中文版 | English
题名

中晚全新世东亚地磁场及气候的演化特征

其他题名
THE PALEOMAGNETIC FIELD AND PALEOCLIMATE VARIATIONS IN EAST ASIA DURING THE MID- TO LATE HOLOCENE
姓名
姓名拼音
LI Hai
学号
12031330
学位类型
博士
学位专业
0708 地球物理学
学科门类/专业学位类别
07 理学
导师
周祐民
导师单位
海洋科学与工程系
论文答辩日期
2024-05-11
论文提交日期
2024-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

地球是一个复杂的非线性系统,其中地磁场与气候系统是其重要的组成部分,分别受到内源动力和外源动力的影响,对生态环境、生命演化及人类活动等具有深远的影响。尽管现代观测具有高精度、高分辨率等特点,但由于时间尺度短且包含人类活动的干扰,难以充分揭示地磁场和气候的变化特征和机制,以及二者的潜在联系及对人类的影响。全新世以来,东亚地区涌现出许多优秀的新石器文化和古代文明,研究这一时期地磁场的演化与气候变化特征,对深化理解地磁场演化、气候变化和人类活动三者之间的关系至关重要。陆架边缘海是海陆交汇的重要地带,具有沉积速率高和沉积环境稳定等特点,是开展高分辨率古地磁和古环境变化记录研究的理想区域。因此,本论文以岩石磁学、古地磁学、沉积学和有机地球化学为主要研究手段,对渤海M12-8、M5-8和BHB15-6岩心沉积物进行了系统地研究,获得的主要结论如下:

渤海M12-8、M5-8和BHB15-6岩心沉积物的主要载磁矿物为磁铁矿,含量和粒径较为均一,是记录地磁场变化的良好载体。基于碳十四同位素年龄和沉积物磁化率变化特征,分别构建了M12-8、M5-8和BHB15-6岩心准确的年代框架。重建的高分辨率、全矢量古地磁记录与东亚中纬度古地磁记录、CALS10.1b和SHA_DIF.14k模型预测较吻合,并记录到1300 BCE左右的地磁场“Spike”,而与低纬度记录存在差异。结合地磁场模型,东亚中、低纬度地区地磁场之间的差异主要受到西伯利亚磁通量斑强度和位移的影响。中国地磁场“Spike”与黎凡特地磁场“Spike”可能起源于不同的磁通量斑,未存在明显的西向漂移特征。

渤海M5-8岩心沉积物主要来源于黄河,其细颗粒组分(<63 μm)特征受控于亚洲夏季风强度,因而可用于重建亚洲夏季风的演变。细颗粒组分指示近2900年以来华北地区的夏季风逐渐减少,主要受控于太阳辐射量减少引起的热带辐合带南移,并叠加厄尔尼诺-南方涛动和大西洋多年代际变率的作用。夏季风记录显示近千年来中国东部的夏季降水呈“正-负-正”或“负-正-负”的“三明治”结构。CESM-LME气候模式试验结果显示,太阳辐射与火山活动通过改变大气环流和亚洲夏季风强度,共同塑造了中国东部近千年来的夏季降水格局。

渤海BHB15-6岩心沉积物的粒度特征、有机碳含量和Ca/Ti比值变化指示,3400 BCE以来黄海暖流逐渐增强,其强度在1500 BCE左右与现今强度相似并趋于平稳。黄海暖流的强度受到黑潮和亚洲冬季风的共同影响,亚洲冬季风增强将会促使黄、渤海沿岸流增强,进而导致黄海暖流增强。黄海暖流的侵入与增强改变了渤海的水动力条件,促进渤海泥质区的形成,其携带的营养盐输入在一定程度上促进了渤海泥质区生产力的提升,导致沉积物-水界面偏还原环境,更利于陆源有机质的保存。近3000年来,人口数量的增加与耕地面积的扩大,改变了黄河流域的生态环境,进一步影响渤海泥质区陆源有机质的输入。

通过对重建的地磁场相对古强度记录和古降水变化特征的分析,发现地磁场强度低值期与东亚夏季降水相对高值期呈现反相关关系,这种关联可能与地磁场对宇宙射线通量的调控有关。地磁场强度与气候变化特征并非简单一致,地磁场如何影响气候变化的机制及其影响程度尚需进一步研究。

 

其他摘要

The Earth is a highly intricate nonlinear system, encompassing the geomagnetic field and climate system as critical components. These elements are influenced by internal and external dynamics, yielding profound impacts on the ecological environments, life evolution, and human activities. Although modern observations have the characteristics of high precision and high resolution, uncovering the full characteristics and mechanisms of geomagnetic field and climate change, as well as their potential relationship with human impact, remains challenging due to the short time scale and interference from human activity. Since the Holocene, East Asia has seen the rise of numerous exceptional Neolithic cultures and ancient civilizations. Investigating the evolution of the geomagnetic field and the dynamics of climate change during this period is crucial to gain deeper insights into the interplay between the geomagnetic field, climate, and humanity. The marginal seas are crucial land-sea interfaces, characterized by high sedimentation rates and stable sedimentary environments. These attributes make them ideal regions for conducting detailed high-resolution studies of paleomagnetism and paleoenvironment. Here, we systematically studied the sediments of the M12-8, M5-8, and BHB15-6 cores derived from the Bohai Sea, using rock magnetism, paleomagnetism, sedimentology, and organic geochemistry as primary investigative tools. The main results of this study are as follows:

Rock magnetic results indicate that fine-grained magnetite is the primary remanent carrier of the sediment, providing a suitable medium for recording changes in the geomagnetic field. Age models of the studied cores were established through a combination of radiocarbon 14C dating and inter-profile correlation of mass-normalized magnetic susceptibility. The paleomagnetic records from the Bohai Sea are more consistent with the predictions of the CALS10.1b and SHA_DIF.14k models and with those from middle-latitudes, rather than the low-latitudes, as well as recorded a geomagnetic spike around 1300 BCE. The discrepancies in geomagnetic characteristics between the mid- and low-latitudes of East Asia were attributed primarily to the variations of the Siberian flux lobe. The Chinese and Levantine geomagnetic spikes might originate from two distinct magnetic flux patches.

The sediment of core M5-8 is primarily sourced from the Yellow River, and its fine-grained particles (<63μm) are influenced by the intensity of Asian Summer Monsoon and can be used to indicate the evolution of the summer monsoon. The new records indicate a gradual weakening of the summer monsoon in North China over the past ~2900 years, primarily due to the southward shift of the Intertropical Convergence Zone caused by reduced solar radiation, combined with the effects of El Niño-Southern Oscillation and Atlantic Multidecadal Variability. Over the past millennium, a distinctive sandwich-type summer precipitation pattern was observed in eastern China, characterized by a positive/negative/positive structure in North-Central-South China during the Medieval Climate Anomaly and reversed during the Little Ice Age. These patterns were influenced by external forcings, including solar activity and volcanic eruptions.

The sediment characteristics of core BHB15-6, including grain-size characteristics, organic carbon content, and Ca/Ti ratio variations, reveal a gradual strengthening of the Yellow Sea Warm Current since 3400 BCE. Around 1500 BCE, its strength had reached a level similar to that of present day and has since remained relatively stable. A stronger Asian Winter Monsoon will enhance the coastal currents along the Yellow and Bohai Seas, resulting in an intensification of the Yellow Sea Warm Current. This intensification and intrusion of the Yellow Sea Warm Current has altered the hydrodynamic conditions in the Bohai Sea, promoting the formation of muddy areas. The influx of nutrients transported by the Yellow Sea Warm Current has to some extent increased the productivity of the Bohai Sea muddy areas, creating a sediment-water interface that tends to be more reducing, thus facilitating the preservation of terrestrial organic matter. Over the past 3000 years, human population growth and the expansion of cultivated land have altered the ecological landscape of the Yellow River Basin, which has subsequently impacted the influx of terrigenous organic matter to the Bohai Sea.

Based on the reconstructed paleointensity and paleo-precipitation records, a significant revelation emerges: there is a negative correlation between periods of low geomagnetic field intensity and lower rainfall in East Asia. This relationship is likely influenced by the modulation of galactic cosmic rays by the geomagnetic field. Notably, the geomagnetic intensity does not linearly correspond to conventional climate change patterns. Therefore, there is an urgent requirement for thorough research to explore the mechanisms and magnitude of the geomagnetic field's impact on climate dynamics.

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2024-06
参考文献列表

[1] WU F, FANG X, YANG Y, et al. Reorganization of Asian climate in relation to Tibetan Plateau uplift[J]. Nature Reviews Earth & Environment, 2022, 3(10): 684-700.
[2] WEBER S L, TUENTER E. The impact of varying ice sheets and greenhouse gases on the intensity and timing of boreal summer monsoons[J]. Quaternary Science Reviews, 2011, 30(3-4): 469-479.
[3] LIU Z, LU Z, WEN X, et al. Evolution and forcing mechanisms of El Niño over the past 21,000 years[J]. Nature, 2014, 515(7528): 550-553.
[4] OTTERÅ O H, BENTSEN M, DRANGE H, et al. External forcing as a metronome for Atlantic multidecadal variability[J]. Nature Geoscience, 2010, 3(10): 688-694.
[5] 赵美训, 丁杨, 于蒙. 中国边缘海沉积有机质来源及其碳汇意义[J]. 中国海洋大学学报, 2017, 47(9): 70-76.
[6] GALLET Y, GENEVEY A, FLUTEAU F. Does Earth’s magnetic field secular variation control centennial climate change?[J]. Earth and Planetary Science Letters, 2005, 236(1-2): 339-347.
[7] GALLET Y, GENEVEY A, LE GOFF M, et al. Possible impact of the Earth’s magnetic field on the history of ancient civilizations[J]. Earth and Planetary Science Letters, 2006, 246(1-2): 17-26.
[8] CHANNELL J E T, VIGLIOTTI L. The Role of Geomagnetic Field Intensity in Late Quaternary Evolution of Humans and Large Mammals[J]. Reviews of Geophysics, 2019, 57(3): 709-738.
[9] COOPER A, TURNEY C S M, PALMER J, et al. A global environmental crisis 42,000 years ago[J]. Science, 2021, 371(6531): 811-818.
[10] YANCHEVA G, NOWACZYK N R, MINGRAM J, et al. Influence of the intertropical convergence zone on the East Asian monsoon[J]. Nature, 2007, 445(7123): 74-77.
[11] ZHANG H, CHENG H, SINHA A, et al. Collapse of the Liangzhu and other Neolithic cultures in the lower Yangtze region in response to climate change[J]. Science Advances, 2021, 7(48): 1-10.
[12] TAUXE L, STEINDORF J L, HARRIS A. Depositional remanent magnetization: Toward an improved theoretical and experimental foundation[J]. Earth and Planetary Science Letters, 2006, 244(3-4): 515-529.
[13] YANG X, LIU Q, YU K, et al. Paleosecular variations of the geomagnetic field during the Holocene from Eastern Asia[J]. Physics of the Earth and Planetary Interiors, 2016, 254: 25-36.
[14] SHENG M, WANG X, DEKKERS M J, et al. Paleomagnetic Secular Variation and Relative Paleointensity During the Holocene in South China—Huguangyan Maar Lake Revisited[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(6): 2681-2697.
[15] COE A L. The sedimentary record of sea-level change[M]. Cambridge University Press, 2003.
[16] LIU J P, MILLIMAN J D, GAO S, et al. Holocene development of the Yellow River’s subaqueous delta, North Yellow Sea[J]. Marine Geology, 2004, 209(1-4): 45-67.
[17] ZHENG Y, ZHENG H, KISSEL C, et al. Sedimentation rate control on diagenesis, East China Sea sediments[J]. Physics of the Earth and Planetary Interiors, 2011, 187(3-4): 301-309.
[18] TARDUNO J A, COTTRELL R D, WATKEYS M K, et al. Geomagnetic field strength 3.2 billion years ago recorded by single silicate crystals[J]. Nature, 2007, 446(7136): 657-660.
[19] TARDUNO J A, COTTRELL R D, WATKEYS M K, et al. Geodynamo, Solar Wind, and Magnetopause 3.4 to 3.45 Billion Years Ago[J]. Science, 2010, 327(5970): 1238-1240.
[20] LIU Q. Will the Earth’s magnetic reverse its polarity in the near future?[J]. Solid Earth Sciences, 2020, 5(4): 247-248.
[21] TEANBY N, GUBBINS D. The effects of aliasing and lock-in processes on palaeosecular variation records from sediments[J]. Geophysical Journal International, 2000, 142(2): 563-570.
[22] SAGNOTTI L, BUDILLON F, DINARÈS-TURELL J, et al. Evidence for a variable paleomagnetic lock-in depth in the Holocene sequence from the Salerno Gulf (Italy): Implications for “high-resolution” paleomagnetic dating[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(11): n/a-n/a.
[23] LIU Q, ROBERTS A P, ROHLING E J, et al. Post-depositional remanent magnetization lock-in and the location of the Matuyama-Brunhes geomagnetic reversal boundary in marine and Chinese loess sequences[J]. Earth and Planetary Science Letters, 2008, 275(1-2): 102-110.
[24] KATARI K, TAUXE L. Effects of pH and salinity on the intensity of magnetization in redeposited sediments[J]. Earth and Planetary Science Letters, 2000, 181(4): 489-496.
[25] ROBERTS A P, TURNER G M. GEOMAGNETIC EXCURSIONS AND SECULAR VARIATIONS[M]//Encyclopedia of Quaternary Science. 2nd ed. Elsevier, 2013: 705-720.
[26] COX A, DOELL R R, DALRYMPLE G B. Reversals of the Earth’s Magnetic Field[J]. Science, 1964, 144(3626): 1537-1543.
[27] COX A, DOELL R R, DALRYMPLE G B. Geomagnetic polarity epochs and pleistocene geochronometry[J]. Nature, 1963, 198(4885): 1049-1051.
[28] CHANNELL J E T, SINGER B S, JICHA B R. Timing of Quaternary geomagnetic reversals and excursions in volcanic and sedimentary archives[J]. Quaternary Science Reviews, 2020, 228: 106114.
[29] HEAD M J, GIBBARD P L. Early-Middle Pleistocene transitions: Linking terrestrial and marine realms[J]. Quaternary International, 2015, 389: 7-46.
[30] GUYODO Y, VALET J P. Relative variations in geomagnetic intensity from sedimentary records: The past 200,000 years[J]. Earth and Planetary Science Letters, 1996, 143(1-4): 23-36.
[31] GUYODO Y, VALET J P. Global changes in intensity of the Earth’s magnetic field during the past 800 kyr[J]. Nature, 1999, 399(6733): 249-252.
[32] LAJ C, KISSEL C, BEER J. High resolution global paleointensity stack since 75 kyr (GLOPIS-75) calibrated to absolute values[M]//Geophysical Monograph Series: Vol. 145. 2004.
[33] KONO M, ROBERTS P H. Recent geodynamo simulations and observations of the geomagnetic field[J]. Reviews of Geophysics, 2002, 40(4): 4-1-4-53.
[34] GLATZMAIER G A, COE R S, HONGRE L, et al. The role of the Earth’s mantle in controlling the frequency of geomagnetic reversals[J]. Nature, 1999, 401(6756): 885-890.
[35] COE R S, HONGRE L, GLATZMAIER G A. An examination of simulated geomagnetic reversals from a palaeomagnetic perspective[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2000, 358(1768): 1141-1170.
[36] TAUXE L, HARTL P. 11 million years of Oligocene geomagnetic field behaviour[J]. Geophysical Journal International, 1997, 128(1): 217-229.
[37] TARDUNO J A, COTTRELL R D, SMIRNOV A V. The Cretaceous superchron geodynamo: Observations near the tangent cylinder[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(22): 14020-14025.
[38] PANOVSKA S, CONSTABLE C G. An activity index for geomagnetic paleosecular variation, excursions, and reversals[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(4): 1366-1375.
[39] HOLLERBACH R, JONES C A. Influence of the Earth’s inner core on geomagnetic fluctuations and reversals[J]. Nature, 1993, 365(6446): 541-543.
[40] GLATZMAIERS G A, ROBERTS P H. A three-dimensional self-consistent computer simulation of a geomagnetic field reversal[J]. Nature, 1995, 377(6546): 203-209.
[41] GUBBINS D. The distinction between geomagnetic excursions and reversals[J]. Geophysical Journal International, 1999, 137(1): F1-F4.
[42] BUSSE F H, SIMITEV R D. Toroidal flux oscillation as possible cause of geomagnetic excursions and reversals[J]. Physics of the Earth and Planetary Interiors, 2008, 168(3-4): 237-243.
[43] ROBERTS A P, WINKLHOFER M. Why are geomagnetic excursions not always recorded in sediments? Constraints from post-depositional remanent magnetization lock-in modelling[J]. Earth and Planetary Science Letters, 2004, 227(3-4): 345-359.
[44] CHOU Y M, JIANG X, LIU Q, et al. Multidecadally resolved polarity oscillations during a geomagnetic excursion[J]. Proceedings of the National Academy of Sciences, 2018, 115(36): 8913-8918.
[45] ZIEGLER L B, CONSTABLE C G, JOHNSON C L, et al. PADM2M: A penalized maximum likelihood model of the 0-2 Ma palaeomagnetic axial dipole moment[J]. Geophysical Journal International, 2011, 184(3): 1069-1089.
[46] CAI S, JIN G, TAUXE L, et al. Archaeointensity results spanning the past 6 kiloyears from eastern China and implications for extreme behaviors of the geomagnetic field[J]. Proceedings of the National Academy of Sciences, 2017, 114(1): 39-44.
[47] BÉGUIN A, FILIPPIDI A, DE LANGE G J, et al. The evolution of the Levantine Iron Age geomagnetic Anomaly captured in Mediterranean sediments[J]. Earth and Planetary Science Letters, 2019, 511: 55-66.
[48] OSETE M L, MOLINA-CARDÍN A, CAMPUZANO S A, et al. Two archaeomagnetic intensity maxima and rapid directional variation rates during the Early Iron Age observed at Iberian coordinates. Implications on the evolution of the Levantine Iron Age Anomaly[J]. Earth and Planetary Science Letters, 2020, 533: 116047.
[49] KORTE M, CONSTABLE C G. Archeomagnetic Intensity Spikes: Global or Regional Geomagnetic Field Features?[J]. Frontiers in Earth Science, 2018, 6(March): 1-15.
[50] GALLET Y, GENEVEY A, COURTILLOT V. On the possible occurrence of “archaeomagnetic jerks” in the geomagnetic field over the past three millennia[J]. Earth and Planetary Science Letters, 2003, 214(1-2): 237-242.
[51] CAI S, TAUXE L, WANG W, et al. High‐Fidelity Archeointensity Results for the Late Neolithic Period From Central China[J]. Geophysical Research Letters, 2020, 47(10): 1-11.
[52] CAI S, TAUXE L, DENG C, et al. Geomagnetic intensity variations for the past 8 kyr: New archaeointensity results from Eastern China[J]. Earth and Planetary Science Letters, 2014, 392: 217-229.
[53] CAI S, CHEN W, TAUXE L, et al. New constraints on the variation of the geomagnetic field during the late Neolithic period: Archaeointensity results from Sichuan, southwestern China[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(4): 2056-2069.
[54] YU Y. High-fidelity paleointensity determination from historic volcanoes in Japan[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B8): n/a-n/a.
[55] HONG H, YU Y, LEE C H, et al. Globally strong geomagnetic field intensity circa 3000 years ago[J]. Earth and Planetary Science Letters, 2013, 383: 142-152.
[56] COURTILLOT V, GALLET Y, LE MOUËL J L, et al. Are there connections between the Earth’s magnetic field and climate?[J]. Earth and Planetary Science Letters, 2007, 253(3-4): 328-339.
[57] KNUDSEN M F, RIISAGER P. Is there a link between Earth’s magnetic field and low-latitude precipitation?[J]. Geology, 2009, 37(1): 71-74.
[58] LAKEN B A, PALLÉ E, ČALOGOVIĆ J, et al. A cosmic ray-climate link and cloud observations[J]. Journal of Space Weather and Space Climate, 2012, 2.
[59] KIRKBY J. Cosmic rays and climate[J]. Surveys in Geophysics, 2007, 28(5-6): 333-375.
[60] ZHANG B, WANG L, ZHAN A, et al. Long-term exposure to a hypomagnetic field attenuates adult hippocampal neurogenesis and cognition[J]. Nature Communications, 2021, 12(1): 1-17.
[61] BRANZEI D, FOIANI M. Regulation of DNA repair throughout the cell cycle[J]. Nature Reviews Molecular Cell Biology, 2008, 9(4): 297-308.
[62] AMIT H, OLSON P. Time-average and time-dependent parts of core flow[J]. Physics of the Earth and Planetary Interiors, 2006, 155(1-2): 120-139.
[63] AUBERT J, FINLAY C C, FOURNIER A. Bottom-up control of geomagnetic secular variation by the Earth’s inner core[J]. Nature, 2013, 502(7470): 219-223.
[64] YUKUTAKE T, SHIMIZU H. On the geomagnetic secular variation in the Pacific region[J]. Physics of the Earth and Planetary Interiors, 2018, 283(November 2017): 122-130.
[65] WEI Z G, XU W Y. Westward drift in secular variation of the main geomagnetic field inferred from IGRF[J]. Earth, Planets and Space, 2003, 55(3): 131-137.
[66] DE SANTIS A, QAMILI E, WU L. Toward a possible next geomagnetic transition?[J]. Natural Hazards and Earth System Sciences, 2013, 13(12): 3395-3403.
[67] PAVÓN-CARRASCO F J, DE SANTIS A. The South Atlantic anomaly: The key for a possible geomagnetic reversal[J]. Frontiers in Earth Science, 2016, 4(April): 1-9.
[68] BROWN M, KORTE M, HOLME R, et al. Earth’s magnetic field is probably not reversing[J]. Proceedings of the National Academy of Sciences, 2018, 115(20): 5111-5116.
[69] NILSSON A, SUTTIE N, STONER J S, et al. Recurrent ancient geomagnetic field anomalies shed light on future evolution of the South Atlantic Anomaly[J]. Proceedings of the National Academy of Sciences, 2022, 119(24): 1-7.
[70] METMAN M C, LIVERMORE P W, MOUND J E. The reversed and normal flux contributions to axial dipole decay for 1880–2015[J]. Physics of the Earth and Planetary Interiors, 2018, 276: 106-117.
[71] LIVERMORE P W, FINLAY C C, BAYLIFF M. Recent north magnetic pole acceleration towards Siberia caused by flux lobe elongation[J]. Nature Geoscience, 2020, 13(5): 387-391.
[72] CARICCHI C, CAMPUZANO S A, SAGNOTTI L, et al. Reconstruction of the Virtual Geomagnetic Pole ( VGP ) path at high latitude for the last 22 kyr : The role of radial field flux patches as VGP attractor[J]. Earth and Planetary Science Letters, 2022, 595: 117762.
[73] WEI Q Y, LI D J, CAO G Y, et al. The Total Intensity of Geomagnetic Field in Southern China for the Period from 4500 B. C. to A. D. 1500[J]. Journal of geomagnetism and geoelectricity, 1986, 38(12): 1311-1322.
[74] WEI Q Y, LI D J, CAO G Y, et al. Intensity of the geomagnetic field near Loyang, China between 500 BC and AD 1900[J]. Nature, 1982, 296(5859): 728-729.
[75] ZHU R, PAN Y, COE R S. Paleointensity studies of a lava succession from Jilin Province, northeastern China: Evidence for the Blake event[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B4): 8305-8317.
[76] ZHENG Y, ZHENG H, DENG C, et al. Holocene paleomagnetic secular variation from East China Sea and a PSV stack of East Asia[J]. Physics of the Earth and Planetary Interiors, 2014, 236: 69-78.
[77] QUADE J, CERLING T E, BOWMAN J R. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan[J]. Nature, 1989, 342(6246): 163-166.
[78] GUO Z T, SUN B, ZHANG Z S, et al. A major reorganization of Asian climate by the early Miocene[J]. Climate of the Past, 2008, 4(3): 153-174.
[79] GUO Z T, RUDDIMAN W F, HAO Q Z, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J]. Nature, 2002, 416(6877): 159-163.
[80] LICHT A, VAN CAPPELLE M, ABELS H A, et al. Asian monsoons in a late Eocene greenhouse world[J]. Nature, 2014, 513(7519): 501-506.
[81] SPICER R A, YANG J, HERMAN A B, et al. Asian Eocene monsoons as revealed by leaf architectural signatures[J]. Earth and Planetary Science Letters, 2016, 449: 61-68.
[82] FARNSWORTH A, LUNT D J, ROBINSON S A, et al. Past East Asian monsoon evolution controlled by paleogeography, not CO 2[J]. Science Advances, 2019, 5(10): 1-14.
[83] ACOSTA R P, HUBER M. Competing Topographic Mechanisms for the Summer Indo-Asian Monsoon[J]. Geophysical Research Letters, 2020, 47(3).
[84] DING L, XU Q, YUE Y, et al. The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene-Eocene Linzhou Basin[J]. Earth and Planetary Science Letters, 2014, 392: 250-264.
[85] SUN Y, CLEMENS S C, AN Z, et al. Astronomical timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2006, 25(1-2): 33-48.
[86] LASKAR J, ROBUTEL P, JOUTEL F, et al. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy and Astrophysics, 2004, 428(1): 261-285.
[87] LIU T, DING Z. Chinese loess and the paleomonsoon[J]. Annual Review of Earth and Planetary Sciences, 1998, 26: 111-145.
[88] CHENG H, EDWARDS R L, WANG Y, et al. A penultimate glacial monsoon record from Hulu Cave and two-phase glacial terminations[J]. Geology, 2006, 34(3): 217.
[89] WANG Y, CHENG H, EDWARDS R L, et al. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years[J]. Nature, 2008, 451(7182): 1090-1093.
[90] CHENG H, SINHA A, WANG X, et al. The Global Paleomonsoon as seen through speleothem records from Asia and the Americas[J]. Climate Dynamics, 2012, 39(5): 1045-1062.
[91] CHENG H, EDWARDS R L, SINHA A, et al. The Asian monsoon over the past 640,000 years and ice age terminations[J]. Nature, 2016, 534(7609): 640-646.
[92] XIE X, LIU X, CHEN G, et al. A Transient Modeling Study of the Latitude Dependence of East Asian Winter Monsoon Variations on Orbital Timescales[J]. Geophysical Research Letters, 2019, 46(13): 7565-7573.
[93] CLEMENS S C, PRELL W L, SUN Y. Orbital-scale timing and mechanisms driving Late Pleistocene Indo-Asian summer monsoons: Reinterpreting cave speleothem δ18O[J]. Paleoceanography, 2010, 25(4): 1-19.
[94] GEBREGIORGIS D, HATHORNE E C, GIOSAN L, et al. Southern Hemisphere forcing of South Asian monsoon precipitation over the past ~1 million years[J]. Nature Communications, 2018, 9(1): 1-8.
[95] WANG P X, WANG B, CHENG H, et al. The global monsoon across time scales: Mechanisms and outstanding issues[J]. Earth-Science Reviews, 2017, 174(July 2016): 84-121.
[96] 程海, 张海伟, 蔡演军, 等. 轨道尺度的亚洲夏季风演变:“困惑”与探索[J]. 中国科学:地球科学, 2021, 51(4): 507-522.
[97] DING Z L, RANOV V, YANG S L, et al. The loess record in southern Tajikistan and correlation with Chinese loess[J]. Earth and Planetary Science Letters, 2002, 200(3-4): 387-400.
[98] SUN Y, CLEMENS S C, MORRILL C, et al. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon[J]. Nature Geoscience, 2012, 5(1): 46-49.
[99] KANG S, DU J, WANG N, et al. Early Holocene weakening and mid- to late Holocene strengthening of the East Asian winter monsoon[J]. Geology, 2020, 48(11): 1043-1047.
[100] KANG S, WANG X, ROBERTS H M, et al. Late Holocene anti-phase change in the East Asian summer and winter monsoons[J]. Quaternary Science Reviews, 2018, 188: 28-36.
[101] XIA D, JIA J, LI G, et al. Out-of-phase evolution between summer and winter East Asian monsoons during the Holocene as recorded by Chinese loess deposits[J]. Quaternary Research, 2014, 81(3): 500-507.
[102] WANG L, LI J, LU H, et al. The East Asian winter monsoon over the last 15,000 years: its links to high-latitudes and tropical climate systems and complex correlation to the summer monsoon[J]. Quaternary Science Reviews, 2012, 32: 131-142.
[103] GE Q, XUE Z, YAO Z, et al. Anti-phase relationship between the East Asian winter monsoon and summer monsoon during the Holocene?[J]. Journal of Ocean University of China, 2017, 16(2): 175-183.
[104] LYU W, FU T, HU Z, et al. Sedimentary Dynamics of the Central South Yellow Sea Revealing the Relation Between East Asian Summer and Winter Monsoon Over the Past 6000 years[J]. Frontiers in Earth Science, 2021, 9(August): 1-12.
[105] WEN X, LIU Z, WANG S, et al. Correlation and anti-correlation of the East Asian summer and winter monsoons during the last 21,000 years[J]. Nature Communications, 2016, 7(1): 11999.
[106] KABOTH-BAHR S, BAHR A, ZEEDEN C, et al. A tale of shifting relations: East Asian summer and winter monsoon variability during the Holocene[J]. Scientific Reports, 2021, 11(1): 1-10.
[107] DING Y, WANG Z, SUN Y. Inter‐decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences[J]. International Journal of Climatology, 2008, 28(9): 1139-1161.
[108] JIANG S, ZHOU X, SACHS J P, et al. Central eastern China hydrological changes and ENSO-like variability over the past 1800 yr[J]. Geology, 2021, 49(11): 1386-1390.
[109] DAI G, ZHANG Z, OTTERÅ O H, et al. A Modeling Study of the Tripole Pattern of East China Precipitation Over the Past 425 ka[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(7): 1-13.
[110] CHEN J, CHEN F, FENG S, et al. Hydroclimatic changes in China and surroundings during the Medieval Climate Anomaly and Little Ice Age: Spatial patterns and possible mechanisms[J]. Quaternary Science Reviews, 2015, 107: 98-111.
[111] WANG M, HU C, LIU Y, et al. Precipitation in eastern China over the past millennium varied with large-scale climate patterns[J]. Communications Earth & Environment, 2022, 3(1): 321.
[112] CHEN M, YU J, WANG X, et al. The Changing Impact Mechanisms of a Diverse El Niño on the Western Pacific Subtropical High[J]. Geophysical Research Letters, 2019, 46(2): 953-962.
[113] ZHOU T J, YU R C. Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China[J]. Journal of Geophysical Research, 2005, 110(D8): D08104.
[114] ONG-HUA S, FENG X. Two Northward Jumps of the Summertime Western Pacific Subtropical High and Their Associations with the Tropical SST Anomalies[J]. Atmospheric and Oceanic Science Letters, 2011, 4(2): 98-102.
[115] RAO Z, LI Y, ZHANG J, et al. Investigating the long-term palaeoclimatic controls on the δ D and δ 18 O of precipitation during the Holocene in the Indian and East Asian monsoonal regions[J]. Earth-Science Reviews, 2016, 159: 292-305.
[116] LEE E J, YEH S W, JHUN J G, et al. Seasonal change in anomalous WNPSH associated with the strong East Asian summer monsoon[J]. Geophysical Research Letters, 2006, 33(21): 1-5.
[117] RAO Z, JIA G, LI Y, et al. Asynchronous evolution of the isotopic composition and amount of precipitation in north China during the Holocene revealed by a record of compound-specific carbon and hydrogen isotopes of long-chain n-alkanes from an alpine lake[J]. Earth and Planetary Science Letters, 2016, 446: 68-76.
[118] HE C, LIN A, GU D, et al. Interannual variability of Eastern China Summer Rainfall: the origins of the meridional triple and dipole modes[J]. Climate Dynamics, 2017, 48(1-2): 683-696.
[119] ZHANG Y, WALLACE J M, BATTISTI D S. ENSO-like Interdecadal Variability: 1900–93[J]. Journal of Climate, 1997, 10(5): 1004-1020.
[120] CHAN J C L, ZHOU W. PDO, ENSO and the early summer monsoon rainfall over south China[J]. Geophysical Research Letters, 2005, 32(8): 1-5.
[121] ZHANG H, CHENG H, SPÖTL C, et al. A 200-year annually laminated stalagmite record of precipitation seasonality in southeastern China and its linkages to ENSO and PDO[J]. Scientific Reports, 2018, 8(1): 1-10.
[122] WANG X, DUAN W, TAN M, et al. Variability of PDO identified by a last 300-year stalagmite δ18O record in Southwest China[J]. Quaternary Science Reviews, 2021, 261: 106947.
[123] ZHOU X, JIANG D, LANG X. Unstable relationship between the Pacific Decadal Oscillation and eastern China summer precipitation: Insights from the Medieval Climate Anomaly and Little Ice Age[J]. Holocene, 2020, 30(6): 799-809.
[124] HAUG G H, HUGHEN K A, SIGMAN D M, et al. Southward Migration of the Intertropical Convergence Zone Through the Holocene[J]. Science, 2001, 293(5533): 1304-1308.
[125] BROCCOLI A J, DAHL K A, STOUFFER R J. Response of the ITCZ to Northern Hemisphere cooling[J]. Geophysical Research Letters, 2006, 33(1): n/a-n/a.
[126] DU X, RUSSELL J M, LIU Z, et al. North Atlantic cooling triggered a zonal mode over the Indian Ocean during Heinrich Stadial 1[J]. Science Advances, 2023, 9(1): 1-10.
[127] WANG Y, CHENG H, EDWARDS R L, et al. The Holocene Asian Monsoon: Links to Solar Changes and North Atlantic Climate[J]. Science, 2005, 308(5723): 854-857.
[128] SHENG M, WANG X, ZHANG S, et al. A 20,000-year high-resolution pollen record from Huguangyan Maar Lake in tropical–subtropical South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 472: 83-92.
[129] SHANG S, YANG X, ZHANG E, et al. Variation in humidity and the forcing mechanism in Asian monsoon-influenced regions indicated by hematite/goethite from Baxian Lake, southern China, since AD 800[J]. Holocene, 2022, 32(9): 977-990.
[130] YAN H, WEI W, SOON W, et al. Dynamics of the intertropical convergence zone over the western Pacific during the Little Ice Age[J]. Nature Geoscience, 2015, 8(4): 315-320.
[131] SUNG M K, KWON W T, BAEK H J, et al. A possible impact of the North Atlantic Oscillation on the east Asian summer monsoon precipitation[J]. Geophysical Research Letters, 2006, 33(21): L21713.
[132] WU Z, WANG B, LI J, et al. An empirical seasonal prediction model of the east Asian summer monsoon using ENSO and NAO[J]. Journal of Geophysical Research Atmospheres, 2009, 114(18): 1-13.
[133] LINDERHOLM H W, OU T, JEONG J H, et al. Interannual teleconnections between the summer North Atlantic Oscillation and the East Asian summer monsoon[J]. Journal of Geophysical Research Atmospheres, 2011, 116(13): 1-13.
[134] LINDERHOLM H W, SEIM A, OU T, et al. Exploring teleconnections between the summer NAO (SNAO) and climate in East Asia over the last four centuries - A tree-ring perspective[J]. Dendrochronologia, 2013, 31(4): 297-310.
[135] SUNDARAM S, YIN Q Z, BERGER A, et al. Impact of ice sheet induced North Atlantic oscillation on East Asian summer monsoon during an interglacial 500,000 years ago[J]. Climate Dynamics, 2012, 39(5): 1093-1105.
[136] HE C, CLEMENT A C, KRAMER S M, et al. Tropical Atlantic multidecadal variability is dominated by external forcing[J]. Nature, 2023, 622(7983): 521-527.
[137] SUTTON R T, MCCARTHY G D, ROBSON J, et al. Atlantic multidecadal variability and the U.K. acsis program[J]. Bulletin of the American Meteorological Society, 2018, 99(2): 415-425.
[138] ZHANG R. On the persistence and coherence of subpolar sea surface temperature and salinity anomalies associated with the Atlantic multidecadal variability[J]. Geophysical Research Letters, 2017, 44(15): 7865-7875.
[139] MONERIE P, ROBSON J, DONG B, et al. Effect of the Atlantic Multidecadal Variability on the Global Monsoon[J]. Geophysical Research Letters, 2019, 46(3): 1765-1775.
[140] LU R, DONG B, DING H. Impact of the Atlantic Multidecadal Oscillation on the Asian summer monsoon[J]. Geophysical Research Letters, 2006, 33(24): L24701.
[141] WANG Y, LI S, LUO D. Seasonal response of Asian monsoonal climate to the Atlantic Multidecadal Oscillation[J]. Journal of Geophysical Research, 2009, 114(D2): D02112.
[142] ZHU L, COOPER D J, HAN S, et al. Influence of the Atlantic Multidecadal Oscillation on drought in northern Daxing’an Mountains, Northeast China[J]. Catena, 2021, 198(May 2020): 105017.
[143] WANG J, YANG B, LJUNGQVIST F C, et al. The relationship between the Atlantic Multidecadal Oscillation and temperature variability in China during the last millennium[J]. Journal of Quaternary Science, 2013, 28(7): 653-658.
[144] ZHANG R, SUTTON R, DANABASOGLU G, et al. A Review of the Role of the Atlantic Meridional Overturning Circulation in Atlantic Multidecadal Variability and Associated Climate Impacts[J]. Reviews of Geophysics, 2019, 57(2): 316-375.
[145] NITANI H. Beginning of the Kuroshio[C]//Kuroshio: Its physical aspects. 1972: 129-163.
[146] 管秉贤. 有关我国近海海流研究的若干问题[J]. 海洋与湖沼, 1962, 4(3).
[147] BEARDSLEY R C, LIMEBURNER R, YU H, et al. Discharge of the Changjiang (Yangtze River) into the East China Sea[J]. Continental Shelf Research, 1985, 4(1-2): 57-76.
[148] CHEN C, BEARDSLEY R C, LIMEBURNER R, et al. Comparison of winter and summer hydrographic observations in the Yellow and East China Seas and adjacent Kuroshio during 1986[J]. Continental Shelf Research, 1994, 14(7-8): 909-929.
[149] FANG Y, ZHANG Q H, FANG G H. A numerical study on the path and origin of the Yellow Sea Warm Current[J]. The Yellow Sea, 1997, 3(1/2): 18-26.
[150] QIAN F L, XU X B, TANG Y X, et al. Numerical study on the path and origin of the yellow sea warm current[J]. Journal of Hydrodynamics, 2001, 13(3): 1-9.
[151] HE Y, ZHOU X, LIU Y, et al. Weakened Yellow Sea Warm Current over the last 2-3 centuries[J]. Quaternary International, 2014, 349: 252-256.
[152] ZHANG Y, ZHOU X, HE Y, et al. Persistent intensification of the Kuroshio Current during late Holocene cool intervals[J]. Earth and Planetary Science Letters, 2019, 506: 15-22.
[153] PI Z, CHANG F, LI T, et al. Sea surface temperature evolution in the Yellow Sea Warm Current pathway and its teleconnection with high and low latitude forcing during the mid-late Holocene[J]. Journal of Oceanology and Limnology, 2021.
[154] LI D, YU M, JIA Y, et al. Gradually Cooling of the Yellow Sea Warm Current Driven by Tropical Pacific Subsurface Water Temperature Changes Over the Past 5 kyr[J]. Geophysical Research Letters, 2021, 48(10): 1-11.
[155] KIM J M, KUCERA M. Benthic foraminifer record of environmental changes in the Yellow Sea (Hwanghae) during the last 15,000 years[J]. Quaternary Science Reviews, 2000, 19(11): 1067-1085.
[156] NAN Q, LI T, CHEN J, et al. Holocene paleoenvironment changes in the northern Yellow Sea: Evidence from alkenone-derived sea surface temperature[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 483: 83-93.
[157] XIANG R, YANG Z, SAITO Y, et al. Paleoenvironmental changes during the last 8400 years in the southern Yellow Sea: Benthic foraminiferal and stable isotopic evidence[J]. Marine Micropaleontology, 2008, 67(1-2): 104-119.
[158] LI T, NAN Q, JIANG B, et al. Formation and evolution of the modern warm current system in the East China Sea and the Yellow Sea since the last deglaciation[J]. Chinese Journal of Oceanology and Limnology, 2009, 27(2): 237-249.
[159] LIN X, YANG J, GUO J, et al. An asymmetric upwind flow, Yellow Sea Warm Current: 1. New observations in the western Yellow Sea[J]. Journal of Geophysical Research: Oceans, 2011, 116(4): 1-13.
[160] TAK Y J, CHO Y K, SEO G H, et al. Evolution of wind-driven flows in the Yellow Sea during winter[J]. Journal of Geophysical Research: Oceans, 2016, 121(3): 1970-1983.
[161] JIA Y, LI D W, YU M, et al. High- and low-latitude forcing on the south Yellow Sea surface water temperature variations during the Holocene[J]. Global and Planetary Change, 2019, 182(November 2018): 103025.
[162] ZHANG Y, ZHENG X, KONG D, et al. Enhanced North Pacific subtropical gyre circulation during the late Holocene[J]. Nature Communications, 2021, 12(1): 5957.
[163] RUAN J, XU Y, DING S, et al. A high resolution record of sea surface temperature in southern Okinawa Trough for the past 15,000years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 426: 209-215.
[164] LI Q, LI G, CHEN M, et al. New Insights Into Kuroshio Current Evolution Since the Last Deglaciation Based on Paired Organic Paleothermometers From the Middle Okinawa Trough[J]. Paleoceanography and Paleoclimatology, 2020, 35(12): 1-20.
[165] ROSENTHAL Y, LINSLEY B K, OPPO D W. Pacific Ocean Heat Content During the Past 10,000 Years[J]. Science, 2013, 342(6158): 617-621.
[166] LIU J, LI A, CHEN M, et al. Sedimentary changes during the Holocene in the Bohai Sea and its paleoenvironmental implication[J]. Continental Shelf Research, 2008, 28(10-11): 1333-1339.
[167] LIN C, SU J, XU B, et al. Long-term variations of temperature and salinity of the Bohai sea and their influence on its ecosystem[J]. Progress in Oceanography, 2001, 49(1-4): 7-19.
[168] WU D, WAN X, BAO X, et al. Comparison of summer thermohaline field and circulation structure of the Bohai Sea between 1958 and 2000[J]. Chinese Science Bulletin, 2004, 49(4): 363-369.
[169] QING S, ZHANG J, CUI T, et al. Retrieval of sea surface salinity with MERIS and MODIS data in the Bohai Sea[J]. Remote Sensing of Environment, 2013, 136: 117-125.
[170] DOU Y, LI J, ZHAO J, et al. Clay mineral distributions in surface sediments of the Liaodong Bay, Bohai Sea and surrounding river sediments: Sources and transport patterns[J]. Continental Shelf Research, 2014, 73: 72-82.
[171] LI M, ZHU S, OUYANG T, et al. Magnetic fingerprints of surface sediment in the Bohai Sea, China[J]. Marine Geology, 2020, 427(May): 106226.
[172] YU M, EGLINTON T I, HAGHIPOUR N, et al. Contrasting fates of terrestrial organic carbon pools in marginal sea sediments[J]. Geochimica et Cosmochimica Acta, 2021, 309(2021): 16-30.
[173] ZHENG L wen, ZHAI W dong. Excess nitrogen in the Bohai and Yellow seas, China: Distribution, trends, and source apportionment[J]. Science of the Total Environment, 2021, 794: 148702.
[174] PECK J A, KING J W, COLMAN S M, et al. An 84-kyr paleomagnetic record from the sediments of Lake Baikal, Siberia[J]. Journal of Geophysical Research B: Solid Earth, 1996, 101(5): 11365-11385.
[175] HUANG Y S, LEE T Q, WEI K Y. Dominant dipole effect embedded in paleomagnetic secular variation in Taiwan region over the past 7500years[J]. Physics of the Earth and Planetary Interiors, 2014, 234: 14-22.
[176] YI L, DENG C, XU X, et al. Paleo-megalake termination in the Quaternary: Paleomagnetic and water-level evidence from south Bohai Sea, China[J]. Sedimentary Geology, 2015, 319: 1-12.
[177] QIAO L, BAO X, WU D. The observed currents in summer in the Bohai Sea[J]. Chinese Journal of Oceanology and Limnology, 2008, 26(2): 130-136.
[178] BING-XIAN G. Patterns and Structures of the Currents in Bohai, Huanghai and East China Seas[M]//Oceanology of China Seas: Vol. 9. Dordrecht: Springer Netherlands, 1994: 17-26.
[179] YUE F, GUO-HONG F, QING-HUA Z. Numerical simulation and dynamic study of the wintertime circulation of the Bohai Sea[J]. Chinese Journal of Oceanology and Limnology, 2000, 18(1): 1-9.
[180] 赵保仁, 庄国文, 曹德明. 渤海的环流、潮余流及其对沉积物分布的影响[J]. 海洋与湖沼, 1995, 26(5).
[181] QIAO S, SHI X, WANG G, et al. Sediment accumulation and budget in the Bohai Sea, Yellow Sea and East China Sea[J]. Marine Geology, 2017, 390(June 2016): 270-281.
[182] XUE C. Historical changes in the Yellow River delta, China[J]. Marine Geology, 1993, 113(3-4): 321-330.
[183] 乔淑卿, 石学法, 王国庆, 等. 渤海底质沉积物粒度特征及输运趋势探讨[J]. 海洋学报, 2010, 32(4).
[184] LI G, YUE S, ZHAO D, et al. Rapid Deposition and Dynamic Processes in the Modern Yellow River Mouth[J]. Marine Geology & Quaternary Geology, 2004, 24(3).
[185] LYU W, YANG J, FU T, et al. Asian monsoon and oceanic circulation paced sedimentary evolution over the past 1,500 years in the central mud area of the Bohai Sea, China[J]. Geological Journal, 2020, 55(7): 5606-5618.
[186] YUAN P, WANG H, WU X, et al. Grain-Size Distribution of Surface Sediments in the Bohai Sea and the Northern Yellow Sea: Sediment Supply and Hydrodynamics[J]. Journal of Ocean University of China, 2020, 19(3): 589-600.
[187] CHEN L, LUAN Z, ZHEN T, et al. Mineral assemblages and their distribution patterns in the sediments of the gulf of Bohai Sea[J]. Chinese Journal of Oceanology and Limnology, 1982, 1(1): 82-103.
[188] 王昆山, 石学法, 蔡善武, 等. 黄河口及莱州湾表面沉积物中重矿物分布与来源[J]. 海洋地质与第四纪地质, 2010, 30(6).
[189] HAN Z Z, HONG Y W, LI M, et al. Analysis for heavy mineral characteristics and material provenance in the sediments of the Northern[J]. Periodical of Ocean University of China, 2013, 43(4): 73-79.
[190] 王利波, 李军, 赵京涛, 等. 辽东湾表层沉积物碎屑矿物组合分布及其对物源和沉积物扩散的指示意义[J]. 海洋学报, 2014, 36(2).
[191] 林旭, 刘静, 吴中海, 等. 渤海钻孔物源示踪和河流沉积物扩散研究:碎屑锆石U-Pb年龄和磷灰石原位地球化学元素双重约束[J]. 地质力学学报, 2021, 27(2).
[192] KIRSCHVINK J L. The least-squares line and plane and the analysis of palaeomagnetic data[J]. Geophysical Journal International, 1980, 62(3): 699-718.
[193] PATTON B J, FITCH J L. Anhysteretic remanent magnetization in small steady fields[J]. Journal of Geophysical Research, 1962, 67(1): 307-311.
[194] LIU J, NOWACZYK N, FRANK U, et al. Geomagnetic paleosecular variation record spanning from 40 to 20 ka – implications for the Mono Lake excursion from Black Sea sediments[J]. Earth and Planetary Science Letters, 2019, 509: 114-124.
[195] HARRISON R J, FEINBERG J M. FORCinel: An improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(5): n/a-n/a.
[196] THOMPSON, OLDFIELD. Environmental Magnetism[M]. Environmental Magnetism, 1986.
[197] KING J W, CHANNELL J E T. Sedimentary Magnetism, Environmental Magnetism, and Magnetostratigraphy[J]. Reviews of Geophysics, 1991, 29(S1): 358-370.
[198] LIU Q, ROBERTS A P, TORRENT J, et al. What do the HIRM and S-ratio really measure in environmental magnetism?[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(9).
[199] HEATON T J, KÖHLER P, BUTZIN M, et al. Marine20—The Marine Radiocarbon Age Calibration Curve (0–55,000 cal BP)[J]. Radiocarbon, 2020, 62(4): 779-820.
[200] SOUTHON J, KASHGARIAN M, FONTUGNE M, et al. Marine reservoir corrections for the Indian Ocean and Southeast Asia[C]//Radiocarbon: Vol. 44. 2002: 167-180.
[201] DANE J H, TOPP C, CAMPBELL G S, et al. Part 4. Physical methods. Methods of soil analysis[J]. Soil Science Society of America, Madison, WI, USA, 2002.
[202] BISCAYE P E, GROUSSET F E, REVEL M, et al. Asian provenance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 Ice Core, Summit, Greenland[J]. Journal of Geophysical Research: Oceans, 1997, 102(C12): 26765-26781.
[203] TORRENT J, LIU Q, BLOEMENDAL J, et al. Magnetic Enhancement and Iron Oxides in the Upper Luochuan Loess–Paleosol Sequence, Chinese Loess Plateau[J]. Soil Science Society of America Journal, 2007, 71(5): 1570-1578.
[204] SCHEINOST A C. Use and Limitations of Second-Derivative Diffuse Reflectance Spectroscopy in the Visible to Near-Infrared Range to Identify and Quantify Fe Oxide Minerals in Soils[J]. Clays and Clay Minerals, 1998, 46(5): 528-536.
[205] LOUGHEED B C, OBROCHTA S P. A Rapid, Deterministic Age-Depth Modeling Routine for Geological Sequences With Inherent Depth Uncertainty[J]. Paleoceanography and Paleoclimatology, 2019, 34(1): 122-133.
[206] BONO R K, TARDUNO J A, NIMMO F, et al. Young inner core inferred from Ediacaran ultra-low geomagnetic field intensity[J]. Nature Geoscience, 2019, 12(2): 143-147.
[207] AUBERT J, AMIT H, HULOT G, et al. Thermochemical flows couple the Earth’s inner core growth to mantle heterogeneity[J]. Nature, 2008, 454(7205): 758-761.
[208] JELINEK V. Characterization of the magnetic fabric of rocks[J]. Tectonophysics, 1981, 79(3-4): T63-T67.
[209] NAGATA T. Rock Magnetism[M]. Rock Magnetism, 1961.
[210] DUNLOP D J, ÖZDEMIR Ö. Rock Magnetism: Fundamentals and Frontiers[M]. Cambridge: Cambridge University Press, 1997.
[211] GENDLER T S, SHCHERBAKOV V P, DEKKERS M J, et al. The lepidocrocite-maghemite-haematite reaction chain - I. Acquisition of chemical remanent magnetization by maghemite, its magnetic properties and thermal stability[J]. Geophysical Journal International, 2005, 160(3): 815-832.
[212] ROBERTS A P, HESLOP D, ZHAO X, et al. Understanding fine magnetic particle systems through use of first-order reversal curve diagrams[J]. Reviews of Geophysics, 2014, 52(4): 557-602.
[213] ROBERTS A P, ALMEIDA T P, CHURCH N S, et al. Resolving the Origin of Pseudo‐Single Domain Magnetic Behavior[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(12): 9534-9558.
[214] LASCU I, EINSLE J F, BALL M R, et al. The Vortex State in Geologic Materials: A Micromagnetic Perspective[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(9): 7285-7304.
[215] STACEY F D, BANERJEE S K. The physical principles of rock magnetism[M]. The physical principles of rock magnetism, 1974.
[216] DAY R, FULLER M, SCHMIDT V A. Hysteresis properties of titanomagnetites: Grain-size and compositional dependence[J]. Physics of the Earth and Planetary Interiors, 1977, 13(4): 260-267.
[217] DUNLOP D J. Theory and application of the Day plot ( M rs / M s versus H cr / H c ) 2. Application to data for rocks, sediments, and soils[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B3): 1-22.
[218] ROBERTS A P, TAUXE L, HESLOP D, et al. A Critical Appraisal of the “Day” Diagram[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(4): 2618-2644.
[219] ANSON G L, KODAMA K P. Compaction‐induced inclination shallowing of the post‐depositional remanent magnetization in a synthetic sediment[J]. Geophysical Journal of the Royal Astronomical Society, 1987, 88(3): 673-692.
[220] TAUXE L, KENT D V. A Simplified Statistical Model for the Geomagnetic Field and the Detection of Shallow Bias in Paleomagnetic Inclinations: was the Ancient Magnetic Field Dipolar?[M]//Geophysical Monograph Series: Vol. 145. 2004: 101-115.
[221] ROBERTS A P, TAUXE L, HESLOP D. Magnetic paleointensity stratigraphy and high-resolution Quaternary geochronology: Successes and future challenges[J]. Quaternary Science Reviews, 2013, 61: 1-16.
[222] TAUXE L, SHAAR R, JONESTRASK L, et al. PmagPy: Software package for paleomagnetic data analysis and a bridge to the Magnetics Information Consortium (MagIC) Database[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(6): 2450-2463.
[223] JOHNSON E A, MURPHY T, TORRESON O W. Pre‐history of the Earth’s magnetic field[J]. Terrestrial Magnetism and Atmospheric Electricity, 1948, 53(4): 349-372.
[224] TUCKER P. Stirred remanent magnetization: a laboratory analogue of post- depositional realignment.[J]. Journal of Geophysics, 1980, 48(3): 153-157.
[225] KENT D V. Post-depositional remanent magnetisation in deep-sea sediment[J]. Nature, 1973, 246(5427): 32-34.
[226] TAUXE L, KENT D V. Properties of a detrital remanence carried by haematite from study of modern river deposits and laboratory redeposition experiments[J]. Geophysical Journal of the Royal Astronomical Society, 1984, 76(3): 543-561.
[227] VALET J P. Time variations in geomagnetic intensity[J]. Reviews of Geophysics, 2003, 41(1).
[228] TAUXE L. Sedimentary records of relative paleointensity of the geomagnetic field: Theory and practice[J]. Reviews of Geophysics, 1993, 31(3): 319.
[229] LEVI S, BANERJEE S K. On the possibility of obtaining relative paleointensities from lake sediments[J]. Earth and Planetary Science Letters, 1976, 29(1): 219-226.
[230] KING J W, BANERJEE S K, MARVIN J. A new rock- magnetic approach to selecting sediments for geomagnetic paleointensity studies: application to paleointensity for the last 4000 years.[J]. Journal of Geophysical Research, 1983, 88(B7): 5911-5921.
[231] MITRA R, TAUXE L. Full vector model for magnetization in sediments[J]. Earth and Planetary Science Letters, 2009, 286(3-4): 535-545.
[232] ZHANG J, ZHOU X, JIANG S, et al. Monsoon Precipitation, Economy and Wars in Ancient China[J]. Frontiers in Earth Science, 2020, 8(July): 1-10.
[233] GRINSTED A, MOORE J C, JEVREJEVA S. Application of the cross wavelet transform and wavelet coherence to geophysical time series[J]. Nonlinear Processes in Geophysics, 2004, 11(5/6): 561-566.
[234] HABERZETTL T, HENKEL K, KASPER T, et al. Independently dated paleomagnetic secular variation records from the Tibetan Plateau[J]. Earth and Planetary Science Letters, 2015, 416: 98-108.
[235] FRANK U. Palaeomagnetic investigations on lake sediments from NE China: A new record of geomagnetic secular variations for the last 37 ka[J]. Geophysical Journal International, 2007, 169(1): 29-40.
[236] ALI M, ODA H, HAYASHIDA A, et al. Holocene palaeomagnetic secular variation at Lake Biwa, central Japan[J]. Geophysical Journal International, 1999, 136(1): 218-228.
[237] HYODO M, YOSHIHARA A, KASHIWAYA K, et al. A late holocene geomagnetic secular variation record from Erhai Lake, southwest China[J]. Geophysical Journal International, 1999, 136(3): 784-790.
[238] YANG X, LIU Q, DUAN Z, et al. A Holocene palaeomagnetic secular variation record from Huguangyan maar Lake, southern China[J]. Geophysical Journal International, 2012, 190(1): 188-200.
[239] YANG X, HELLER F, YANG J, et al. Paleosecular variations since ~ 9000 yr BP as recorded by sediments from maar lake Shuangchiling, Hainan, South China[J]. Earth and Planetary Science Letters, 2009, 288(1-2): 1-9.
[240] PAVÓN-CARRASCO F J, OSETE M L, TORTA J M, et al. A geomagnetic field model for the Holocene based on archaeomagnetic and lava flow data[J]. Earth and Planetary Science Letters, 2014, 388: 98-109.
[241] KORTE M, CONSTABLE C, DONADINI F, et al. Reconstructing the Holocene geomagnetic field[J]. Earth and Planetary Science Letters, 2011, 312(3-4): 497-505.
[242] HENDY C H, HALL B L. The radiocarbon reservoir effect in proglacial lakes: Examples from Antarctica[J]. Earth and Planetary Science Letters, 2006, 241(3-4): 413-421.
[243] SNOWBALL I, SANDGREN P. Geomagnetic field intensity changes in Sweden between 9000 and 450 cal BP: Extending the record of “archaeomagnetic jerks” by means of lake sediments and the pseudo-Thellier technique[J]. Earth and Planetary Science Letters, 2004, 227(3-4): 361-376.
[244] HESLOP D, ROBERTS A P, HAWKINS R. A statistical simulation of magnetic particle alignment in sediments[J]. Geophysical Journal International, 2014, 197(2): 828-837.
[245] VEROSUB K L. Depositional and postdepositional processes in the magnetization of sediments[J]. Reviews of Geophysics, 1977, 15(2): 129.
[246] PHILIPPE É G H, VALET J P, ST-ONGE G, et al. Impact of turbulence on magnetic alignment in sediments[J]. Frontiers in Earth Science, 2022, 10(December): 1-10.
[247] SNOWBALL I, MELLSTRÖM A, AHLSTRAND E, et al. An estimate of post-depositional remanent magnetization lock-in depth in organic rich varved lake sediments[J]. Global and Planetary Change, 2013, 110: 264-277.
[248] BOUDREAU B P. Is burial velocity a master parameter for bioturbation?[J]. Geochimica et Cosmochimica Acta, 1994, 58(4): 1243-1249.
[249] BOUDREAU B P. Mean mixed depth of sediments: The wherefore and the why[J]. Limnology and Oceanography, 1998, 43(3): 524-526.
[250] CAMPUZANO S A, PAVÓN-CARRASCO F J, OSETE M L. Non-Dipole and Regional Effects on the Geomagnetic Dipole Moment Estimation[J]. Pure and Applied Geophysics, 2015, 172(1): 91-107.
[251] KORTE M, HOLME R. On the persistence of geomagnetic flux lobes in global Holocene field models[J]. Physics of the Earth and Planetary Interiors, 2010, 182(3-4): 179-186.
[252] CONSTABLE C, KORTE M, PANOVSKA S. Persistent high paleosecular variation activity in southern hemisphere for at least 10 000 years[J]. Earth and Planetary Science Letters, 2016, 453: 78-86.
[253] CAMPUZANO S A, GÓMEZ-PACCARD M, PAVÓN-CARRASCO F J, et al. Emergence and evolution of the South Atlantic Anomaly revealed by the new paleomagnetic reconstruction SHAWQ2k[J]. Earth and Planetary Science Letters, 2019, 512: 17-26.
[254] YANG X, ZHANG T, ZHANG E, et al. Paleosecular Variations During the Last Glacial Period From Tengchong Qinghai Lake, Yunnan Province, China[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(3).
[255] HE F, WEI Y, MAFFEI S, et al. Equatorial auroral records reveal dynamics of the paleo-West Pacific geomagnetic anomaly[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(20): e2026080118.
[256] CAI S, DOCTOR R, TAUXE L, et al. Archaeomagnetic results from Cambodia in Southeast Asia: Evidence for possible low-latitude flux expulsion[J]. Proceedings of the National Academy of Sciences, 2021, 118(11): e2022490118.
[257] BLOXHAM J. The expulsion of magnetic flux from the Earth’s core[J]. Geophysical Journal of the Royal Astronomical Society, 1986, 87(2): 669-678.
[258] JOHNSON C L, CONSTABLE C G. The time-averaged geomagnetic field as recorded by lava flows over the past 5 Myr[J]. Geophysical Journal International, 1995, 122(2): 489-519.
[259] KELLY P, GUBBINS D. The geomagnetic field over the past 5 million years[J]. Geophysical Journal International, 1997, 128(2): 315-330.
[260] GALLET Y, HULOT G, CHULLIAT A, et al. Geomagnetic field hemispheric asymmetry and archeomagnetic jerks[J]. Earth and Planetary Science Letters, 2009, 284(1-2): 179-186.
[261] ZHONG Y, LIU Y, YANG X, et al. Do non-dipole geomagnetic field behaviors persistently exist in the subarctic Pacific Ocean over the past 140 ka?[J]. Science Bulletin, 2020, 65(18): 1505-1507.
[262] BLOXHAM J, GUBBINS D. The secular variation of Earth’s magnetic field[J]. Nature, 1985, 317(6040): 777-781.
[263] CAI S, TAUXE L, DENG C, et al. New archaeomagnetic direction results from China and their constraints on palaeosecular variation of the geomagnetic field in Eastern Asia[J]. Geophysical Journal International, 2016, 207(2): 1332-1342.
[264] WEI Q, LI D, CAO G, et al. The wandering path of virtual geomagnetic pole during the last 6000 years[J]. Advances in geophysical research, 1984, 27(6): 562–572.
[265] TERRA‐NOVA F, AMIT H, HARTMANN G A, et al. The time dependence of reversed archeomagnetic flux patches[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(2): 691-704.
[266] SHAAR R, BEN-YOSEF E, RON H, et al. Geomagnetic field intensity: How high can it get? How fast can it change? Constraints from Iron Age copper slag[J]. Earth and Planetary Science Letters, 2011, 301(1-2): 297-306.
[267] SHAAR R, TAUXE L, RON H, et al. Large geomagnetic field anomalies revealed in Bronze to Iron Age archeomagnetic data from Tel Megiddo and Tel Hazor, Israel[J]. Earth and Planetary Science Letters, 2016, 442: 173-185.
[268] BEN-YOSEF E, TAUXE L, LEVY T E, et al. Geomagnetic intensity spike recorded in high resolution slag deposit in Southern Jordan[J]. Earth and Planetary Science Letters, 2009, 287(3-4): 529-539.
[269] DAVIES C, CONSTABLE C. Geomagnetic spikes on the core-mantle boundary[J]. Nature Communications, 2017, 8(May): 1-11.
[270] SHAAR R, HASSUL E, RAPHAEL K, et al. The First Catalog of Archaeomagnetic Directions From Israel With 4,000 Years of Geomagnetic Secular Variations[J]. Frontiers in Earth Science, 2018, 6(October).
[271] EBERT Y, SHAAR R, STEIN M. Decadal Geomagnetic Secular Variations From Greigite Bearing Dead Sea Sediments[J]. Geochemistry, Geophysics, Geosystems, 2021, 22(4): 1-15.
[272] YAMAMOTO M, SEKI O. Impact of Climate Change on Hunter‐Fisher‐Gatherer Cultures in Northern Japan Over the Past 4,400 Years[J]. Geophysical Research Letters, 2022, 49(5): 1-10.
[273] XIE S, EVERSHED R P, HUANG X, et al. Concordant monsoon-driven postglacial hydrological changes in peat and stalagmite records and their impacts on prehistoric cultures in central China[J]. Geology, 2013, 41(8): 827-830.
[274] ZHU Z, FEINBERG J M, XIE S, et al. Holocene ENSO-related cyclic storms recorded by magnetic minerals in speleothems of central China[J]. Proceedings of the National Academy of Sciences, 2017, 114(5): 852-857.
[275] WEN R, XIAO J, FAN J, et al. Pollen evidence for a mid-Holocene East Asian summer monsoon maximum in northern China[J]. Quaternary Science Reviews, 2017, 176: 29-35.
[276] CHEN F, XU Q, CHEN J, et al. East Asian summer monsoon precipitation variability since the last deglaciation[J]. Scientific Reports, 2015, 5(1): 11186.
[277] HE B, ZHANG S, CAI S. Climatic changes recorded in peat from the Dajiu lake basin in Shennongjia since the last 2600 years[J]. Marine Geology & Quaternary Geology, 2003, 23(2).
[278] LI X, HU C, HUANG J, et al. A 9000-year carbon isotopic record of acid-soluble organic matter in a stalagmite from Heshang Cave, central China: Paleoclimate implications[J]. Chemical Geology, 2014, 388: 71-77.
[279] LEI G, ZHU Y, CAI B, et al. Mid-late Holocene climate variations in southeast China inferred by the intermountain peat records from Fujian, China[J]. Quaternary International, 2017, 447: 118-127.
[280] ZHONG W, WEI Z, CHEN Y, et al. A 15.4-ka paleoclimate record inferred from δ13C and δ15N of organic matter in sediments from the sub-alpine Daping Swamp, western Nanling Mountains, South China[J]. Journal of Paleolimnology, 2017, 57(2): 127-139.
[281] YU Y, WANG Y, LI R, et al. Clay minerals distribution pattern in surface sediments of western Bohai and their provenance implications[J]. MARINE GEOLOGY & QUATERNARY GEOLOGY, 2017, 37(1).
[282] REN M, SHI Y. Sediment discharge of the Yellow River and its effect on sedimentation of the Bohai and Yellow Sea.[J]. Scientia Geographica Sinica, 1986, 6(1): 1-12.
[283] YANG S Y, JUNG H S, LIM D, et al. A review on the provenance discrimination of sediments in the Yellow Sea[J]. Earth-Science Reviews, 2003, 63(1-2): 93-120.
[284] ZHANG J, WAN S, CLIFT P D, et al. History of Yellow River and Yangtze River delivering sediment to the Yellow Sea since 3.5 Ma: Tectonic or climate forcing?[J]. Quaternary Science Reviews, 2019, 216: 74-88.
[285] WANG H, WANG A, BI N, et al. Seasonal distribution of suspended sediment in the Bohai Sea, China[J]. Continental Shelf Research, 2014, 90: 17-32.
[286] YANG Z, JI Y, BI N, et al. Sediment transport off the Huanghe (Yellow River) delta and in the adjacent Bohai Sea in winter and seasonal comparison[J]. Estuarine, Coastal and Shelf Science, 2011, 93(3): 173-181.
[287] LI G, WANG H, LIAO H. Numerical simulation on seasonal transport variations and mechanisms of suspended sediment discharged from the Yellow River to the Bohai Sea[J]. Journal of Geographical Sciences, 2010, 20(6): 923-937.
[288] YI L, YU H J, ORTIZ J D, et al. Late Quaternary linkage of sedimentary records to three astronomical rhythms and the Asian monsoon, inferred from a coastal borehole in the south Bohai Sea, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 329-330: 101-117.
[289] WU X, WANG H, BI N, et al. Climate and human battle for dominance over the Yellow River’s sediment discharge: From the Mid-Holocene to the Anthropocene[J]. Marine Geology, 2020, 425(October 2019): 106188.
[290] ZHOU X, JIA N, CHENG W, et al. Relocation of the Yellow River estuary in 1855 AD recorded in the sediment core from the northern Yellow Sea[J]. Journal of Ocean University of China, 2013, 12(4): 624-628.
[291] OTTO-BLIESNER B L, BRADY E C, FASULLO J, et al. Climate Variability and Change since 850 CE: An Ensemble Approach with the Community Earth System Model[J]. Bulletin of the American Meteorological Society, 2016, 97(5): 735-754.
[292] HURRELL J W, HOLLAND M M, GENT P R, et al. The community earth system model: A framework for collaborative research[J]. Bulletin of the American Meteorological Society, 2013, 94(9): 1339-1360.
[293] KAY J E, DESER C, PHILLIPS A, et al. The community earth system model (CESM) large ensemble project : A community resource for studying climate change in the presence of internal climate variability[J]. Bulletin of the American Meteorological Society, 2015, 96(8): 1333-1349.
[294] GAO C, ROBOCK A, AMMANN C. Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models[J]. Journal of Geophysical Research Atmospheres, 2008, 113(23): 1-15.
[295] VIEIRA L E A, SOLANKI S K, KRIVOVA N A, et al. Evolution of the solar irradiance during the Holocene[J]. Astronomy and Astrophysics, 2011, 531.
[296] BERGER A. Long-Term Variations of Daily Insolation and Quaternary Climatic Changes[J]. Journal of the Atmospheric Sciences, 1978, 35(12): 2362-2367.
[297] SCHMIDT G A, JUNGCLAUS J H, AMMANN C M, et al. Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0)[J]. Geoscientific Model Development, 2011, 4(1): 33-45.
[298] HURTT G C, CHINI L P, FROLKING S, et al. Harmonization of land-use scenarios for the period 1500-2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands[J]. Climatic Change, 2011, 109(1): 117-161.
[299] PONGRATZ J, REICK C, RADDATZ T, et al. A reconstruction of global agricultural areas and land cover for the last millennium[J]. Global Biogeochemical Cycles, 2008, 22(3): 1-16.
[300] WARREN BECK J, ZHOU W, LI C, et al. A 550,000-year record of East Asian monsoon rainfall from10Be in loess[J]. Science, 2018, 360(6391): 877-881.
[301] OLSEN J, ANDERSON N J, KNUDSEN M F. Variability of the North Atlantic Oscillation over the past 5,200 years[J]. Nature Geoscience, 2012, 5(11): 808-812.
[302] BAKER A, C. HELLSTROM J, KELLY B F J, et al. A composite annual-resolution stalagmite record of North Atlantic climate over the last three millennia[J]. Scientific Reports, 2015, 5(January): 1-8.
[303] ORTEGA P, LEHNER F, SWINGEDOUW D, et al. A model-tested North Atlantic Oscillation reconstruction for the past millennium[J]. Nature, 2015, 523(7558): 71-74.
[304] WU B, WANG J. Winter Arctic Oscillation, Siberian High and East Asian Winter Monsoon[J]. Geophysical Research Letters, 2002, 29(19): 3-6.
[305] YU R, ZHOU T. Impacts of winter-NAO on March cooling trends over subtropical Eurasia continent in the recent half century[J]. Geophysical Research Letters, 2004, 31(12): 3-6.
[306] LI J, SUN C, JIN F. NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability[J]. Geophysical Research Letters, 2013, 40(20): 5497-5502.
[307] SUN J, WANG H. Changes of the connection between the summer North Atlantic Oscillation and the East Asian summer rainfall[J]. Journal of Geophysical Research Atmospheres, 2012, 117(8): 1-12.
[308] LIN P, YU Z, LÜ J, et al. Two regimes of Atlantic multidecadal oscillation: cross-basin dependent or Atlantic-intrinsic[J]. Science Bulletin, 2019, 64(3): 198-204.
[309] SUNG M K, LIM G H, KUG J S. Phase asymmetric downstream development of the North Atlantic Oscillation and its impact on the East Asian winter monsoon[J]. Journal of Geophysical Research Atmospheres, 2010, 115(9): 1-7.
[310] ZUO J Q, LI W J, REN H L, et al. Change of the relationship between spring NAO and East Asian summer monsoon and its possible mechanism[J]. Acta Geophysica Sinica, 2012, 55(2): 384-395.
[311] GAO T, WANG H J, ZHOU T. Changes of extreme precipitation and nonlinear influence of climate variables over monsoon region in China[J]. Atmospheric Research, 2017, 197(40): 379-389.
[312] JIANG S, ZHOU X, SACHS J P, et al. The mean state of the tropical Pacific Ocean differed between the Medieval Warm Period and the Industrial Era[J]. Communications Earth & Environment, 2023, 4(1): 74.
[313] TROUET V, ESPER J, GRAHAM N E, et al. Persistent positive north atlantic oscillation mode dominated the medieval climate anomaly[J]. Science, 2009, 324(5923): 78-80.
[314] LAPOINTE F, BRADLEY R S, FRANCUS P, et al. Annually resolved Atlantic sea surface temperature variability over the past 2,900 y[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(44): 27171-27178.
[315] DING Y, SUN Y, WANG Z, et al. Inter-decadal variation of the summer precipitation in China and its association with decreasing Asian summer monsoon Part II: Possible causes[J]. International Journal of Climatology, 2009, 29(13): 1926-1944.
[316] CROWLEY T J. Causes of climate change over the past 1000 years[J]. Science, 2000, 289(5477): 270-277.
[317] MANN M E, ZHANG Z, RUTHERFORD S, et al. Global Signatures and Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly[J]. Science, 2009, 326(5957): 1256-1260.
[318] JIANG L, YU K, TAO S, et al. Abrupt Increase in ENSO Variability at 700 CE Triggered by Solar Activity[J]. Journal of Geophysical Research: Oceans, 2023, 128(1): 1-12.
[319] CLEMENT A C, SEAGER R, CANE M A, et al. An Ocean Dynamical Thermostat[J]. Journal of Climate, 1996, 9(9): 2190-2196.
[320] JIANG R, SUN L, SUN C, et al. CWRF downscaling and understanding of China precipitation projections[J]. Climate Dynamics, 2021, 57(3-4): 1079-1096.
[321] YOU J, WANG S. Higher Probability of Occurrence of Hotter and Shorter Heat Waves Followed by Heavy Rainfall[J]. Geophysical Research Letters, 2021, 48(17): 1-11.
[322] MCPHADEN M J. Playing hide and seek with El Niño[J]. Nature Climate Change, 2015, 5(9): 791-795.
[323] XU L, YANG D, GREENWOOD J, et al. Riverine and Oceanic Nutrients Govern Different Algal Bloom Domain Near the Changjiang Estuary in Summer[J]. Journal of Geophysical Research: Biogeosciences, 2020, 125(10): 1-26.
[324] PATERSON G A, HESLOP D. New methods for unmixing sediment grain size data[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(12): 4494-4506.
[325] REDFIELD a C, KETCHUM B H, RICHARDS F a. The influence of organisms on the composition of sea water[J]. The sea, 1963, 2: 26-77.
[326] MEYERS P A. Organic geochemical proxies of paleoceanographic[J]. Organic Geochemistry, 1997, 27(5): 213-250.
[327] HU L, GUO Z, FENG J, et al. Distributions and sources of bulk organic matter and aliphatic hydrocarbons in surface sediments of the Bohai Sea, China[J]. Marine Chemistry, 2009, 113(3-4): 197-211.
[328] PASSIER H F, MIDDELBURG J J, DE LANGE G J, et al. Modes of sapropel formation in the eastern Mediterranean: Some constraints based on pyrite properties[J]. Marine Geology, 1999, 153(1-4): 199-219.
[329] THOMSON J, CROUDACE I W, ROTHWELL R G. A geochemical application of the ITRAX scanner to a sediment core containing eastern Mediterranean sapropel units[M]//ROTHWELL R G. New Techniques in Sediment Core Analysis. Geological Society of London, 2006: 0.
[330] KOHNEN M E L, DAMSTÉ J S S, KOCK-VAN DALEN A C, et al. Origin and diagenetic transformations of C25 and C30 highly branched isoprenoid sulphur compounds: Further evidence for the formation of organically bound sulphur during early diagenesis[J]. Geochimica et Cosmochimica Acta, 1990, 54(11): 3053-3063.
[331] JACCARD S L, HAUG G H, SIGMAN D M, et al. Glacial/interglacial changes in subarctic north pacific stratification[J]. Science, 2005, 308(5724): 1003-1006.
[332] HU P, JIANG Z, LIU Q, et al. Estimating the concentration of aluminum‐substituted hematite and goethite using diffuse reflectance spectrometry and rock magnetism: Feasibility and limitations[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(6): 4180-4194.
[333] LIU Q S, TORRENT J, BARRÓN V, et al. Quantification of hematite from the visible diffuse reflectance spectrum: effects of aluminium substitution and grain morphology[J]. Clay Minerals, 2011, 46(1): 137-147.
[334] ZHANG Q, LIU Q, ROBERTS A P, et al. Mechanism for enhanced eolian dust flux recorded in North Pacific Ocean sediments since 4.0 Ma: Aridity or humidity at dust source areas in the Asian interior?[J]. Geology, 2020, 48(1): 77-81.
[335] ZHONG Y, LIU Y, GONG X, et al. Coupled Impacts of Atmospheric Circulation and Sea-Ice on Late Pleistocene Terrigenous Sediment Dynamics in the Subarctic Pacific Ocean[J]. Geophysical Research Letters, 2021, 48(19): 1-14.
[336] MARK S Z, ABBOTT M B, RODBELL D T, et al. XRF analysis of Laguna Pallcacocha sediments yields new insights into Holocene El Niño development[J]. Earth and Planetary Science Letters, 2022, 593: 117657.
[337] JI J, SHEN J, BALSAM W, et al. Asian monsoon oscillations in the northeastern Qinghai-Tibet Plateau since the late glacial as interpreted from visible reflectance of Qinghai Lake sediments[J]. Earth and Planetary Science Letters, 2005, 233(1-2): 61-70.
[338] SUN H, SONG Y, CHEN X, et al. Holocene dust deposition in the Ili Basin and its implications for climate variations in Westerlies-dominated Central Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 550(March): 109731.
[339] CHEN F, CHEN S, ZHANG X, et al. Asian dust-storm activity dominated by Chinese dynasty changes since 2000 BP[J]. Nature Communications, 2020, 11(1): 1-7.
[340] HANEBUTH T, STATTEGGER K, GROOTES P M. Rapid flooding of the Sunda Shelf: A late-glacial sea-level record[J]. Science, 2000, 288(5468): 1033-1035.
[341] SIDDALL M, ROHLING E J, ALMOGI-LABIN A, et al. Sea-level fluctuations during the last glacial cycle[J]. Nature, 2003, 423(6942): 853-858.
[342] JIANGUO L, ANCHUN L, ZHAOKAI X, et al. Manganese Abnormity in Holocene Sediments of the Bohai Sea[J]. Journal of China University of Geosciences, 2007, 18(2): 135-141.
[343] CHEN S, LIU J, WANG X, et al. Holocene dust storm variations over northern China: transition from a natural forcing to an anthropogenic forcing[J]. Science Bulletin, 2021, 66(24): 2516-2527.
[344] LIU J, LI A, CHEN M. Environmental evolution and impact of the Yellow River sediments on deposition in the Bohai Sea during the last deglaciation[J]. Journal of Asian Earth Sciences, 2010, 38(1-2): 26-33.
[345] LI Q, ZHANG Q, LI G, et al. A new perspective for the sediment provenance evolution of the middle Okinawa Trough since the last deglaciation based on integrated methods[J]. Earth and Planetary Science Letters, 2019, 528: 115839.
[346] KUBOTA Y, KIMOTO K, TADA R, et al. Variations of East Asian summer monsoon since the last deglaciation based on Mg/Ca and oxygen isotope of planktic foraminifera in the northern East China Sea[J]. Paleoceanography, 2010, 25(4): 1-15.
[347] JIAN Z, WANG P, SAITO Y, et al. Holocene variability of the kuroshio current in the Okinawa trough, Northwestern Pacific Ocean[J]. Earth and Planetary Science Letters, 2000, 184(1): 305-319.
[348] WEIJERS J W H, SCHOUTEN S, SPAARGAREN O C, et al. Occurrence and distribution of tetraether membrane lipids in soils: Implications for the use of the TEX86 proxy and the BIT index[J]. Organic Geochemistry, 2006, 37(12): 1680-1693.
[349] STEBICH M, REHFELD K, SCHLÜTZ F, et al. Holocene vegetation and climate dynamics of NE China based on the pollen record from Sihailongwan Maar Lake[J]. Quaternary Science Reviews, 2015, 124: 275-289.
[350] BERGER A, LOUTRE M F. Insolation values for the climate of the last 10 million years[J]. Quaternary Science Reviews, 1991, 10(4): 297-317.
[351] XING L, ZHAO M, GAO W, et al. Multiple proxy estimates of source and spatial variation in organic matter in surface sediments from the southern Yellow Sea[J]. Organic Geochemistry, 2014, 76: 72-81.
[352] FENG X, BENITEZ-NELSON B C, MONTLUÇON D B, et al. 14C and 13C characteristics of higher plant biomarkers in Washington margin surface sediments[J]. Geochimica et Cosmochimica Acta, 2013, 105: 14-30.
[353] BLAIR N E, ALLER R C. The fate of terrestrial organic carbon in the Marine environment[J]. Annual Review of Marine Science, 2012, 4: 401-423.
[354] DRENZEK N J, MONTLUÇON D B, YUNKER M B, et al. Constraints on the origin of sedimentary organic carbon in the Beaufort Sea from coupled molecular 13C and 14C measurements[J]. Marine Chemistry, 2007, 103(1-2): 146-162.
[355] TAO S, EGLINTON T I, MONTLUÇON D B, et al. Pre-aged soil organic carbon as a major component of the Yellow River suspended load: Regional significance and global relevance[J]. Earth and Planetary Science Letters, 2015, 414: 77-86.
[356] WANG S, FU B, PIAO S, et al. Reduced sediment transport in the Yellow River due to anthropogenic changes[J]. Nature Geoscience, 2016, 9(1): 38-41.
[357] QU Y, JIN Z, WANG J, et al. The sources and seasonal fluxes of particulate organic carbon in the Yellow River[J]. Earth Surface Processes and Landforms, 2020, 45(9): 2004-2019.
[358] CHEN M, LI D wei, ZHANG H, et al. Distinct variations and mechanisms for terrestrial OC 14 C-ages in the Eastern China Marginal sea sediments since the last deglaciation[J]. Quaternary Science Reviews, 2023, 315(July): 108235.
[359] ZHAO G, YE S, HE L, et al. Historical change of carbon burial in Late Quaternary sediments of the ancient Yellow River delta on the west coast of Bohai Bay, China[J]. Catena, 2020, 193(May): 104619.
[360] ZHAO B, YAO P, BIANCHI T S, et al. Controls on Organic Carbon Burial in the Eastern China Marginal Seas: A Regional Synthesis[J]. Global Biogeochemical Cycles, 2021, 35(4): 1-27.
[361] WU X, XING L, JIANG Y, et al. High-resolution reconstruction of sedimentary organic matter variability during the Holocene in the mud area of the Yellow Sea using multiple organic geochemical proxies[J]. Quaternary International, 2019, 503(February 2018): 178-188.
[362] ZHUANG Y, KIDDER T R. Archaeology of the Anthropocene in the Yellow River region, China, 8000–2000 cal. BP[J]. Holocene, 2014, 24(11): 1602-1623.
[363] ZHAO G, MU X, WEN Z, et al. Soil erosion, conservation, and eco-environment changes in the loess plateau of china[J]. Land Degradation and Development, 2013, 24(5): 499-510.
[364] GOLDEWIJK K K, BEUSEN A, DOELMAN J, et al. Anthropogenic land use estimates for the Holocene - HYDE 3.2[J]. Earth System Science Data, 2017, 9(2): 927-953.
[365] LOEWE M. The government of the Qin and Han Empires : 221 BCE-220 CE[M]. Hackett Publishing Company, Indianapolis and Cambridge, 2006.
[366] XIAO J, XU Q, NAKAMURA T, et al. Holocene vegetation variation in the Daihai Lake region of north-central China: a direct indication of the Asian monsoon climatic history[J]. Quaternary Science Reviews, 2004, 23(14-15): 1669-1679.
[367] LI F, GAILLARD M J, CAO X, et al. Towards quantification of Holocene anthropogenic land-cover change in temperate China: A review in the light of pollen-based REVEALS reconstructions of regional plant cover[J]. Earth-Science Reviews, 2020, 203(February).
[368] 赵文林, 谢淑君. 中国人口史[M]. 中国人口史, 1988.
[369] ZHANG T, YANG X, YIN J, et al. Low-latitude hydroclimate changes related to paleomagnetic variations during the Holocene in coastal southern China[J]. Frontiers of Earth Science, 2024.
[370] CAMPUZANO S A, DE SANTIS A, PAVÓN-CARRASCO F J, et al. New perspectives in the study of the Earth’s magnetic field and climate connection: The use of transfer entropy[J]. PLoS ONE, 2018, 13(11): 1-15.
[371] JALIHAL C, SRINIVASAN J, CHAKRABORTY A. Modulation of Indian monsoon by water vapor and cloud feedback over the past 22,000 years[J]. Nature Communications, 2019, 10(1).
[372] KIRKBY J, DUPLISSY J, SENGUPTA K, et al. Ion-induced nucleation of pure biogenic particles[J]. Nature, 2016, 533(7604): 521-526.
[373] ZHOU W, KONG X, PATERSON G A, et al. Eccentricity-paced geomagnetic field and monsoon rainfall variations over the last 870 kyr[J]. Proceedings of the National Academy of Sciences, 2023, 120(17): 2017.
[374] TILGNER A. Precession, Tides and the Geodynamo[C]//AGU Spring Meeting Abstracts: Vol. 2007. AA(University of Gottingen, Center for Geophysics), 2006: DI52A-03.

所在学位评定分委会
地球物理学
国内图书分类号
P318.4
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765887
专题南方科技大学
工学院_海洋科学与工程系
推荐引用方式
GB/T 7714
李海. 中晚全新世东亚地磁场及气候的演化特征[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12031330-李海-海洋科学与工程系(27153KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李海]的文章
百度学术
百度学术中相似的文章
[李海]的文章
必应学术
必应学术中相似的文章
[李海]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。