[
[1] AKI K, RICHARDS P. Quantitative seismology[M]. W.H. Freeman and Company, 1980.
[2] SCHUSTER G. Seismic inversion[M]. Society of Exploration Geophysicists, 2017.
[3] VIRIEUX J, OPERTO S. An overview of full-waveform inversion in exploration geophysics[J]. Geophysics, 2009, 74(6): WCC1-WCC26.
[4] YAO G, WU D, WANG S X. A review on reflection-waveform inversion[J]. Petroleum Science,2020, 17: 334-351.
[5] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. MIT Press, 2016.
[6] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521: 436-444.
[7] YU S, MA J. Deep learning for geophysics: current and future trends[J]. Reviews of Geophysics,2021, 59(3): e2021RG000742.
[8] MOUSAVI S M, BEROZA G C. Deep-learning seismology[J]. Science, 2022, 377(6607):eabm4470.
[9] LAILLY P. The seismic inverse problem as a sequence of before stack migrations[J]. Conferenceon Inverse Scattering—Theory and Application, SIAM, Philadelphia, 1983: 206-220.
[10] TARANTOLA A. Inversion of seismic reflection data in the acoustic approximation[J]. Geophysics,1984, 49(8): 1259-1266.
[11] GAUTHIER O, VIRIEUX J, TARANTOLA A. Two‐dimensional nonlinear inversion of seismicwaveforms: numerical results[J]. Geophysics, 1986, 51(7): 1387-1403.
[12] PICA A, DIET J, TARANTOLA A. Nonlinear inversion of seismic reflection data in a laterallyinvariant medium[J]. Geophysics, 1990, 55: 284-292.
[13] CRASE E. Robust elastic nonlinear waveform inversion: application to real data[J]. Geophysics,1990, 55: 527-538.
[14] TARANTOLA A. A strategy for nonlinear elastic inversion of seismic reflection data[J]. Geophysics,1986, 51(10): 1893-1903.
[15] MORA P. Nonlinear elastic inversion of multioffset seismic data[J]. Geophysics, 1986, 52:1211-1228.
[16] MORA P. Elastic wave-field inversion of reflection and transmission data[J]. Geophysics,1988, 53: 750-759.
[17] PRATT R, WORTHINGTON M. Inverse theory applied to multi-source cross-hole tomography,part 1: acoustic wave-equation method[J]. Geophysical Prospecting, 1990, 38: 287-310.
[18] PRATT G, SHIN C, HICKS. Gauss–Newton and full Newton methods in frequency–spaceseismic waveform inversion[J]. Geophysical Journal International, 1998, 133(2): 341-362.
[19] PRATT R G. Seismic waveform inversion in the frequency domain, part 1: theory and verificationin a physical scale model[J]. Geophysics, 1999, 64(3): 888-901.
[20] LUO Y, SCHUSTER G T. Wave-equation traveltime inversion[J]. Geophysics, 1991, 56(5):645-653.
[21] SHIN C, CHA Y. Waveform inversion in the Laplace domain[J]. Geophysical Journal International,2008, 173: 922-931.
[22] PYUN S, SHIN C, LEE H, et al. 3D elastic full waveform inversion in the Laplace domain[J].SEG Technical Program Expanded Abstracts, 2008: 1976-1980.
[23] CHA Y H, SHIN C. 2D Laplace‐domain waveform inversion using adaptive finite elementmethod[J]. SEG Technical Program Expanded Abstracts, 2009: 2263-2267.
[24] YANG Q, MALCOLM A. Frequency domain full-waveform inversion in a fluid-saturatedporoelastic medium[J]. Geophysical Journal International, 2020, 225(1): 68-84.
[25] TROMP J, TAPE C, LIU Q. Seismic tomography, adjoint methods, time reversal and bananadoughnutkernels[J]. Geophysical Journal International, 2005, 160(1): 195-216.
[26] PLESSIX R E. A review of the adjoint-state method for computing the gradient of a functionalwith geophysical applications[J]. Geophysical Journal International, 2006, 167: 495-503.
[27] ZHAO L, JORDAN T H, OLSEN K B, et al. Fréchet kernels for imaging regional earth structurebased on three-dimensional reference models[J]. Bulletin of the Seismological Society ofAmerica, 2005, 95(6): 2066-2080.
[28] ZHAO L, CHEN P, JORDAN T H. Strain green’s tensors, reciprocity, and their applicationsto seismic source and structure studies[J]. Bulletin of the Seismological Society of America,2006, 96(5): 1753-1763.
[29] CHEN P, JORDAN T H, ZHAO L. Full three-dimensional tomography: a comparison betweenthe scattering-integral and adjoint-wavefield methods[J]. Geophysical Journal International,2007, 170(1): 175-181.
[30] SIRGUE L, I. BARKVED O, P. VAN GESTEL J, et al. 3D waveform inversion on valhallwide-azimuth OBC[J]. European Association of Geoscientists & Engineers, 2009: 2214-4609.
[31] 胡光辉, 王立歆, 方伍宝. 全波形反演方法及应用[M]. 石油工业出版社, 2014.
[32] 祝贺君, 刘沁雅, 杨继东. 地震学全波形反演进展[J]. 地球与行星物理论评(中英文), 2023,54: 287-317.
[33] WARNER M, RATCLIFFE A, NANGOO T, et al. Anisotropic 3D full-waveform inversion[J].Geophysics, 2013, 78(2): R59-R80.
[34] MEI J, TONG Q. A practical acoustic full waveform inversion workflow applied to a 3D landdynamite survey[J]. SEG Technical Program Expanded Abstracts, 2015: 1220-1224.
[35] DELLINGER J, ROSS A, MEAUX D, et al. Wolfspar®, an“FWI-friendly”ultralow-frequencymarine seismic source[J]. SEG Technical Program Expanded Abstracts, 2016: 4891-4895.
[36] CHI B, DONG L, LIU Y. Full waveform inversion method using envelope objective functionwithout low frequency data[J]. Journal of Applied Geophysics, 2014, 109: 36-46.
[37] LI Y, DEMANET L. Extrapolated full-waveform inversion: an image-space approach[J]. SEGTechnical Program Expanded Abstracts, 2017: 1682-1686.
[38] CHEN W, JIAL X, HU C. Time-domain multiscale FWI based on a time-shift method and lowfrequencydata reconstruction[J]. SEG Technical Program Expanded Abstracts, 2019: 1570-1574.
[39] CHIU S K. Low-frequency extrapolation using higher-frequency multi-channel prediction filters[J]. SEG Technical Program Expanded Abstracts, 2020: 2835-2839.
[40] OVCHARENKO O, KAZEI V, KALITA M, et al. Deep learning for low-frequency extrapolationfrom multioffset seismic data[J]. Geophysics, 2019, 84(6): R989-R1001.
[41] SUN H, DEMANET L. Extrapolated full-waveform inversion with deep learning[J]. Geophysics,2020, 85(3): R275-R288.
[42] FANG J, ZHOU H, ELITA LI Y, et al. Data-driven low-frequency signal recovery using deeplearningpredictions in full-waveform inversion[J]. Geophysics, 2020, 85(6): A37-A43.
[43] WANG M, XU S, ZHOU H. Self-supervised learning for low frequency extension of seismicdata[J]. SEG Technical Program Expanded Abstracts, 2020: 1501-1505.
[44] OVCHARENKO O, KAZEI V, ALKHALIFAH T A, et al. Multi-task learning for lowfrequencyextrapolation and elastic model building from seismic data[J]. IEEE Transactionson Geoscience and Remote Sensing, 2022, 60: 1-17.
[45] WANG Z, LIU G, DU J, et al. Low-frequency extrapolation of prestack viscoacoustic seismicdata based on dense convolutional network[J]. IEEE Transactions on Geoscience and RemoteSensing, 2022, 60: 1-13.
[46] GU Z, CHAI X, YANG T. Deep-learning-based low-frequency reconstruction in full-waveforminversion[J]. Remote Sensing, 2023, 15(5): 1387.
[47] SUN H, SUN Y, NAMMOUR R, et al. Learning with real data without real labels: a strategyfor extrapolated full-waveform inversion with field data[J]. Geophysical Journal International,2023, 235(2): 1761-1777.
[48] 曹伟. 基于深度学习的地震速度反演研究[D]. 东北石油大学, 2023.
[49] 李媛媛. 多级优化的时间域波形反演方法研究[D]. 中国石油大学(华东), 2020.
[50] 杜泽源. 多尺度地震全波形反演方法研究[D]. 中国石油大学(华东), 2022.
[51] 董士琦. 基于波场局部尺度匹配的时间域全波形反演研究[D]. 吉林大学, 2022.
[52] 李振春, 王自颖, 黄建平, 等. 基于波数域梯度场分解的多尺度波形反演方法[J]. 地球物理学报, 2022, 65: 2693-2703.
[53] 杨瑞冬, 黄建平, 杨振杰, 等. 基于双对角通量校正的多尺度全波形反演[J]. 石油地球物理勘探, 2022, 57: 1120-1128.
[54] BUNKS C, SALECK F M, ZALESKI S, et al. Multiscale seismic waveform inversion[J].Geophysics, 1995, 60(5): 1457-1473.
[55] BOONYASIRIWAT C, VALASEK P, ROUTH P, et al. An efficient multiscale method for timedomainwaveform tomography[J]. Geophysics, 2009, 74(6): WCC59-WCC68.
[56] SHENG J, LEEDS A, BUDDENSIEK M, et al. Early arrival waveform tomography on nearsurfacerefraction data[J]. Geophysics, 2006, 71(4): U47-U57.
[57] SYMES W, CARAZZONE J. Velocity inversion by differential semblance optimization[J].Geophysics, 1991, 56: 654-663.
[58] SYMES W. Migration velocity analysis and waveform inersion[J]. Geophysical Prospecting,2008, 56: 765-790.
[59] WEIBULL W, ARNTSEN B. Automatic velocity analysis with reverse-time migration[J]. Geophysics,2013, 78: S179-S192.
[60] BROSSIER R, OPERTO S, VIRIEUX J. Which data residual norm for robust elastic frequencydomainfull waveform inversion[J]. Geophysics, 2010, 75(3): R37-R46.
[61] ENGQUIST B, FROESE B D. Application of the Wasserstein metric to seismic signals[J].Communications in Mathematical Sciences, 2014, 12(5): 979-988.
[62] MATZEL E, GRAND S P. The anisotropic seismic structure of the East European platform[J].Journal of Geophysical Research: Solid Earth, 2004, 109(B1): 2001JB000623.
[63] CHOI Y, ALKHALIFAH T. Application of multi-source waveform inversion to marine streamerdata using the global correlation norm[J]. Geophysical Prospecting, 2012, 60: 748-758.
[64] MéTIVIER L, BROSSIER R, MéRIGOT Q, et al. Measuring the misfit between seismogramsusing an optimal transport distance: application to full waveform inversion[J]. GeophysicalJournal International, 2016, 205: 332-364.
[65] CHEN J, CHEN Y, WU H, et al. The quadratic Wasserstein metric for earthquake location[J].Journal of Computational Physics, 2018, 373: R43-R62.
[66] 李燕梅, 顾焕申, 许凯, 等. 基于最优输运与循环神经网络的全波形反演[J]. 地球物理学进展, 2022, 37: 2408-2416.
[67] 胡光辉, 贺伟光. 全波形反演中最优化传输函数研究[J]. 石油物探, 2023, 62: 832-849.
[68] GAO Y, TILMANN F, RIETBROCK A. A review of misfit functions for adjoint full waveforminversion in seismology[J]. Geophysical Journal International, 2023, 235(3): 2794-2827.
[69] SEN M, STOFFA P. Nonlinear one-dimensional seismic waveform inversion using simulatedannealing[J]. Geophysics, 1991, 56: 1624-1638.
[70] MOSEGAARD K, TARANTOLA A. Monte Carlo sampling of solutions to inverse problems[J]. Journal of Geophysical Research, 1995, 1001: 12431-12448.
[71] ZHAO Z, SEN M K, DENEL B, et al. A hybrid optimization framework for seismicfull waveform inversion[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(8):e2022JB024483.
[72] GEBRAAD L, BOEHM C, FICHTNER A. Bayesian elastic full-waveform inversion usinghamiltonian monte carlo[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(3):e2019JB018428.
[73] LIU F, ZHANG G, MORTON S A, et al. An effective imaging condition for reverse-timemigration using wavefield decomposition[J]. Geophysics, 2011, 76(1): S29-S39.
[74] XU S, WANG D, CHEN F, et al. Inversion on reflected seismic wave[J]. SEG TechnicalProgram Expanded Abstracts, 2012: 1-7.
[75] KHALIL A, SUN J, ZHANG Y, et al. RTM noise attenuation and image enhancement usingtime-shift gathers[J]. SEG Technical Program Expanded Abstracts, 2013: 3789-3793.
[76] ALKHALIFAH T. Scattering-angle based filtering of the waveform inversion gradients[J].Geophysical Journal International, 2014, 200(1): 363-373.
[77] FEI T W, LUO Y, YANG J, et al. Removing false images in reverse time migration: the conceptof de-primary[J]. Geophysics, 2015, 80(6): S237-S244.
[78] YAO G, DA SILVA N V, WU D. Sensitivity analyses of acoustic impedance inversion withfull-waveform inversion[J]. Journal of Geophysics and Engineering, 2018, 15(2): 461-477.
[79] XU S, ZHANG Y, TANG B. 3D angle gathers from reverse time migration[J]. Geophysics,2011, 76(2): 129-131.
[80] STORK C. Reflection tomography in the postmigrated domain[J]. Geophysics, 2012, 57(5):680-692.
[81] LUO Y, MA Y, WU Y, et al. Full-traveltime inversion[J]. Geophysics, 2016, 81(5): R261-R274.
[82] MUSAYEV K, HACKL K, BAITSCH M. Identification of the velocity field of 2D and 3Dtunnel models with frequency domain full waveform inversion[J]. PAMM, 2014, 14: 781-782.
[83] VENSTAD J. Industry-scale finite-difference elastic wave modeling on graphics processingunits using the out-of-core technique[J]. Geophysics, 2016, 81: T29-T37.
[84] KREBS J R, ANDERSON J E, HINKLEY D, et al. Fast full-wavefield seismic inversion usingencoded sources[J]. Geophysics, 2009, 74(6): WCC177-WCC188.
[85] GUITTON A, DíAZ E. Attenuating crosstalk noise with simultaneous source full waveforminversion[J]. Geophysical Prospecting, 2012, 60(4): 759-768.
[86] 雷涛. 时间域全波形反演方法及最优化理论研究[D]. 中国地质大学, 2019.
[87] RUBIO F, HANZICH M, FARRéS A, et al. Finite-difference staggered grids in GPUs foranisotropic elastic wave propagation simulation[J]. Computers & Geosciences, 2014, 70: 181-189.
[88] ROMERO L A, GHIGLIA D C, OBER C C, et al. Phase encoding of shot records in prestackmigration[J]. Geophysics, 2000, 65(2): 426-436.
[89] GAUTHIER O, VIRIEUX J, TARANTOLA A. Two‐dimensional nonlinear inversion of seismicwaveforms: numerical results[J]. Geophysics, 1986, 51(7): 1387-1403.
[90] ANDERSON J E, TAN L, WANG D. Time-reversal checkpointing methods for RTM and FWI[J]. Geophysics, 2012, 77(4): S93-S103.
[91] 王保利, 高静怀, 陈文超, 等. 地震叠前逆时偏移的有效边界存储策略[J]. 地球物理学报,2012, 55: 2412-2421.
[92] 杨仁虎, 凌云, 瞿立建, 等. 基于边界存储的地震波场重构及逆时偏移成像应用研究[J]. 地球物理学进展, 2017, 32: 1286-1289.
[93] 段沛然, 谷丙洛, 李振春. 基于优化算子边界存储策略的高效逆时偏移方法[J]. 石油地球物理勘探, 2019, 54: 93-101.
[94] SYMES W W. Reverse time migration with optimal checkpointing[J]. Geophysics, 2007, 72(5): SM213-SM221.
[95] CLAPP R G. Reverse time migration with random boundaries[J]. SEG Technical ProgramExpanded Abstracts, 2009: 2809-2813.
[96] ARNULF A, HARDING A, SINGH S, et al. Nature of upper crust beneath the Lucky Strikevolcano using elastic full waveform inversion of streamer data[J]. Geophysical Journal International,2014, 196: 1471-1491.
[97] 张庆臣. 时间域弹性波动方程全波形反演方法研究[D]. 中国石油大学(北京), 2019.
[98] 梁展源. 非均匀介质弹性参数地震波形反演方法研究[D]. 中国石油大学(华东), 2023.
[99] 李松龄. 复杂衰减介质数值模拟与全波形反演方法研究[D]. 东北石油大学, 2023.
[100] WANG Y, ZHOU H, CHEN H, et al. Adaptive stabilization for Q-compensated reverse timemigration[J]. Geophysics, 2018, 83(1): S15-S32.
[101] ZHAO X, ZHOU H, WANG Y, et al. A stable approach for Q-compensated viscoelastic reversetime migration using excitation amplitude imaging condition[J]. Geophysics, 2018, 83(5): S459-S476.
[102] 梁旭, 马越, 刘超, 等. 基于多目标函数的黏弹性全波形反演[J]. 煤田地质与勘探, 2023, 51:152-163.
[103] ARAGAO O, SAVA P. Elastic full-waveform inversion with probabilistic petrophysical modelconstraints[J]. Geophysics, 2020, 85(2): R101-R111.
[104] SINGH S, TSVANKIN I, NAEINI E Z. Full-waveform inversion with borehole constraints forelastic VTI media[J]. Geophysics, 2020, 85(6): R553-R563.
[105] GREEN P J. Reversible jump Markov chain Monte Carlo computation and Bayesian modeldetermination[J]. Biometrika, 1995, 82(4): 711-732.
[106] MALINVERNO A. Parsimonious Bayesian Markov Chain Monte Carlo inversion in a nonlineargeophysical problem[J]. Geophysical Journal International, 2002, 151: 675-688.
[107] MALINVERNO A, LEANEY W S. Monte-Carlo Bayesian look-ahead inversion of walkawayvertical seismic profiles[J]. Geophysical Prospecting, 2010, 53(5): 689-703.
[108] SUN J, INNANEN K, ZHANG T, et al. Implicit seismic full waveform inversion withdeep neural representation[J]. Journal of Geophysical Research: Solid Earth, 2023, 128(3):e2022JB025964.
[109] 国运东. 基于多震源和稀疏变换的地震波形反演方法研究[D]. 中国石油大学(华东),2023.
[110] SONG Z, WILLIAMSON P R, PRATT R G. Frequency‐domain acoustic‐wave modeling andinversion of crosshole data: part II—Inversion method, synthetic experiments and real‐dataresults[J]. Geophysics, 1995, 60(3): 796-809.
[111] CHOI Y, ALKHALIFAH T. Source-independent time-domain waveform inversion using convolvedwavefields: application to the encoded multisource waveform inversion[J]. Geophysics,2011, 76(5): R125-R134.
[112] FICHTNER A. Full seismic waveform modelling and inversion[M]. Springer, 2011.
[113] ZHANG Q J, DAI S K, CHEN L, et al. Two-dimensional frequency-domain acoustic fullwaveforminversion with rugged topography[J]. Applied Geophysics, 2015, 12: 378-388.
[114] SUN Y C, ZHANG W, XU J, et al. Numerical simulation of 2D seismic wave propagation inthe presence of a topographic fluid-solid interface at the sea bottom by the curvilinear grid finitedifference method[J]. Geophysical Journal International, 2017, 210: 1721–1738.
[115] 何兵红. 基于无网格的波动方程地震正反演方法研究[D]. 中国石油大学(华东), 2018.
[116] 岳晓鹏. 全波形反演方法技术研究[D]. 长安大学, 2019.
[117] 曹岑. 地震波谱元法正演及地质信息复合约束多参数全波形反演[D]. 中南大学, 2022.
[118] ZHANG W, ZHANG Z, CHEN X. Three-dimensional elastic wave numerical modelling inthe presence of surface topography by a collocated-grid finite-difference method on curvilineargrids[J]. Geophysical Journal International, 2012, 190(1): 358-378.
[119] ZHANG C, ZHANG W. Efficient two-dimensional acoustic wave finite-difference numericalsimulation in strongly heterogeneous media using the adaptive mesh refinement (AMR) technique[J]. Geophysics, 2021, 87: 1-76.
[120] 王艺豪. 近地表地震波速度反演、成像与时间域偏移速度分析方法研究[D]. 中国科学技术大学, 2021.
[121] ZHANG W, CHEN X. Traction image method for irregular free surface boundaries in finitedifference seismic wave simulation[J]. Geophysical Journal International, 2006, 167(1): 337-353.
[122] EAID M V, KEATING S D, INNANEN K A. Multiparameter seismic elastic full-waveforminversion with combined geophone and shaped fiber-optic cable data[J]. Geophysics, 2020, 85(6): R537-R552.
[123] YANG J, ZHU H, LI X, et al. Estimating P wave velocity and attenuation structures using fullwaveform inversion based on a time domain complex-valued viscoacoustic wave equation: themethod[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(6): e2019JB019129.
[124] LIU T, BOHLEN T. Time-domain poroelastic full-waveform inversion of shallow seismicdata: methodology and sensitivity analysis[J]. Geophysical Journal International, 2022, 232(3): 1803-1820.
[125] 唐杰, 刘英昌, 韩盛元, 等. 黏弹性VTI 介质微地震正演模拟与震源机制全波形反演[J]. 地球物理学报, 2022, 65(1): 301-319.
[126] GAO L, PAN Y, RIEDER A, et al. Multiparameter 2-D viscoelastic full-waveform inversionof Rayleigh waves: a field experiment at Krauthausen test site[J]. Geophysical Journal International,2023, 234(1): 297-312.
[127] HE W, LI Y, LIU L. Elastic vertically transversely isotropic full-waveform inversion: fromsynthetic to field data[J]. Geophysics, 2023, 88(3): R385-R405.
[128] LI Q, WU G, JIA Z, et al. Full-waveform inversion in acoustic-elastic coupled media withirregular seafloor based on the generalized finite-difference method[J]. Geophysics, 2023, 88(2): T83-T100.
[129] XING G, ZHU T. Compensating attenuation effects in full-waveform inversion with dissipationdispersiondecoupling[J]. Geophysics, 2023, 88(5): R645-R654.
[130] XIE Y, RYCHERT C A, HARMON N. Elastic and anelastic adjoint tomography with and fullHessian kernels[J]. Geophysical Journal International, 2023, 234(2): 1205-1235.
[131] RASHT-BEHESHT M, HUBER C, SHUKLA K, et al. Physics-informed neural networks(PINNs) for wave propagation and full waveform inversions[J]. Journal of Geophysical Research:Solid Earth, 2022, 127(5): e2021JB023120.
[132] WU Y, MCMECHAN G A, WANG Y. Adaptive feedback convolutional-neural-network-basedhigh-resolution reflection-waveform inversion[J]. Journal of Geophysical Research: SolidEarth, 2022, 127(6): e2022JB024138.
[133] 许屹然. 智能化声波方程正反演理论与方法[D]. 中国石油大学(北京), 2022.
[134] LI D, GUO Y, PENG S, et al. Seismic full-waveform inversion based on superresolution forhigh-precision prediction of reservoir parameters[J]. Geophysics, 2023, 88(3): R243-R256.
[135] YANG F, MA J. FWIGAN: full-waveform inversion via a physics-informed generativeadversarial network[J]. Journal of Geophysical Research: Solid Earth, 2023, 128(4):e2022JB025493.
[136] YAO J, WARNER M, WANG Y. Regularization of anisotropic full-waveform inversion withmultiple parameters by adversarial neural networks[J]. Geophysics, 2023, 88(1): R95-R103.
[137] LIU Q, PETER D. Square-root variable metric-based nullspace shuttle: a characterization of thenonuniqueness in elastic full-waveform inversion[J]. Journal of Geophysical Research: SolidEarth, 2020, 125(2): e2019JB018687.
[138] WANG T, CHENG J, GENG J. Reflection full waveform inversion with second-order optimizationusing the adjoint-state method[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(8): e2021JB022135.
[139] YONG P, BROSSIER R, MéTIVIER L. Parsimonious truncated Newton method for timedomainfull-waveform inversion based on the Fourier-domain full-scattered-field approximation[J]. Geophysics, 2022, 87(1): R123-R146.
[140] KEATING S D, INNANEN K A. Regularization tunnelling for full waveform inversion[J].Geophysical Journal International, 2022, 229(3): 1503-1516.
[141] 刘宇航, 黄建平, 杨继东, 等. 弹性波全波形反演中的四种优化方法对比[J]. 石油地球物理勘探, 2022, 57: 118-128.
[142] GHOLAMI A, AGHAMIRY H S, OPERTO S. Multiplier waveform inversion: a reduced-spacefull-waveform inversion by the method of multipliers[J]. Geophysics, 2023, 88(3): R339-R354.
[143] CARVALHO P T C, DA SILVA S L E F, DUARTE E F, et al. Full waveform inversion basedon the non-parametric estimate of the probability distribution of the residuals[J]. GeophysicalJournal International, 2021, 229(1): 35-55.
[144] GHOLAMI A, AGHAMIRY H S, OPERTO S. Extended-space full-waveform inversion in thetime domain with the augmented Lagrangian method[J]. Geophysics, 2022, 87(1): R63-R77.
[145] LI D, LAMOUREUX M P, LIAO W. Application of an unbalanced optimal transport distanceand a mixed L1/Wasserstein distance to full waveform inversion[J]. Geophysical Journal International,2022, 230(2): 1338-1357.
[146] OPERTO S, GHOLAMI A, AGHAMIRY H S, et al. Full waveform inversion beyond the Bornapproximation: a tutorial review[A]. 2023: 2212.10141.
[147] ZHANG H, HE W, MA J. The back-and-forth method for the quadratic Wasserstein distancebasedfull-waveform inversion[J]. Geophysics, 2023, 88(4): R469-R483.
[148] HUANG X, EIKREM K S, JAKOBSEN M, et al. Bayesian full-waveform inversion inanisotropic elastic media using the iterated extended Kalman filter[J]. Geophysics, 2020, 85(4): C125-C139.
[149] ZHANG X, CURTIS A. Bayesian full-waveform inversion with realistic priors[J]. Geophysics,2021, 86(5): A45-A49.
[150] KAN L Y, CHEVROT S, MONTEILLER V. A consistent multiparameter Bayesian full waveforminversion scheme for imaging heterogeneous isotropic elastic media[J]. Geophysical JournalInternational, 2022, 232(2): 864-883.
[151] YE W, HUANG X, HAN L, et al. Bayesian inverse scattering theory for multiparameter fullwaveforminversion in transversely isotropic media[J]. Geophysics, 2023, 88(3): C91-C109.
[152] ZHANG X, LOMAS A, ZHOU M, et al. 3-D Bayesian variational full waveform inversion[J].Geophysical Journal International, 2023, 234(1): 546-561.
[153] GóRSZCZYK A, BROSSIER R, MéTIVIER L. Graph-space optimal transport concept fortime-domain full-waveform inversion of ocean-bottom seismometer data: nankai trough velocitystructure reconstructed from a 1D model[J]. Journal of Geophysical Research: Solid Earth,2021, 126(5): e2020JB021504.
[154] LIU X, ZHU T, HAYES J. Critical zone structure by elastic full waveform inversion of seismicrefractions in a sandstone catchment, central pennsylvania, USA[J]. Journal of GeophysicalResearch: Solid Earth, 2022, 127(3): e2021JB023321.
[155] MA J, BUNGE H P, THRASTARSON S, et al. Seismic Full-Waveform Inversion of the Crust-Mantle Structure Beneath China and Adjacent Regions[J]. Journal of Geophysical Research:Solid Earth, 2022, 127(9): e2022JB024957.
[156] ZHOU T, LI J, XI Z, et al. CUSRA2021: a radially anisotropic model of the contiguous US andsurrounding regions by full-waveform inversion[J]. Journal of Geophysical Research: SolidEarth, 2022, 127(8): e2021JB023893.
[157] KAN L Y, CHEVROT S, MONTEILLER V. Dehydration of the subducting juan de fuca plateand fluid pathways revealed by full waveform inversion of teleseismic P and SH waves in centraloregon[J]. Journal of Geophysical Research: Solid Earth, 2023, 128(4): e2022JB025506.
[158] ZHOU W, LUMLEY D. Nonrepeatability effects on time-lapse 4D seismic full-waveform inversionfor ocean-bottom node data[J]. Geophysics, 2021, 86(4): R547-R561.
[159] LIU Y, TSVANKIN I. Source-independent time-lapse full-waveform inversion for anisotropicmedia[J]. Geophysics, 2022, 87(1): R111-R122.
[160] FU X, INNANEN K A. Stepsize sharing in time-lapse full-waveform inversion[J]. Geophysics,2023, 88(2): M59-M70.
[161] HUANG C, ZHU T, XING G. Data-assimilated time-lapse visco-acoustic full-waveform inversion:theory and application for injected CO2 plume monitoring[J]. Geophysics, 2023, 88(1): R105-R120.
[162] LIU X, ZHU T, AJO-FRANKLIN J. Understanding subsurface fracture evolution dynamicsusing time-lapse full waveform inversion of continuous active-source seismic monitoring data[J]. Geophysical Research Letters, 2023, 50(4): e2022GL101739.
[163] WANG H, GUO Q, ALKHALIFAH T, et al. Regularized elastic passive equivalent sourceinversion with full-waveform inversion: application to a field monitoring microseismic data set[J]. Geophysics, 2020, 85(6): KS207-KS219.
[164] AGHAMIRY H S, GHOLAMI A, OPERTO S, et al. ADMM-based full-waveform inversionfor microseismic imaging[J]. Geophysical Journal International, 2021, 228(1): 259-274.
[165] XU Z, MIKESELL T D. Estimation of resolution and covariance of ambient seismic sourcedistributions: full waveform inversion and matched field processing[J]. Journal of GeophysicalResearch: Solid Earth, 2022, 127(6): e2022JB024374.
[166] ROBERTSSON J O A, ANDERSSON F, ÉDOUARD PLESSIX R. Efficient snapshot-freereverse time migration and computation of multiparameter gradients in full-waveform inversion[J]. Geophysics, 2021, 86(5): T305-T320.
[167] THRASTARSON S, VAN HERWAARDEN D P, KRISCHER L, et al. Data-adaptive globalfull-waveform inversion[J]. Geophysical Journal International, 2022, 230(2): 1374-1393.
[168] 齐红宇, 傅红, 笋杨露. 应用修正正交有限内存拟牛顿算法的全波形反演[J]. 石油地球物理勘探, 2022, 57(5): 1114-1119.
[169] 秦宁, 梁鸿贤, 郭振波, 等. 基于区域分解的3D 弹性波全波形反演并行实现策略[J]. 石油地球物理勘探, 2023, 58(2): 351-357.
[170] XU M, ZHAO X, CANALES J P. Structural variability within the kane oceanic core complexfrom full waveform inversion and reverse time migration of streamer data[J]. GeophysicalResearch Letters, 2020, 47(7): e2020GL087405.
[171] CAO J, BROSSIER R, GóRSZCZYK A, et al. 3-D multiparameter full-waveform inversionfor ocean-bottom seismic data using an efficient fluid–solid coupled spectral-element solver[J].Geophysical Journal International, 2021, 229(1): 671-703.
[172] KAMATH N, BROSSIER R, MéTIVIER L, et al. Multiparameter full-waveform inversion of3D ocean-bottom cable data from the Valhall field[J]. Geophysics, 2021, 86(1): B15-B35.
[173] PLADYS A, BROSSIER R, KAMATH N, et al. Robust full-waveform inversion with graphspaceoptimal transport: application to 3D ocean-bottom cable Valhall data[J]. Geophysics,2022, 87(3): R261-R280.
[174] BORISOV D, GAO F, WILLIAMSON P, et al. Application of 2D full-waveform inversion onexploration land data[J]. Geophysics, 2020, 85(2): R75-R86.
[175] RETA-TANG C, SHENG J, LIU F, et al. Application of full-waveform inversion to land data:case studies in onshore Mexico[J]. The Leading Edge, 2023, 42(3): 190-195.
[176] SINGH S, SEARS T, ROBERTS M, et al. Full elastic waveform inversion: future of quantitativeseismic imaging[J]. SEG Technical Program Expanded Abstracts, 2008, 27: 1905-1909.
[177] CRASE E, WIDEMAN C, NOBLE M, et al. Nonlinear elastic waveform inversion of landseismic reflection data[J]. Journal of Geophysical Research: Solid Earth, 1992, 97(B4): 4685-4703.
[178] BAUMSTEIN A, ANDERSON J E, HINKLEY D L, et al. Scaling of the objective functiongradient for full wavefield inversion[J]. SEG Technical Program Expanded Abstracts, 2009:2243-2247.
[179] VIGH D, JIAO K, WATTS D, et al. Elastic full-waveform inversion application using multicomponentmeasurements of seismic data collection[J]. Geophysics, 2014, 79: R63–R77.
[180] REN Z, LIU Y. A hierarchical elastic full-waveform inversion scheme based on wavefieldseparation and the multistep-length approach[J]. Geophysics, 2016, 81: R99-R123.
[181] JEONG W, LEE H Y, MIN D J. Full waveform inversion strategy for density in the frequencydomain[J]. Geophysical Journal International, 2012, 188(3): 1221-1242.
[182] WANG T, CHENG J. Elastic full waveform inversion based on mode decomposition: theapproach and mechanism[J]. Geophysical Journal International, 2017, 209: 606-622.
[183] WEISS R M, SHRAGGE J. Solving 3D anisotropic elastic wave equations on parallel GPUdevices[J]. Geophysics, 2013, 78(2): F7-F15.
[184] JIANG J, ZHU P. Acceleration for 2D time-domain elastic full waveform inversion using asingle GPU card[J]. Journal of Applied Geophysics, 2018, 152: 173-187.
[185] LI Y, ALKHALIFAH T. Target-oriented high-resolution elastic full-waveform inversion withan elastic redatuming method[J]. Geophysics, 2022, 87(5): R379-R389.
[186] FANG J, ZHOU H, ZHANG Q, et al. The effects of elastic data on acoustic and elastic fullwaveform inversion[J]. Journal of Applied Geophysics, 2019, 172: 103876.
[187] SEARS T, SINGH S, BARTON P. Elastic full waveform inversion of multi-component OBCseismic data[J]. Geophysical Prospecting, 2008, 56: 843-862.
[188] SEARS T J, BARTON P J, SINGH S C. Elastic full waveform inversion of multicomponentocean-bottom cable seismic data: application to Alba Field, U. K. North Sea[J]. Geophysics,2010, 75(6): R109-R119.
[189] KöHN D, DE NIL D, KURZMANN A, et al. On the influence of model parametrization inelastic full waveform tomography[J]. Geophysical Journal International, 2012, 191: 325-345.
[190] RAKNES E, ARNTSEN B, WEIBULL W. Three-dimensional elastic full waveform inversionusing seismic data from the Sleipner area[J]. Geophysical Journal International, 2015, 202:1877-1894.
[191] HUSTEDT B, OPERTO S, VIRIEUX J. Mixed-grid and staggered-grid finite-difference methodsfor frequency-domain acoustic wave modelling[J]. Geophysical Journal International, 2004,157(3): 1269-1296.
[192] THIEL N, HERTWECK T, BOHLEN T. Comparison of acoustic and elastic full‐waveforminversion of 2D towed‐streamer data in the presence of salt[J]. Geophysical Prospecting, 2018,67: 349–361.
[193] BRENDERS A J, PRATT R G. Full waveform tomography for lithospheric imaging: resultsfrom a blind test in a realistic crustal model[J]. Geophysical Journal International, 2007, 168(1): 133-151.
[194] BARNES C, CHARARA M. Full-waveform inversion results when using acoustic approximationinstead of elastic medium[J]. SEG Technical Program Expanded Abstracts, 2008, 27:1895-1899.
[195] BARNES C, CHARARA M. The domain of applicability of acoustic full-waveform inversionfor marine seismic data[J]. Geophysics, 2009, 74: WCC105-WCC108.
[196] AGUDO O C, DA SILVA N V, WARNER M, et al. Acoustic full-waveform inversion in anelastic world[J]. Geophysics, 2018, 83(3): R257-R271.
[197] MARELLI S, MAURER H, MANUKYAN E. Validity of the acoustic approximation in fullwaveformseismic crosshole tomography[J]. Geophysics, 2012, 77: R129-R139.
[198] HOBRO J, CHAPMAN C, ROBERTSSON J. A method for correcting acoustic finite-differenceamplitudes for elastic effects[J]. Geophysics, 2014, 79: T243-T255.
[199] MULDER W, PLESSIX R E. Exploring some issues in acoustic full waveform inversion[J].Geophysical Prospecting, 2008, 56: 827 - 841.
[200] CHAPMAN C, HOBRO J, ROBERTSSON J. Elastic corrections to acoustic finite‐differencesimulations[J]. SEG Technical Program Expanded Abstracts, 2010: 3013-3017.
[201] CHAPMAN C, HOBRO J, ROBERTSSON J. Correcting an acoustic wavefield for elasticeffects[J]. Geophysical Journal International, 2014, 197: 1196-1214.
[202] LI Q, WU G. 2D multi-parameter waveform inversion of land reflection seismic data obtainedfrom the particle-motion response from the vertical geophone[J]. Acta Geophysica, 2020, 68:377-388.
[203] 李青阳, 吴国忱, 王玉梅, 等. 基于最优输运原理的陆上单分量资料弹性波全波形反演[J].石油地球物理勘探, 2021, 56(5): 1060-1073.
[204] BIONDI B, ALMOMIN A. Tomographic full-waveform inversion (TFWI) by combining FWIand wave-equation migration velocity analysis[J]. The Leading Edge, 2013, 32(9): 1074-1080.
[205] BAETEN G, MAAG J, PLESSIX R E, et al. The use of low frequencies in a full‐waveforminversion and impedance inversion land seismic case study[J]. Geophysical Prospecting, 2013,61: 701-711.
[206] 管路平, 唐权钧. 地震信号的高低频成分补偿[J]. 石油物探, 1990, 29(3): 35-45.
[207] WARNER M, NANGOO T, SHAH N, et al. Full-waveform inversion of cycle-skipped seismicdata by frequency down-shifting[M]//SEG Technical Program Expanded Abstracts 2013. 2013:903-907.
[208] HU W. FWI without low frequency data - beat tone inversion[J]. SEG Technical ProgramExpanded Abstracts, 2014: 1116-1120.
[209] SUN B, ALKHALIFAH T. An anisotropic waveform inversion using an optimal transportmatching filter objective: an application to an offshore field dataset[J]. IEEE Transactions onGeoscience and Remote Sensing, 2023, 61: 1-22.
[210] HU W, JIN Y, WU X, et al. Physics-guided self-supervised learning for low frequency dataprediction in FWI[J]. SEG Technical Program Expanded Abstracts, 2020: 875-879.
[211] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[J].MIT Press, 2014: 2672–2680.
[212] ZHU J Y, PARK T, ISOLA P, et al. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks[J]. 2017 IEEE International Conference on Computer Vision(ICCV), 2017: 2242-2251.
[213] MARFURT K J. Accuracy of finite-difference and finite-element modeling of the scalar andelastic wave equations[J]. Geophysics, 1984, 49(5): 533-549.
[214] SERIANI G, PRIOLO E. Spectral element method for acoustic wave simulation in heterogeneousmedia[J]. Finite Elements in Analysis and Design, 1994, 16(3): 337-348.
[215] KOMATITSCH D, BARNES C, TROMP J. Simulation of anisotropic wave propagation basedupon a spectral element method[J]. Geophysics, 2000, 65(4): 1251-1260.
[216] KäSER M, DUMBSER M. An arbitrary high-order discontinuous Galerkin method for elasticwaves on unstructured meshes –I. The two-dimensional isotropic case with external sourceterms[J]. Geophysical Journal International, 2006, 166(2): 855-877.
[217] VIRIEUX J. SH-wave propagation in heterogeneous media: velocity‐stress finite‐differencemethod[J]. Geophysics, 1984, 49(11): 1933-1942.
[218] VIRIEUX J. P-SV wave propagation in heterogeneous media: velocity‐stress finite‐differencemethod[J]. Geophysics, 1986, 51(4): 889-901.
[219] CLAYTON R, ENGQUIST B. Absorbing boundary conditions for acoustic and elastic waveequations[J]. Bulletin of the Seismological Society of America, 1977, 67(6): 1529-1540.
[220] CERJAN C, KOSLOFF D, KOSLOFF R, et al. A nonreflecting boundary condition for discreteacoustic and elastic wave equations[J]. Geophysics, 1985, 50(4): 705-708.
[221] BERENGER J P. A perfectly matched layer for the absorption of electromagnetic waves[J].Journal of Computational Physics, 1994, 114(2): 185-200.
[222] KOMATITSCH D, MARTIN R. An unsplit convolutional perfectly matched layer improved atgrazing incidence for the seismic wave equation[J]. Geophysics, 2007, 72(5): SM155-SM167.
[223] KINCAID D R, CHENEY E W. Numerical analysis[M]. mathematics of scientific computing,2002.
[224] MODRAK R, TROMP J. Seismic waveform inversion best practices: regional, global andexploration test cases[J]. Geophysical Journal International, 2016, 206(3): 1864-1889.
[225] GARDNER G, GARDNER L, GREGORY A. Formation velocity and density—the diagnosticbasics for stratigraphic traps[J]. Geophysics, 1974, 39: 770-780.
[226] MALINOWSKI M, OPERTO S, RIBODETTI A. High-resolution seismic attenuation imagingfrom wide-aperture onshore data by visco-acoustic frequency-domain full-waveform inversion[J]. Geophysical Journal International, 2011, 186(3): 1179-1204.
[227] MARTIN G, WILEY R, MARFURT K. Marmousi2: an elastic upgrade for Marmousi[J]. TheLeading Edge, 2006, 25: 156-166.
[228] WEIBULL W W, ARNTSEN B. Automatic velocity analysis with reverse-time migration[J].Geophysics, 2013, 78(4): S179-S192.
[229] MEHRALIAN M, KARASFI B. RDCGAN: unsupervised representation learning with regularizeddeep convolutional generative adversarial networks[J]. Conference on Artificial Intelligenceand Robotics and 2nd Asia-Pacific International Symposium, 2018: 31-38.
[230] KARRAS T, AILA T, LAINE S, et al. Progressive growing of GANs for improved quality,stability, and variation[A]. 2017: abs/1710.10196.
[231] SALIMANS T, GOODFELLOW I, ZAREMBA W, et al. Improved techniques for trainingGANs[J]. Curran Associates Inc, 2016: 2234–2242.
[232] ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks[J].Proceedings of the 34th International Conference on Machine Learning - Volume 70, 2017:214–223.
[233] ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image translation with conditional adversarialnetworks[J]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2017: 5967-5976.
[234] SUN Y, ZHANG W, CHEN X. 3D seismic wavefield modeling in generally anisotropic mediawith a topographic free surface by the curvilinear grid finite‐difference method[J]. Bulletin ofthe Seismological Society of America, 2018, 108(3A): 1287-1301.
[235] MORA P. Nonlinear two‐dimensional elastic inversion of multioffset seismic data[J]. Geophysics,1987, 52(9): 1211-1228.
[236] KJARTANSSON E. Constant Q-wave propagation and attenuation[J]. Journal of GeophysicalResearch: Solid Earth, 1979, 84(B9): 4737-4748.
[237] WILSON M P, DAVIES R J, FOULGER G R, et al. Anthropogenic earthquakes in the UK: anational baseline prior to shale exploitation[J]. Marine and Petroleum Geology, 2015, 68: 1-17.
[238] TURNER C C, CRONIN B T. Rift-related coarse-grained submarine fan reservoirs; the braeplay, south viking graben, north Sea[M]. The American Association of Petroleum Geologists,2018.
[239] KEYS R G, FOSTER D J. A data set for evaluating and comparing seismic inversion methods[M]. Society of Exploration Geophysicists, 1998: 1-12.
[240] MADIBA G B, MCMECHAN G A. Processing, inversion, and interpretation of a 2D seismicdata set from the North Viking Graben, North Sea[J]. Geophysics, 2003, 68(3): 837-848.
[241] GUO Q, ALKHALIFAH T. Target-oriented waveform redatuming and high-resolution inversion:role of the overburden[J]. Geophysics, 2020, 85(6): R525-R536.
[242] GUO P, SINGH S C, VADDINENI V A, et al. Nonlinear full waveform inversion of wideapertureOBS data for Moho structure using a trans-dimensional Bayesian method[J]. GeophysicalJournal International, 2020, 224(2): 1056-1078.
[243] DONG ZHANG Z, ALKHALIFAH T. High-resolution reservoir characterization using deeplearning-aided elastic full-waveform inversion: the north sea field data example[J]. Geophysics,2020, 85(4): WA137-WA146.
[244] KIM J, KIM M, KANG H, et al. U-GAT-IT: unsupervised generative attentional networkswith adaptive layer-instance normalization for image-to-image translation[A]. 2019:abs/1907.10830.
[245] TANG H, LIU H, XU D, et al. AttentionGAN: unpaired image-to-image translation usingattention-guided generative adversarial networks[J]. IEEE Transactions on Neural Networksand Learning Systems, 2023, 34(4): 1972-1987.
修改评论