 97259-97265.
[88] LI Z, WEI L, JIANG W-J, et al. Chemical state of surrounding iron species affects the activity of Fe-Nx for electrocatalytic oxygen reduction [J]. Applied Catalysis B: Environmental, 2019, 251: 240-246.
[89] LI P, QI X, ZHAO L, et al. Hierarchical 3D porous carbon with facilely accessible Fe-N4 single-atom sites for Zn-air batteries [J]. Journal of Materials Chemistry A, 2022, 10(11): 5925-5929.
[90] WEI S, SUN Y, QIU Y, et al. Self-carbon-thermal-reduction strategy for boosting the Fenton-like activity of single Fe-N4 sites by carbon-defect engineering [J]. Nature Communications, 2023, 14: 7549.
[91] WANG J, ZHAO C-X, LIU J-N, et al. Dual-atom catalysts for oxygen electrocatalysis [J]. Nano Energy, 2022, 104: 107927.
[92] WU Y, YE C, YU L, et al. Soft template-directed interlayer confinement synthesis of a Fe-Co dual single-atom catalyst for Zn-air batteries [J]. Energy Storage Materials, 2022, 45: 805-813.
[93] WANG J, HUANG Z, LIU W, et al. Design of N-Coordinated Dual-Metal Sites: A Stable and Active Pt-Free Catalyst for Acidic Oxygen Reduction Reaction [J]. Journal of the American Chemical Society, 2017, 139(48): 17281-17284.
[94] CHEN Y, HU S, NICHOLS F, et al. Carbon aerogels with atomic dispersion of binary iron-cobalt sites as effective oxygen catalysts for flexible zinc-air batteries [J]. Journal of Materials Chemistry A, 2020, 8(23): 11649-11655.
[95] GUTRU R, TURTAYEVA Z, XU F, et al. Recent progress in heteroatom doped carbon based electrocatalysts for oxygen reduction reaction in anion exchange membrane fuel cells [J]. International Journal of Hydrogen Energy, 2023, 48(9): 3593-3631.
[96] LI B, SHI C, ZHAO N, et al. Hydrogen-Bond-Promoted ORR Mechanism in P-Doped Fe-N-C Materials [J]. The Journal of Physical Chemistry C, 2023, 127(2): 1023-1031.
[97] WANG Y, WU J, TANG S, et al. Synergistic Fe-Se Atom Pairs as Bifunctional Oxygen Electrocatalysts Boost Low‐Temperature Rechargeable Zn‐Air Battery [J]. Angewandte Chemie International Edition, 2023, 62(15): e202219191.
[98] TIAN D, DENNY S R, LI K, et al. Density functional theory studies of transition metal carbides and nitrides as electrocatalysts [J]. Chemical Society Reviews, 2021, 50(22): 12338-12376.
[99] DONG W, WANG T, YANG W, et al. Carbon-coated Fe3C derived from MIL-100 growth on covalent triazine framework in situ as an efficient ORR catalysts [J]. Electrochemistry Communications, 2023, 150: 107477.
[100] ZHANG J, ZHANG J, HE F, et al. Defect and Doping Co-Engineered Non-Metal Nanocarbon ORR Electrocatalyst [J]. Nano-Micro Letters, 2021, 13(1): 65.
[101] HU C, DAI L. Doping of Carbon Materials for Metal-Free Electrocatalysis [J]. Advanced Materials, 2019, 31(7): e1804672.
[102] LI B, ZHAO J, WU Y, et al. Identifying Fe as OER Active Sites and Ultralow‐Cost Bifunctional Electrocatalysts for Overall Water Splitting [J]. Small, 2023, 19(37): 2301715.
[103] ZHANG M, PHUNG S C, SMEJKAL P, et al. Recent trends in capillary and micro-chip electrophoretic instrumentation for field-analysis [J]. Trends in Environmental Analytical Chemistry, 2018, 18: 1-10.
[104] LUQUE-CENTENO J M, MARTíNEZ-HUERTA M V, SEBASTIáN D, et al. Bifunctional N-doped graphene Ti and Co nanocomposites for the oxygen reduction and evolution reactions [J]. Renewable Energy, 2018, 125: 182-192.
[105] REN J, HU Z, CHEN C, et al. Integrated Ni2P nanosheet arrays on three-dimensional Ni foam for highly efficient water reduction and oxidation [J]. Journal of Energy Chemistry, 2017, 26(6): 1196-1202.
[106] AGHABARARI B, LUQUE-CENTENO J M, CAPEL-SáNCHEZ M, et al. Ni-Based Composites from Chitosan Biopolymer a One-Step Synthesis for Oxygen Evolution Reaction [J]. Catalysts, 2019, 9(5): 471.
[107] LI H, LIU S, FRAENKEL A S, et al. Variants of (s,t)-Wythoff’s game [J]. Discrete Applied Mathematics, 2017, 227: 1-12.
[108] NAJAFPOUR M M, MADADKHANI S, TAVAHODI M. Manganese oxides supported on nano-sized metal oxides as water-oxidizing catalysts for water-splitting systems: 3-Electrochemical studies [J]. International Journal of Hydrogen Energy, 2017, 42(1): 60-67.
[109] ZHAO Y, LYNN J W, THAKUR G S, et al. Magnetic structures of rare earth intermetallic compounds RCuAs2 (R = Pr, Nd, Tb, Dy, Ho and Yb) [J]. Journal of Physics and Chemistry of Solids, 2017, 111: 1-7.
[110] SUBBARAMAN R, TRIPKOVIC D, CHANG K C, et al. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts [J]. Nature Materials, 2012, 11(6): 550-557.
[111] ZHAO X, FU Y, WANG J, et al. Ni-doped CoFe2O4 Hollow Nanospheres as Efficient Bi-functional Catalysts [J]. Electrochimica Acta, 2016, 201: 172-178.
[112] GAO W-K, YANG M, CHI J-Q, et al. In situ construction of surface defects of carbon-doped ternary cobalt-nickel-iron phosphide nanocubes for efficient overall water splitting [J]. Science China Materials, 2019, 62(9): 1285-1296.
[113] HOU X, ZHOU J, XU X, et al. Morphological modulation of CoFe-based metal organic frameworks for oxygen evolution reaction [J]. Catalysis Communications, 2022, 165: 106445.
[114] HAN L, DONG C, ZHANG C, et al. Dealloying-directed synthesis of efficient mesoporous CoFe-based catalysts towards the oxygen evolution reaction and overall water splitting [J]. Nanoscale, 2017, 9(42): 16467-16475.
[115] NAGAPPAN S, KARMAKAR A, MADHU R, et al. 2D CoFe-LDH Nanosheet-Incorporated 1D Microfibers as a High-Performance OER Electrocatalyst in Neutral and Alkaline Media [J]. ACS Applied Energy Materials, 2022, 5(9): 11483-11497.
[116] LEI C, CHEN J, LV L, et al. Interfacial engineering of a tri-phase CoFe/CoFeOx/Co-Fe3O4 electrocatalyst for promoting the oxygen evolution reaction [J]. New Journal of Chemistry, 2022, 46(40): 19373-19380.
[117] XIE J, LI J, KANG L, et al. Molten-Salt-Protected Pyrolytic Approach for Fabricating Borate-Modified Cobalt-Iron Spinel Oxide with Robust Oxygen-Evolving Performance [J]. ACS Sustainable Chemistry & Engineering, 2021, 9(43): 14596-14604.
[118] LI F, LI J, ZHOU L, et al. Enhanced OER performance of composite Co-Fe-based MOF catalysts via a one-pot ultrasonic-assisted synthetic approach [J]. Sustainable Energy & Fuels, 2021, 5(4): 1095-1102.
[119] WANG Y, YAN D, EL HANKARI S, et al. Recent Progress on Layered Double Hydroxides and Their Derivatives for Electrocatalytic Water Splitting [J]. Advanced Science, 2018, 5(8): 1800064.
[120] WANG Q, O'HARE D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets [J]. Chemical Reviews, 2012, 112(7): 4124-4155.
[121] ZHAO Y, LI B, WANG Q, et al. NiTi-Layered double hydroxides nanosheets as efficient photocatalysts for oxygen evolution from water using visible light [J]. Chemical Science, 2014, 5(3): 951-958.
[122] LU X, XUE H, GONG H, et al. 2D Layered Double Hydroxide Nanosheets and Their Derivatives Toward Efficient Oxygen Evolution Reaction [J]. Nano-Micro Letters, 2020, 12(1): 86.
[123] WANG L, WANG D, DONG X Y, et al. Layered assembly of graphene oxide and Co-Al layered double hydroxide nanosheets as electrode materials for supercapacitors [J]. Chemical Communications, 2011, 47(12): 3556-3558.
[124] MA R, LIU Z, LI L, et al. Exfoliating layered double hydroxides in formamide: a method to obtain positively charged nanosheets [J]. Journal of Materials Chemistry, 2006, 16(39): 3809.
[125] ZHONG H, TIAN R, LI D, et al. Tuning the Adsorption Properties of Layered Double Hydroxides to Tailor Highly Active Oxygen Bifunctional Electrocatalysts [J]. Journal of the Electrochemical Society, 2017, 164(6): F491-F498.
[126] NICOLOSI V, CHHOWALLA M, KANATZIDIS M G, et al. Liquid Exfoliation of Layered Materials [J]. Science, 2013, 340(6139): 1226419.
[127] DINH T D, ZHANG D, TUAN V N. High iodine adsorption performances under off-gas conditions by bismuth-modified ZnAl-LDH layered double hydroxide [J]. RSC Advances, 2020, 10(24): 14360-14367.
[128] FENG J X, XU H, DONG Y T, et al. FeOOH/Co/FeOOH Hybrid Nanotube Arrays as High-Performance Electrocatalysts for the Oxygen Evolution Reaction [J]. Angewandte Chemie International Edition, 2016, 55(11): 3694-3698.
[129] HAN X, YU C, ZHOU S, et al. Ultrasensitive Iron-Triggered Nanosized Fe-CoOOH Integrated with Graphene for Highly Efficient Oxygen Evolution [J]. Advanced Energy Materials, 2017, 7(14): 1602148.
[130] WANG C, ZHAI P, XIA M, et al. Identification of the Origin for Reconstructed Active Sites on Oxyhydroxide for Oxygen Evolution Reaction [J]. Advanced Materials, 2022, 35(6): 2209307.
[131] REITH L, HAUSMANN J N, MEBS S, et al. In Situ Detection of Iron in Oxidation States ≥ IV in Cobalt‐Iron Oxyhydroxide Reconstructed during Oxygen Evolution Reaction [J]. Advanced Energy Materials, 2023, 13(12): 22564.
[132] HUANG C, QIN P, LUO Y, et al. Recent progress and perspective of cobalt-based catalysts for water splitting: design and nanoarchitectonics [J]. Materials Today Energy, 2022, 23: 100911.
[133] YUAN C, WU H B, XIE Y, et al. Mixed Transition-Metal Oxides: Design, Synthesis, and Energy-Related Applications [J]. Angewandte Chemie International Edition, 2014, 53(6): 1488-1504.
[134] INDRA A, MENEZES P W, SAHRAIE N R, et al. Unification of Catalytic Water Oxidation and Oxygen Reduction Reactions: Amorphous Beat Crystalline Cobalt Iron Oxides [J]. Journal of the American Chemical Society, 2014, 136(50): 17530-17536.
[135] WANG Y, LI J, WEI Z. Transition-metal-oxide-based catalysts for the oxygen reduction reaction [J]. Journal of Materials Chemistry A, 2018, 6(18): 8194-8209.
[136] CAI X, LAI L, LIN J, et al. Recent advances in air electrodes for Zn-air batteries: electrocatalysis and structural design [J]. Materials Horizons, 2017, 4(6): 945-976.
[137] TRAN-PHU T, DAIYAN R, LEVERETT J, et al. Understanding the activity and stability of flame-made Co3O4 spinels: A route towards the scalable production of highly performing OER electrocatalysts [J]. Chemical Engineering Journal, 2022, 429: 132180.
[138] OLOWOYO J O, KRIEK R J. Recent Progress on Bimetallic-Based Spinels as Electrocatalysts for the Oxygen Evolution Reaction [J]. Small, 2022, 18(41): e2203125.
[139] SUEN N T, HUNG S F, QUAN Q, et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives [J]. Chemical Society Reviews, 2017, 46(2): 337-365.
[140] ZHAO Q, YAN Z, CHEN C, et al. Spinels: Controlled Preparation, Oxygen Reduction/Evolution Reaction Application, and Beyond [J]. Chemical Reviews, 2017, 117(15): 10121-10211.
[141] DING Y, ZHAO J, ZHANG W, et al. Single-Walled Carbon Nanotubes Wrapped CoFe2O4 Nanorods with Enriched Oxygen Vacancies for Efficient Overall Water Splitting [J]. ACS Applied Energy Materials, 2018, 2(2): 1026-1032.
[142] LIU G, GAO X, WANG K, et al. Mesoporous nickel-iron binary oxide nanorods for efficient electrocatalytic water oxidation [J]. Nano Research, 2017, 10(6): 2096-2105.
[143] WEI B, WU J, MEI G, et al. NiCo2O4 nanowire arrays rich in oxygen deficiencies for hydrogen evolution reaction [J]. International Journal of Hydrogen Energy, 2019, 44(13): 6612-6617.
[144] ZHANG J, JIANG Y, WANG Y, et al. Ultrathin carbon coated mesoporous Ni-NiFe2O4 nanosheet arrays for efficient overall water splitting [J]. Electrochimica Acta, 2019, 321: 134652.
[145] MA Z, FU H, GU C, et al. Three-dimensional flower-like NiCo2O4/CNT for efficient catalysis of the oxygen evolution reaction [J]. Rsc Advances, 2018, 8(49): 28209-28215.
[146] FANG H, HUANG T, LIANG D, et al. Prussian blue analog-derived 2D ultrathin CoFe2O4 nanosheets as high-activity electrocatalysts for the oxygen evolution reaction in alkaline and neutral media [J]. Journal of Materials Chemistry A, 2019, 7(13): 7328-7332.
[147] REKHA P, YADAV S, SINGH L. A review on cobalt phosphate-based materials as emerging catalysts for water splitting [J]. Ceramics International, 2021, 47(12): 16385-16401.
[148] WANG J, YUE X, YANG Y, et al. Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: A review [J]. Journal of Alloys and Compounds, 2020, 819: 153346.
[149] WANG Z-J, JIN M-X, ZHANG L, et al. Amorphous 3D pomegranate-like NiCoFe nanoassemblies derived by bi-component cyanogel reduction for outstanding oxygen evolution reaction [J]. Journal of Energy Chemistry, 2021, 53: 260-267.
[150] SHI F, ZHU K, LI X, et al. Porous carbon layers wrapped CoFe alloy for ultrastable Zn-Air batteries exceeding 20,000 charging-discharging cycles [J]. Journal of Energy Chemistry, 2021, 61: 327-335.
[151] TAM T V, KANG S G, KIM M H, et al. Novel Graphene Hydrogel/B‐Doped Graphene Quantum Dots Composites as Trifunctional Electrocatalysts for Zn-Air Batteries and Overall Water Splitting [J]. Advanced Energy Materials, 2019, 25: 16-22.
[152] CHANG J, SONG X, YU C, et al. Gravity field-mediated synthesis of carbon-conjugated quantum dots with tunable defective density for enhanced triiodide reduction [J]. Nano Energy, 2020, 69: 104377.
[153] DING Q, ZHANG Y, CHEN X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys [J]. Nature, 2019, 574(7777): 223-227.
[154] MIRACLE D B, SENKOV O N. A critical review of high entropy alloys and related concepts [J]. Acta Materialia, 2017, 122: 448-511.
[155] BATCHELOR T A A, PEDERSEN J K, WINTHER S H, et al. High-Entropy Alloys as a Discovery Platform for Electrocatalysis [J]. Joule, 2019, 3(3): 834-845.
[156] YAO Y, HUANG Z, XIE P, et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles [J]. Science, 2018, 359(6383): 1489-1494.
[157] QIU H-J, FANG G, GAO J, et al. Noble Metal-Free Nanoporous High-Entropy Alloys as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction [J]. ACS Materials Letters, 2019, 1(5): 526-533.
[158] WANG Y, GONG N, NIU G, et al. Phase engineering and surface reconstruction of CrxMnFeNi high entropy alloys for electrocatalytic water splitting [J]. Journal of Alloys and Compounds, 2023, 960: 171039.
[159] SKúLASON E, TRIPKOVIC V, BJöRKETUN M E, et al. Modeling the Electrochemical Hydrogen Oxidation and Evolution Reactions on the Basis of Density Functional Theory Calculations [J]. The Journal of Physical Chemistry C, 2010, 114(42): 18182-18197.
[160] ZHENG Y, JIAO Y, QIAO S Z. Engineering of Carbon-Based Electrocatalysts for Emerging Energy Conversion: From Fundamentality to Functionality [J]. Advanced Materials, 2015, 27(36): 5372-5378.
[161] NOH S H, KWON C, HWANG J, et al. Self-assembled nitrogen-doped fullerenes and their catalysis for fuel cell and rechargeable metal-air battery applications [J]. Nanoscale, 2017, 9(22): 7373-7379.
[162] LI X, FANG Y, ZHAO S, et al. Nitrogen-doped mesoporous carbon nanosheet/carbon nanotube hybrids as metal-free bi-functional electrocatalysts for water oxidation and oxygen reduction [J]. Journal of Materials Chemistry A, 2016, 4(34): 13133-13141.
[163] LIU J, ZHAO S, LI C, et al. Carbon Nanodot Surface Modifications Initiate Highly Efficient, Stable Catalysts for Both Oxygen Evolution and Reduction Reactions [J]. Advanced Energy Materials, 2016, 6(9): 1502039.
[164] XIAO Z, HUANG X, XU L, et al. Edge-selectively phosphorus-doped few-layer graphene as an efficient metal-free electrocatalyst for the oxygen evolution reaction [J]. Chemical Communications, 2016, 52(88): 13008-13011.
[165] LIU X, DAI L. Carbon-based metal-free catalysts [J]. Nature Reviews Materials, 2016, 1(11): 16064.
[166] YUE X, HUANG S, CAI J, et al. Heteroatoms dual doped porous graphene nanosheets as efficient bifunctional metal-free electrocatalysts for overall water-splitting [J]. Journal of Materials Chemistry A, 2017, 5(17): 7784-7790.
[167] CHAI G-L, QIU K, QIAO M, et al. Active sites engineering leads to exceptional ORR and OER bifunctionality in P, N Co-doped graphene frameworks [J]. Energy & Environmental Science, 2017, 10(5): 1186-1195.
[168] ZHU Y P, JING Y, VASILEFF A, et al. 3D Synergistically Active Carbon Nanofibers for Improved Oxygen Evolution [J]. Advanced Energy Materials, 2017, 7(14): 1602928.
[169] HUANG Z-F, SONG J, DU Y, et al. Chemical and structural origin of lattice oxygen oxidation in Co-Zn oxyhydroxide oxygen evolution electrocatalysts [J]. Nature Energy, 2019, 4(4): 329-338.
[170] LI Y, DU X, HUANG J, et al. Recent Progress on Surface Reconstruction of Earth-Abundant Electrocatalysts for Water Oxidation [J]. Small, 2019, 15(35): e1901980.
[171] HUANG Z, LIAO X, ZHANG W, et al. Ceria-Promoted Reconstruction of Ni-Based Electrocatalysts toward Efficient Oxygen Evolution [J]. ACS Catalysis, 2022, 12(22): 13951-13960.
[172] MOHAMMADI M, JERSCHOW A. In situ and operando magnetic resonance imaging of electrochemical cells: A perspective [J]. Journal Of Magnetic Resonance, 2019, 308: 106600.
[173] MEYER Q, ZENG Y, ZHAO C. In Situ and Operando Characterization of Proton Exchange Membrane Fuel Cells [J]. Advanced Materials, 2019, 31(40): e1901900.
[174] SCHLOGL R. Heterogeneous catalysis [J]. Angewandte Chemie International Edition, 2015, 54(11): 3465-3520.
[175] ZHONG H, ZHANG Q, YU J, et al. Fundamental Understanding of Structural Reconstruction Behaviors in Oxygen Evolution Reaction Electrocatalysts [J]. Advanced Energy Materials, 2023, 13(31): 2301391.
[176] ZHU K, ZHU X, YANG W. Application of In Situ Techniques for the Characterization of NiFe-Based Oxygen Evolution Reaction (OER) Electrocatalysts [J]. Angewandte Chemie International Edition, 2019, 58(5): 1252-1265.
[177] DENG Y, YEO B S. Characterization of Electrocatalytic Water Splitting and CO2 Reduction Reactions Using In Situ/Operando Raman Spectroscopy [J]. ACS Catalysis, 2017, 7(11): 7873-7889.
[178] WANG Y H, LIANG M M, ZHANG Y J, et al. Probing Interfacial Electronic and Catalytic Properties on Well-Defined Surfaces by Using In Situ Raman Spectroscopy [J]. Angewandte Chemie International Edition, 2018, 57(35): 11257-11261.
[179] ZHANG Y, GUO H, YUAN P, et al. Structural evolution of CoMoO4 to CoOOH by ion electrochemical etching for boosting oxygen evolution reaction [J]. Journal of Power Sources, 2019, 442: 227252.
[180] TONG M, WANG L, FU H. Designed Synthesis and Catalytic Mechanisms of Non-Precious Metal Single-Atom Catalysts for Oxygen Reduction Reaction [J]. Small Methods, 2021, 5(10): e2100865.
[181] LIU Y, SHRESTHA S, MUSTAIN W E. Synthesis of Nanosize Tungsten Oxide and Its Evaluation as an Electrocatalyst Support for Oxygen Reduction in Acid Media [J]. ACS Catalysis, 2012, 2(3): 456-463.
[182] OSTOJIC N, DUAN Z, GALYAMOVA A, et al. Electrocatalytic Study of the Oxygen Reduction Reaction at Gold Nanoparticles in the Absence and Presence of Interactions with SnO (x) Supports [J]. Journal of the American Chemical Society, 2018, 140(42): 13775-13785.
[183] HODNIK N, DEHM G, MAYRHOFER K J. Importance and Challenges of Electrochemical in Situ Liquid Cell Electron Microscopy for Energy Conversion Research [J]. Accounts of Chemical Research, 2016, 49(9): 2015-2022.
[184] MASUDA T, FUKUMITSU H, FUGANE K, et al. Role of Cerium Oxide in the Enhancement of Activity for the Oxygen Reduction Reaction at Pt-CeOx Nanocomposite Electrocatalyst-An in Situ Electrochemical X-ray Absorption Fine Structure Study [J]. The Journal of Physical Chemistry C, 2012, 116(18): 10098-10102.
[185] KIM G Y, YOON K R, SHIN K, et al. Black Tungsten Oxide Nanofiber as a Robust Support for Metal Catalysts: High Catalyst Loading for Electrochemical Oxygen Reduction [J]. Small, 2021, 17(47): e2103755.
[186] CHALGIN A, SONG C, TAO P, et al. Effect of supporting materials on the electrocatalytic activity, stability and selectivity of noble metal-based catalysts for oxygen reduction and hydrogen evolution reactions [J]. Progress in Natural Science: Materials International, 2020, 30(3): 289-297.
[187] SHAN J, YE C, JIANG Y, et al. Metal-metal interactions in correlated single-atom catalysts [J]. Science Advances, 2022, 8(17): eabo0762.
[188] MOHAMED R, BINNINGER T, KOOYMAN P J, et al. Facile deposition of Pt nanoparticles on Sb-doped SnO2 support with outstanding active surface area for the oxygen reduction reaction [J]. Catalysis Science & Technology, 2018, 8(10): 2672-2685.
[189] WANG S, WANG M, ZHANG Y, et al. Metal Oxide-Supported Metal Catalysts for Electrocatalytic Oxygen Reduction Reaction: Characterization Methods, Modulation Strategies, and Recent Progress [J]. Small Methods, 2023, 7(7): e2201714.
[190] GAO R, WANG J, HUANG Z-F, et al. Pt/Fe2O3 with Pt-Fe pair sites as a catalyst for oxygen reduction with ultralow Pt loading [J]. Nature Energy, 2021, 6(6): 614-623.
[191] MLADENOVIĆ D, SANTOS D M F, BOZKURT G, et al. Tailoring metal-oxide-supported PtNi as bifunctional catalysts of superior activity and stability for unitised regenerative fuel cell applications [J]. Electrochemistry Communications, 2021, 124: 106963.
[192] MA R, WANG J, TANG Y, et al. Design Strategies for Single-Atom Iron Electrocatalysts toward Efficient Oxygen Reduction [J]. Journal of Physical Chemistry Letters, 2022, 13(1): 168-174.
[193] AMIINU I S, LIU X, PU Z, et al. From 3D ZIF Nanocrystals to Co-Nx/C Nanorod Array Electrocatalysts for ORR, OER, and Zn-Air Batteries [J]. Advanced Functional Materials, 2018, 28(5): 25-33.
[194] KONDO T, CASOLO S, SUZUKI T, et al. Atomic-scale characterization of nitrogen-doped graphite: Effects of dopant nitrogen on the local electronic structure of the surrounding carbon atoms [J]. Physical Review B, 2012, 86(3): 14-23.
[195] FU M-M, MO C-H, LI H, et al. Comparison of physicochemical properties of biochars and hydrochars produced from food wastes [J]. Journal of Cleaner Production, 2019, 236: 117637.
[196] FUNKE A, ZIEGLER F. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering [J]. Biofuels, Bioproducts and Biorefining, 2010, 4(2): 160-177.
[197] GADIPELLI S, HOWARD C A, GUO J, et al. Superior Multifunctional Activity of Nanoporous Carbons with Widely Tunable Porosity: Enhanced Storage Capacities for Carbon‐Dioxide, Hydrogen, Water, and Electric Charge [J]. Advanced Energy Materials, 2020, 10(9): 1903649.
[198] ABDURRAHMAN M I, CHAKI S, SAINI G. Stubble burning: Effects on health & environment, regulations and management practices [J]. Environmental Advances, 2020, 2: 100011.
[199] HUANG S, DING Y, LI Y, et al. Nitrogen and Sulfur Co-doped Hierarchical Porous Biochar Derived from the Pyrolysis of Mantis Shrimp Shell for Supercapacitor Electrodes [J]. Energy & Fuels, 2021, 35(2): 1557-1566.
[200] ZHANG Z, GAO X, DOU M, et al. Biomass Derived N-Doped Porous Carbon Supported Single Fe Atoms as Superior Electrocatalysts for Oxygen Reduction [J]. Small, 2017, 13(22): 107927.
[201] HE H, ZHANG R, ZHANG P, et al. Functional Carbon from Nature: Biomass-Derived Carbon Materials and the Recent Progress of Their Applications [J]. Advanced Science, 2023, 10(16): 2205557.
[202] CHEN C, SUN X, YAN X, et al. Boosting CO2 Electroreduction on N,P-Co-doped Carbon Aerogels [J]. Angewandte Chemie International Edition, 2020, 59(27): 11123-11129.
[203] YU M, LI J, WANG L. KOH-activated carbon aerogels derived from sodium carboxymethyl cellulose for high-performance supercapacitors and dye adsorption [J]. Chemical Engineering Journal, 2017, 310: 300-306.
[204] LI Y, DAI H. Recent advances in zinc-air batteries [J]. Chemical Society Reviews, 2014, 43(15): 5257-5275.
[205] FU G, LIU Y, CHEN Y, et al. Robust N-doped carbon aerogels strongly coupled with iron-cobalt particles as efficient bifunctional catalysts for rechargeable Zn-air batteries [J]. Nanoscale, 2018, 10(42): 19937-19944.
[206] HUANG Z-F, WANG J, PENG Y, et al. Design of Efficient Bifunctional Oxygen Reduction/Evolution Electrocatalyst: Recent Advances and Perspectives [J]. Advanced Energy Materials, 2017, 7(23): 1700544.
[207] KOBINA SAM D, KOBINA SAM E, LV X. Application of Biomass-Derived Nitrogen-Doped Carbon Aerogels in Electrocatalysis and Supercapacitors [J]. ChemElectroChem, 2020, 7(18): 3695-3712.
[208] LIANG H-W, WU Z-Y, CHEN L-F, et al. Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: An efficient metal-free oxygen reduction electrocatalyst for zinc-air battery [J]. Nano Energy, 2015, 11: 366-376.
[209] WANG Q, CHEN Z, WU N, et al. N-Doped 3D Carbon Aerogel with Trace Fe as an Efficient Catalyst for the Oxygen Reduction Reaction [J]. ChemElectroChem, 2017, 4(3): 514-520.
[210] HE T, ZHANG Y, CHEN Y, et al. Single iron atoms stabilized by microporous defects of biomass-derived carbon aerogels as high-performance cathode electrocatalysts for aluminum-air batteries [J]. Journal of Materials Chemistry A, 2019, 7(36): 20840-20846.
[211] HAO R, GU S, CHEN J, et al. Microporous Fe-N4 cataysts derived from biomass aerogel for a high-performance Zn-air battery [J]. Materials Today Energy, 2021, 21: 100826.
[212] KHAN M A, ZHAO H, ZOU W, et al. Recent Progresses in Electrocatalysts for Water Electrolysis [J]. Electrochemical Energy Reviews, 2018, 1(4): 483-530.
[213] SHIVA KUMAR S, HIMABINDU V. Hydrogen production by PEM water electrolysis-A review [J]. Materials Science for Energy Technologies, 2019, 2(3): 442-454.
[214] CHI J, YU H. Water electrolysis based on renewable energy for hydrogen production [J]. Chinese Journal of Catalysis, 2018, 39(3): 390-394.
[215] WANG L, LIU Y, LIU X, et al. 3D nanostructured Ce-doped CoFe-LDH/NF self-supported catalyst for high-performance OER [J]. Dalton Trans, 2023, 52(34): 12038-12048.
[216] HE L, ZHANG W, MO Q, et al. Molybdenum Carbide-Oxide Heterostructures: In Situ Surface Reconfiguration toward Efficient Electrocatalytic Hydrogen Evolution [J]. Angewandte Chemie International Edition, 2020, 59(9): 3544-3548.
[217] WANG C, KIM J, TANG J, et al. New Strategies for Novel MOF-Derived Carbon Materials Based on Nanoarchitectures [J]. Chem, 2020, 6(1): 19-40.
[218] ZHANG W, ZHANG X, CHEN L, et al. Single-Walled Carbon Nanotube Induced Optimized Electron Polarization of Rhodium Nanocrystals To Develop an Interface Catalyst for Highly Efficient Electrocatalysis [J]. ACS Catalysis, 2018, 8(9): 8092-8099.
[219] SAEB M R, RABIEE N, SEIDI F, et al. Green CoNi2S4/porphyrin decorated carbon-based nanocomposites for genetic materials detection [J]. Journal of Bioresources and Bioproducts, 2021, 6(3): 215-222.
[220] YOU M, DU X, HOU X, et al. In-situ growth of ruthenium-based nanostructure on carbon cloth for superior electrocatalytic activity towards HER and OER [J]. Applied Catalysis B: Environmental, 2022, 317: 121729.
[221] SATO Y, KOWALSKI D, AOKI Y, et al. Long-term durability of platelet-type carbon nanofibers for OER and ORR in highly alkaline media [J]. Applied Catalysis A: General, 2020, 597: 117555.
[222] JIANG Q, GAN C, WU X, et al. Facile synthesis of black phosphorus directly grown on carbon paper as an efficient OER Electrocatalyst: Role of Interfacial charge transfer and induced local charge distribution [J]. Advanced Powder Technology, 2022, 33(1): 24-29.
[223] PAN Y, WU Y, HSAIN H A, et al. Synergetic modulation of the electronic structure and hydrophilicity of nickel-iron hydroxide for efficient oxygen evolution by UV/ozone treatment [J]. Journal of Materials Chemistry A, 2020, 8(27): 13437-13442.
[224] XIANG Q, WANG J, MIAO Q, et al. Recent progress in self-supported nanoarrays with diverse substrates for water splitting and beyond [J]. Materials Today Nano, 2021, 15: 100120.
[225] WANG J, KONG H, ZHANG J, et al. Carbon-based electrocatalysts for sustainable energy applications [J]. Progress in Materials Science, 2021, 116: 100717.
[226] WANG Y, NI Y, LIU B, et al. Vertically oriented CoO@FeOOH nanowire arrays anchored on carbon cloth as a highly efficient electrode for oxygen evolution reaction [J]. Electrochimica Acta, 2017, 257: 356-363.
[227] ZHONG H, CHENG X, XU H, et al. Carbon fiber paper supported interlayer space enlarged Ni2Fe-LDHs improved OER electrocatalytic activity [J]. Electrochimica Acta, 2017, 258: 554-560.
[228] BORA T, DOUSSE A, SHARMA K, et al. Modeling nanomaterial physical properties: theory and simulation [J]. International Journal of Smart and Nano Materials, 2018, 10(2): 116-143.
[229] DEMIR H, GRABOW L C. Enhancing Technological Applications through Density Functional Theory Modeling of Nanomaterials [J]. ACS Applied Nano Materials, 2020, 3(7): 6127-6130.
[230] HARUN K, SALLEH N A, DEGHFEL B, et al. DFT + U calculations for electronic, structural, and optical properties of ZnO wurtzite structure: A review [J]. Results in Physics, 2020, 16: 102829.
[231] STONE M. Born-Oppenheimer approximation and the origin of Wess-Zumino terms: Some quantum-mechanical examples [J]. Physical Review D, 1986, 33(4): 1191-1194.
[232] MAKKAR P, GHOSH N N. A review on the use of DFT for the prediction of the properties of nanomaterials [J]. RSC Advances, 2021, 11(45): 27897-27924.
[233] LEE J-S, TAI KIM S, CAO R, et al. Metal-air batteries with high energy density: Li-air versus Zn-air [J]. Advanced Energy Materials, 2011, 1(1): 34-50.
[234] ZHOU W, WU X-J, CAO X, et al. Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution [J]. Energy & Environmental Science, 2013, 6(10): 2921-2924.
[235] WANG J, LIU W, LUO G, et al. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction [J]. Energy & Environmental Science, 2018, 11(12): 3375-3379.
[236] ZHANG L, HAN L, LIU H, et al. Potential-Cycling Synthesis of Single Platinum Atoms for Efficient Hydrogen Evolution in Neutral Media [J]. Angewandte Chemie International Edition, 2017, 56(44): 13694-13698.
[237] XIE K, QIN X, WANG X, et al. Carbon Nanocages as Supercapacitor Electrode Materials [J]. Advanced Materials, 2012, 24(3): 347-352.
[238] LIU H, BAI Q, YAO L, et al. Highly efficient near ultraviolet organic light-emitting diode based on a meta-linked donor-acceptor molecule [J]. Chemical Science, 2015, 6(7): 3797-3804.
[239] LIU Y, ZHANG Y, YANG Z, et al. Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors [J]. Nature Communications, 2018, 9(1): 5302.
[240] ZHAO M, LIU H, ZHANG H, et al. A pH-universal ORR catalyst with single-atom iron sites derived from a double-layer MOF for superior flexible quasi-solid-state rechargeable Zn-air batteries [J]. Energy & Environmental Science, 2021, 14(12): 6455-6463.
[241] XIE X, PENG L, YANG H, et al. MIL-101-Derived Mesoporous Carbon Supporting Highly Exposed Fe Single-Atom Sites as Efficient Oxygen Reduction Reaction Catalysts [J]. Advanced Materials, 2021, 33(23): 2101038.
[242] LI Y, GONG M, LIANG Y, et al. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts [J]. Nature Communications, 2013, 4(1): 1805.
[243] WU M, WANG Y, WEI Z, et al. Ternary doped porous carbon nanofibers with excellent ORR and OER performance for zinc-air batteries [J]. Journal of Materials Chemistry A, 2018, 6(23): 10918-10925.
[244] ELISADIKI J, KIBONA T E, MACHUNDA R L, et al. Biomass-based carbon electrode materials for capacitive deionization: a review [J]. Biomass Conversion and Biorefinery, 2020, 10(4): 1327-1356.
[245] CUI P, LI T, CHI X, et al. Bamboo derived N-doped carbon as a bifunctional electrode for high-performance zinc-air batteries [J]. Sustainable Energy & Fuels, 2023, 7(11): 2717-2726.
[246] ARIF M, YASIN G, LUO L, et al. Hierarchical hollow nanotubes of NiFeV-layered double hydroxides@CoVP heterostructures towards efficient, pH-universal electrocatalytical nitrogen reduction reaction to ammonia [J]. Applied Catalysis B: Environmental, 2020, 265: 118559.
[247] KANG Z, KHAN M A, GONG Y, et al. Recent progress of MXenes and MXene-based nanomaterials for the electrocatalytic hydrogen evolution reaction [J]. Journal of Materials Chemistry A, 2021, 9(10): 6089-6108.
[248] WU Z P, LU X F, ZANG S Q, et al. Non‐Noble‐Metal‐Based Electrocatalysts toward the Oxygen Evolution Reaction [J]. Advanced Functional Materials, 2020, 30(15): 1910274.
[249] TROTOCHAUD L, YOUNG S L, RANNEY J K, et al. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation [J]. Journal of the American Chemical Society, 2014, 136(18): 6744-6753.
[250] HUNG S F, CHAN Y T, CHANG C C, et al. Identification of Stabilizing High-Valent Active Sites by Operando High-Energy Resolution Fluorescence-Detected X-ray Absorption Spectroscopy for High-Efficiency Water Oxidation [J]. Journal of the American Chemical Society, 2018, 140(49): 17263-17270.
[251] CHUNG D Y, LOPES P P, FARINAZZO BERGAMO DIAS MARTINS P, et al. Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction [J]. Nature Energy, 2020, 5(3): 222-230.
[252] KUNDU S, MALIK B, PRABHAKARAN A, et al. Topotactic transition of alpha-Co(OH)2 to beta-Co(OH)2 anchored on CoO nanoparticles during electrochemical water oxidation: synergistic electrocatalytic effects [J]. Chemical Communications, 2017, 53(70): 9809-9812.
[253] WANG Z, LIU W, HU Y, et al. Cr-doped CoFe layered double hydroxides Highly efficient and robust [J]. Applied Catalysis B: Environmental, 2020, 272: 118959.
[254] HUANG S, WU Y, FU J, et al. Hierarchical CoFe LDH/MOF nanorods array with strong coupling effect grown on carbon cloth enables efficient oxidation of water and urea [J]. Nanotechnology, 2021, 32(38): 385405.
[255] CALDERóN J A, MATTOS O R, BARCIA O E, et al. Electrodissolution of cobalt in carbonate/bicarbonate media [J]. Electrochimica Acta, 2002, 47(28): 4531-4541.
[256] MANSOUR A N, BRIZZOLARA R A. Characterization of the Surface of α-FeOOH Powder by XPS [J]. Surface Science Spectra, 1996, 4(4): 357-362.
[257] COLE K M, KIRK D W, THORPE S J. Co3O4 nanoparticles characterized by XPS and UPS [J]. Surface Science Spectra, 2021, 28(1): 014001.
[258] CHEN H, CHEN J, HE H, et al. Amorphous CoFeB nanosheets with plasmon-regulated dynamic active sites for electrocatalytic water oxidation [J]. Applied Catalysis B: Environmental, 2023, 323: 122187.
[259] WANG H, KONG X, ZHANG W, et al. Exploiting enzymes to optimize the pH-universal electrocatalytic ORR performance of biomass-based nanoporous carbons [J]. New Journal of Chemistry, 2023, 47(28): 13193-13204.
[260] DONG Q, WANG D. Catalysts in metal-air batteries [J]. MRS Communications, 2018, 8(2): 372-386.
[261] SUN Q, DAI L, LUO T, et al. Recent advances in solid-state metal–air batteries [J]. Carbon Energy, 2023, 5(2): e276.
[262] WANG Y, WU J, TANG S, et al. Synergistic Fe-Se Atom Pairs as Bifunctional Oxygen Electrocatalysts Boost Low‐Temperature Rechargeable Zn‐Air Battery [J]. Angewandte Chemie International Edition, 2023, 62(15): 16-27.
[263] WANG A, ZHANG X, GAO S, et al. Fast-Charging Zn-Air Batteries with Long Lifetime Enabled by Reconstructed Amorphous Multi-Metallic Sulfide [J]. Advanced Materials, 2022: e2204247.
[264] NIU Q, YANG M, LUAN D, et al. Construction of Ni-Co-Fe Hydr(oxy)oxide@Ni-Co Layered Double Hydroxide Yolk-Shelled Microrods for Enhanced Oxygen Evolution [J]. Angewandte Chemie International Edition, 2022, 61(49): e202213049.
[265] LI M, WANG X, LIU K, et al. Ce‐Induced Differentiated Regulation of Co Sites via Gradient Orbital Coupling for Bifunctional Water‐Splitting Reactions [J]. Advanced Energy Materials, 2023, 13(30): 2301162.
[266] CHEN Z, PENG X, CHEN Z, et al. Mass Production of Sulfur-Tuned Single-Atom Catalysts for Zn-Air Batteries [J]. Advanced Materials, 2023, 16: e2209948.
[267] XIAO M, ZHU J, LI S, et al. 3d-Orbital Occupancy Regulated Ir-Co Atomic Pair Toward Superior Bifunctional Oxygen Electrocatalysis [J]. ACS Catalysis, 2021, 11(14): 8837-8846.
[268] WU M, ZHANG G, CHEN N, et al. Self-Reconstruction of Co/Co2P Heterojunctions Confined in N-Doped Carbon Nanotubes for Zinc-Air Flow Batteries [J]. ACS Energy Letters, 2021, 35(10): 1153-1161.
[269] WAGH N K, KIM D H, KIM S H, et al. Heuristic Iron-Cobalt-Mediated Robust pH-Universal Oxygen Bifunctional Lusters for Reversible Aqueous and Flexible Solid-State Zn-Air Cells [J]. ACS Nano, 2021, 15(9): 14683-14696.
[270] ZHONG X, SHAO Y, CHEN B, et al. Rechargeable zinc-air batteries with an ultra-large discharge capacity per cycle and an ultra-long cycle life [J]. Advanced Materials, 2023, 20(3): e2301952.
[271] WU K, ZHANG L, YUAN Y, et al. An Iron-Decorated Carbon Aerogel for Rechargeable Flow and Flexible Zn-Air Batteries [J]. Advanced Materials, 2020, 32(32): e2002292.

所在学位评定分委会
物理学
国内图书分类号
O439
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765883
专题南方科技大学
工学院_材料科学与工程系
推荐引用方式
GB/T 7714
焦传来. 铁钴基催化剂的构筑及其在锌-空气电池中的应用[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930770-焦传来-材料科学与工程(11730KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[焦传来]的文章
百度学术
百度学术中相似的文章
[焦传来]的文章
必应学术
必应学术中相似的文章
[焦传来]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。