中文版 | English
题名

零维杂化金属卤化物中激子多态发射的高压调控与机理研究

其他题名
HIGH-PRESSURE REGULATION AND MECHANISM STUDY OF MULTIEXCITONIC EMISSIONS IN ZERO-DIMENSIONAL HYBRID METAL HALIDES
姓名
姓名拼音
HAN Jiang
学号
11930733
学位类型
博士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
权泽卫
导师单位
化学系
论文答辩日期
2024-05-10
论文提交日期
2024-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

零维有机无机杂化金属卤化物(简称为零维杂化金属卤化物),是一种新型的发光材料。在零维杂化金属卤化物中,孤立的金属卤化物单元具有分子级零维的结构维度。其中,低对称性的结构单元具有丰富的激子多态发光性质,包括自陷态激子(self-trapped exciton,简称STE)、三线态STE、单线态STE以及可能的自由激子发射(free exciton,简称FE)。激子多态发光范围覆盖从紫外到近红外的宽光谱范围,且具有高的发光效率。调控激子多态发光性质不仅能够揭示激子多态发光的机制,还能提供调控激子多态发光的策略,为开发具有特定激子发光性质的零维金属卤化物提供科学的理解。然而,激子多态发光受到复杂因素的影响,包括结构单元、电子维度、电—声耦合效应、带隙等。因此,在单个零维金属卤化物体系中调控激子多态发光仍然面临着挑战。

本文立足于高压物理的思想,利用原位高压技术和低温技术,系统地调控了基于四方金字塔构型的零维金属卤化物中STE的多态发射,揭示了多激子发射态的调控机制。以零维结构维度的锑基零维金属卤化物(C24H20P)2SbCl5为模型材料,该体系具有低配位数与低对称性的单个四方金字塔构型。压力促进了[SbCl5]2−四方金字塔构型的扭曲和高能量三线态的激子捕获能力,导致新的高能量三线态在2.7 GPa的出现并随压力增强。相比于压力,低温抑制(C24H20P)2SbCl5中的热猝灭,有效地促进了STE单线态发光。78 K下,压力促进了低温下(C24H20P)2SbCl5的系间窜跃,促进了单线态到高能量三线态的跃迁。此外,本文还研究了两个四方金字塔构型之间的相互作用对STE三线态发光的影响,展示了不同的四方金字塔构型的排列和连接方式对高压下光学响应的影响,实现对高能量三线态发光能量的大范围的调控。

为了在零维电子维度中调控STE到FE的跃迁,本论文开发了新型的准零维金属卤化物体系(C7H15N2Br)2PbBr4,并将其作为调控激子跃迁的模型材料。加压到3.6 GPa,压力导致的[PbBr4]2−跷跷板单元的扭曲显著增强了STE的发光。值得注意的是,FE发射在3.6 GPa时实现,并被逐渐增强至8.4 GPa。(C7H15N2Br)2PbBr4的各向异性压缩明显减小了相邻[PbBr4]2−跷跷板单元之间的距离,并提高了结构刚性。理论计算结果表明,(C7H15N2Br)2PbBr4中的电子维度在3.6 GPa以上得到了充分的提升。电子维度的提高和结构刚性的增强共同导致了FE发射的产生和增强。同时,本论文利用I替换了(C7H15N2Br)2PbBr4的Br,阐明了化学压力与物理压力的协同作用,使得(C7H15N2Br)2PbBr4仅需1.5 GPa的压力阈值,即可实现STE到FE的激子跃迁。

本文进一步扩展并开发了新型准零维金属卤化物体系C6H16N2MBr4(M = Ge2+、Sn2+和Pb2+)。结合压力工程与元素替换,调控了三种材料体系的孤对电子立体化学活性,实现了不同的激子跃迁。三种体系在高压下的光学与结构响应具有与孤对电子立体活性一致的趋势。在C6H16N2GeBr4中,压力诱导的显著偏心扭畸变的相Ⅱ的出现导致了C6H16N2GeBr4中STE的出现和发射增强。在C6H16N2SnBr4中,Sn2+的替换与压力共同促进了[SnBr4]2−单元之间的相互作用,提升了电子维度,促进了从STE到FE的激子跃迁。惰性的6s2孤对电子立体化学活性导致C6H16N2PbBr4在常压下高度连接的电子维度,从而实现了在无需压力作用下的FE发射。表明了孤对电子活性对激子跃迁的重要影响。

本文实现了对零维杂化金属卤化物中激子多态发射的调控,并揭示了其内在的结构—性质关系,有望提供新的科学理解。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2024-06
参考文献列表

[1] MIN H, KIM M, LEE S-U, et al. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide [J]. Science, 2019, 366: 749-753.
[2] LIU X-K, XU W, BAI S, et al. Metal halide perovskites for light-emitting diodes [J]. Nature Materials, 2021, 20: 10-21.
[3] CAO Y, WANG N, TIAN H, et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures [J]. Nature, 2018, 562: 249-253.
[4] JENA A K, KULKARNI A, MIYASAKA T. Halide Perovskite Photovoltaics: Background, Status, and Future Prospects [J]. Chemical Reviews, 2019, 119: 3036-3103.
[5] ZHOU L, LIAO J-F, KUANG D-B. An Overview for Zero-Dimensional Broadband Emissive Metal-Halide Single Crystals [J]. Advanced Optical Materials, 2021, 9: 2100544.
[6] CHIN X Y, TURKAY D, STEELE J A, et al. Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells [J]. Science, 2023, 381: 59-63.
[7] CHEN H, LIN J, KANG J, et al. Structural and spectral dynamics of single-crystalline Ruddlesden-Popper phase halide perovskite blue light-emitting diodes [J]. Science Advances, 2020, 6: eaay4045.
[8] MANSER J S, CHRISTIANS J A, KAMAT P V. Intriguing Optoelectronic Properties of Metal Halide Perovskites [J]. Chemical Reviews, 2016, 116: 12956-13008.
[9] ZHOU J, TAN L, LIU Y, et al. Highly efficient and stable perovskite solar cells via a multifunctional hole transporting material [J]. Joule, https://doi.org/10.1016/j.joule.2024.02.019:
[10] GOLDSCHMIDT V M. Die Gesetze der Krystallochemie [J]. Naturwissenschaften, 1926, 14: 477-485.
[11] KIESLICH G, SUN S, CHEETHAM A K. Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog [J]. Chemical Science, 2014, 5: 4712-4715.
[12] LU Y, QU K, ZHANG T, et al. Metal Halide Perovskite Nanowires: Controllable Synthesis, Mechanism, and Application in Optoelectronic Devices [J]. Nanomaterials, 2023, 13: 419.
[13] LU M, ZHANG Y, WANG S, et al. Metal Halide Perovskite Light-Emitting Devices: Promising Technology for Next-Generation Displays [J]. Advanced Functional Materials, 2019, 29: 1902008.
[14] MITZI D B, DIMITRAKOPOULOS C D, KOSBAR L L. Structurally Tailored Organic−Inorganic Perovskites: Optical Properties and Solution-Processed Channel Materials for Thin-Film Transistors [J]. Chemistry of Materials, 2001, 13: 3728-3740.
[15] MORAD V, SHYNKARENKO Y, YAKUNIN S, et al. Disphenoidal Zero-Dimensional Lead, Tin, and Germanium Halides: Highly Emissive Singlet and Triplet Self-Trapped Excitons and X-ray Scintillation [J]. Journal of the American Chemical Society, 2019, 141: 9764-9768.
[16] LIN H, ZHOU C, CHAABAN M, et al. Bulk Assembly of Zero-Dimensional Organic Lead Bromide Hybrid with Efficient Blue Emission [J]. ACS Materials Letters, 2019, 1: 594-598.参考文献116
[17] CUI B-B, HAN Y, HUANG B, et al. Locally collective hydrogen bonding isolates lead octahedra for white emission improvement [J]. Nature Communications, 2019, 10: 5190.
[18] KRISHNAMURTHY S, NAPHADE R, MIR W J, et al. Molecular and Self-Trapped Excitonic Contributions to the Broadband Luminescence in Diamine-Based Low-Dimensional Hybrid Perovskite Systems [J]. Advanced Optical Materials, 2018, 6: 1800751.
[19] ZHOU C, LIN H, WORKU M, et al. Blue Emitting Single Crystalline Assembly of Metal Halide Clusters [J]. Journal of the American Chemical Society, 2018, 140: 13181-13184.
[20] ZHOU J, LI M, NING L, et al. Broad-Band Emission in a Zero-Dimensional Hybrid Organic [PbBr6] Trimer with Intrinsic Vacancies [J]. The Journal of Physical Chemistry Letters, 2019, 10: 1337-1341.
[21] LI M, ZHOU J, ZHOU G, et al. Hybrid Metal Halides with Multiple Photoluminescence Centers [J]. Angewandte Chemie, 2019, 131: 18843-18848.
[22] ZHOU C, LEE S, LIN H, et al. Bulk Assembly of Multicomponent Zero-Dimensional Metal Halides with Dual Emission [J]. ACS Materials Letters, 2020, 2: 376-380.
[23] LI M, MOLOKEEV M S, ZHAO J, et al. Optical Functional Units in Zero‐Dimensional Metal Halides as a Paradigm of Tunable Photoluminescence and Multicomponent Chromophores [J]. Advanced Optical Materials, 2020, 8: 1902114.
[24] ZHANG R, MAO X, YANG Y, et al. Air-Stable, Lead-Free Zero-Dimensional Mixed Bismuth-Antimony Perovskite Single Crystals with Ultra-broadband Emission [J]. Angewandte Chemie International Edition, 2019, 58: 2725-2729.
[25] ZHOU C, LIN H, TIAN Y, et al. Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency [J]. Chemical Science, 2018, 9: 586-593.
[26] ZHOU C, WORKU M, NEU J, et al. Facile Preparation of Light Emitting Organic Metal Halide Crystals with Near-Unity Quantum Efficiency [J]. Chemistry of Materials, 2018, 30: 2374-2378.
[27] LI Z, LI Y, LIANG P, et al. Dual-Band Luminescent Lead-Free Antimony Chloride Halides with Near-Unity Photoluminescence Quantum Efficiency [J]. Chemistry of Materials, 2019, 31: 9363-9371.
[28] HE Q, ZHOU C, XU L, et al. Highly Stable Organic Antimony Halide Crystals for X-ray Scintillation [J]. ACS Materials Letters, 2020, 2: 633-638.
[29] SU B, GENG S, XIAO Z, et al. Highly Distorted Antimony(III) Chloride [Sb2Cl8]2− Dimers for Near-Infrared Luminescence up to 1070 nm [J]. Angewandte Chemie International Edition, 2022, 61: e202208881.
[30] SUN C, DENG Z, LI Z, et al. Achieving Near-unity Photoluminescence Quantum Yields in Organic-Inorganic Hybrid Antimony (III) Chlorides with the [SbCl5] Geometry [J]. Angewandte Chemie International Edition, 2023, 62: e202216720.
[31] JING Y, LIU Y, LI M, et al. Photoluminescence of Singlet/Triplet Self-Trapped Excitons in Sb3+-Based Metal Halides [J]. Advanced Optical Materials, 2021, 9: 2002213.
[32] WANG Z, ZHANG Z, TAO L, et al. Hybrid Chloroantimonates(III): Thermally Induced Triple‐Mode Reversible Luminescent Switching and Laser‐Printable Rewritable Luminescent Paper [J]. Angewandte Chemie International Edition, 2019, 58: 9974-9978.参考文献117
[33] MORAD V, YAKUNIN S, KOVALENKO M V. Supramolecular Approach for Fine-Tuning of the Bright Luminescence from Zero-Dimensional Antimony(III) Halides [J]. ACS Materials Letters, 2020, 2: 845-852.
[34] ZHOU C, LIN H, SHI H, et al. A Zero‐Dimensional Organic Seesaw‐Shaped Tin Bromide with Highly Efficient Strongly Stokes‐Shifted Deep‐Red Emission [J]. Angewandte Chemie, 2018, 130: 1033-1036.
[35] SONG G, LI M, YANG Y, et al. Lead-Free Tin(IV)-Based Organic–Inorganic Metal Halide Hybrids with Excellent Stability and Blue-Broadband Emission [J]. The Journal of Physical Chemistry Letters, 2020, 11: 1808-1813.
[36] MORTEZA NAJARIAN A, DINIC F, CHEN H, et al. Homomeric chains of intermolecular bonds scaffold octahedral germanium perovskites [J]. Nature, 2023, 620: 328-335.
[37] PELANT I, VALENTA J. Luminescence spectroscopy of semiconductors [M]. OUP Oxford, 2012.
[38] WANG H, LIU W, HE X, et al. An Excitonic Perspective on Low-Dimensional Semiconductors for Photocatalysis [J]. Journal of the American Chemical Society, 2020, 142: 14007-14022.
[39] XU J, LI S, QIN C, et al. Identification of Singlet Self-Trapped Excitons in a New Family of White-Light-Emitting Zero-Dimensional Compounds [J]. The Journal of Physical Chemistry C, 2020, 124: 11625-11630.
[40] PIERMARINI G J. High Pressure X-Ray Crystallography With the Diamond Cell at NIST/NBS [J]. J Res Natl Inst Stand Technol, 2001, 106: 889-920.
[41] BENSON W E, SCLAR C B. Memorial of Alvin Van Valkenburg, Jr., 1913-1991 [J]. American Mineralogist, 1995, 80: 191-193.
[42] YOO C-S. Chemistry under extreme conditions: Pressure evolution of chemical bonding and structure in dense solids [J]. Matter and Radiation at Extremes, 2020, 5: 018202.
[43] LI M, LIU T, WANG Y, et al. Pressure responses of halide perovskites with various compositions, dimensionalities, and morphologies [J]. Matter and Radiation at Extremes, 2020, 5: 018201.
[44] MA Z, LIU Z, LU S, et al. Pressure-induced emission of cesium lead halide perovskite nanocrystals [J]. Nat Commun, 2018, 9: 4506.
[45] LI Q, CHEN Z, YANG B, et al. Pressure-Induced Remarkable Enhancement of Self-Trapped Exciton Emission in One-Dimensional CsCu2I3 with Tetrahedral Units [J]. Journal of the American Chemical Society, 2020, 142: 1786-1791.
[46] WANG Y, GUO S, LUO H, et al. Reaching 90% Photoluminescence Quantum Yield in One-Dimensional Metal Halide C4N2H14PbBr4 by Pressure-Suppressed Nonradiative Loss [J]. Journal of the American Chemical Society, 2020, 142: 16001-16006.
[47] MA Z, LI F, SUI L, et al. Tunable Color Temperatures and Emission Enhancement in 1D Halide Perovskites under High Pressure [J]. Advanced Optical Materials, 2020, 8: 2000713.
[48] LI Q, CHEN Z, LI M, et al. Pressure-Engineered Photoluminescence Tuning in Zero-Dimensional Lead Bromide Trimer Clusters [J]. Angewandte Chemie International Edition, 2021, 60: 2583-2587.
[49] SHI Y, MA Z, ZHAO D, et al. Pressure-Induced Emission (PIE) of One-Dimensional Organic Tin参考文献118Bromide Perovskites [J]. Journal of the American Chemical Society, 2019, 141: 6504-6508.
[50] KONG L, LIU G, GONG J, et al. Highly tunable properties in pressure-treated two-dimensional Dion–Jacobson perovskites [J]. Proceedings of the National Academy of Sciences, 2020, 117: 16121-16126.
[51] Lü X, STOUMPOS C, HU Q, et al. Regulating off-centering distortion maximizes photoluminescence in halide perovskites [J]. National Science Review, 2020, 8:
[52] LI Q, XU B, QUAN Z. Pressure-Regulated Excitonic Transitions in Emergent Metal Halides [J]. Accounts of Chemical Research, 2023, 56: 3282-3291.
[53] LIU S, SUN S, GAN C K, et al. Manipulating efficient light emission in two-dimensional perovskite crystals by pressure-induced anisotropic deformation [J]. Science Advances, 2019, 5: eaav9445.
[54] JAYARAMAN A. Diamond anvil cell and high-pressure physical investigations [J]. Reviews of Modern Physics, 1983, 55: 65-108.
[55] WEIR C, LIPPINCOTT E, VAN VALKENBURG A, et al. Infrared studies in the 1-to 15-micron region to 30,000 atmospheres [J]. Journal of research of the National Bureau of Standards Section A, Physics and chemistry, 1959, 63: 55.
[56] EREMETS M I, HEMLEY R J, MAO H-K, et al. Semiconducting non-molecular nitrogen up to 240 GPa and its low-pressure stability [J]. Nature, 2001, 411: 170-174.
[57] GONCHAROV A F, STRUZHKIN V V, SOMAYAZULU M S, et al. Compression of Ice to 210 Gigapascals: Infrared Evidence for a Symmetric Hydrogen-Bonded Phase [J]. Science, 1996, 273: 218-220.
[58] FORMAN R A, PIERMARINI G J, BARNETT J D, et al. Pressure Measurement Made by the Utilization of Ruby Sharp-Line Luminescence [J]. Science, 1972, 176: 284-285.
[59] JAYARAMAN A. Ultrahigh pressures [J]. Review of Scientific Instruments, 1986, 57: 1013-1031.
[60] MERKEL S, YAGI T. X-ray transparent gasket for diamond anvil cell high pressure experiments [J]. Review of Scientific Instruments, 2005, 76: 046109.
[61] BROMBERG S E, CHAN I Y. Enhanced sensitivity for high‐pressure EPR using dielectric resonators [J]. Review of Scientific Instruments, 1992, 63: 3670-3673.
[62] SILVERA I F, WIJNGAARDEN R J. Diamond anvil cell and cryostat for low‐temperature optical studies [J]. Review of Scientific Instruments, 1985, 56: 121-124.
[63] YAMAOKA H, ZEKKO Y, JARRIGE I, et al. Ruby pressure scale in a low-temperature diamond anvil cell [J]. Journal of Applied Physics, 2012, 112:
[64] MAO H K, XU J, BELL P M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions [J]. Journal of Geophysical Research: Solid Earth, 1986, 91: 4673-4676.
[65] MAO H K, BELL P M, SHANER J W, et al. Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar [J]. Journal of Applied Physics, 1978, 49: 3276-3283.
[66] DOLOMANOV O J J A C. l. J. Bourhis, RJ Gildea, JAK Howard, H. Puschmann [J]. Journal of Applied Crystallography, 2009, 42: 339-341.
[67] SHELDRICK G M J A C S C S C. Crystal structure refinement with SHELXL [J]. Acta参考文献119Crystallographica Section C: Structural Chemistry, 2015, 71: 3-8.
[68] LINDEN A J A C S C C S C. Acta Crystallographica Section C in 2012 [M]. International Union of Crystallography. 2012: e1-e2.
[69] WANG C, YU F, LIU Y, et al. Deploying the Big Data Science Center at the Shanghai Synchrotron Radiation Facility: the first superfacility platform in China [J]. Machine Learning: Science and Technology, 2021, 2: 035003.
[70] PRESCHER C, PRAKAPENKA V B. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration [J]. High Pressure Research, 2015, 35: 223-230.
[71] PETŘíČEK V, DUŠEK M, PALATINUS L J Z F K-C M. Crystallographic computing system JANA2006: general features [J]. Zeitschrift für Kristallographie-Crystalline Materials, 2014, 229: 345-352.
[72] LI S, LUO J, LIU J, et al. Self-Trapped Excitons in All-Inorganic Halide Perovskites: Fundamentals, Status, and Potential Applications [J]. The Journal of Physical Chemistry Letters, 2019, 10: 1999-2007.
[73] MCCALL K M, MORAD V, BENIN B M, et al. Efficient Lone-Pair-Driven Luminescence: Structure–Property Relationships in Emissive 5s2 Metal Halides [J]. ACS Materials Letters, 2020, 2: 1218-1232.
[74] LIAN L, ZHANG P, ZHANG X, et al. Realizing Near-Unity Quantum Efficiency of Zero-Dimensional Antimony Halides through Metal Halide Structural Modulation [J]. ACS Applied Materials & Interfaces, 2021, 13: 58908-58915.
[75] WEI Q, CHANG T, ZENG R, et al. Self-Trapped Exciton Emission in a Zero-Dimensional (TMA)2SbCl5·DMF Single Crystal and Molecular Dynamics Simulation of Structural Stability [J]. The Journal of Physical Chemistry Letters, 2021, 12: 7091-7099.
[76] VOGLER A, NIKOL H. The Structures of s2 Metal Complexes in the Ground and sp Excited States [J]. Comments on Inorganic Chemistry, 1993, 14: 245-261.
[77] LI M, XIA Z. Recent progress of zero-dimensional luminescent metal halides [J]. Chemical Society Reviews, 2021, 50: 2626-2662.
[78] ZHANG L, LIU C, WANG L, et al. Pressure-Induced Emission Enhancement, Band-Gap Narrowing, and Metallization of Halide Perovskite Cs3Bi2I9 [J]. 2018, 57: 11213-11217.
[79] LIN R, ZHU Q, GUO Q, et al. Dual Self-Trapped Exciton Emission with Ultrahigh Photoluminescence Quantum Yield in CsCu2I3 and Cs3Cu2I5 Perovskite Single Crystals [J]. The Journal of Physical Chemistry C, 2020, 124: 20469-20476.
[80] WANG Z, SCHLIEHE C, WANG T, et al. Deviatoric Stress Driven Formation of Large Single-Crystal PbS Nanosheet from Nanoparticles and in Situ Monitoring of Oriented Attachment [J]. Journal of the American Chemical Society, 2011, 133: 14484-14487.
[81] SMITH M D, KARUNADASA H I. White-Light Emission from Layered Halide Perovskites [J]. Accounts of Chemical Research, 2018, 51: 619-627.
[82] TOYOZAWA Y. Further Contribution to the Theory of the Line-Shape of the Exciton Absorption Band [J]. Progress of Theoretical Physics, 1962, 27: 89-104.
[83] STADLER W, HOFMANN D M, ALT H C, et al. Optical investigations of defects in Cd1-xZnxTe [J].参考文献120Physical Review B, 1995, 51: 10619-10630.
[84] BENIN B M, MCCALL K M, WöRLE M, et al. The Rb7Bi3−3xSb3xCl16 Family: A Fully Inorganic Solid Solution with Room-Temperature Luminescent Members [J]. Angewandte Chemie International Edition, 2020, 59: 14490-14497.
[85] ASLAM M. Electron self‐trapping in SiO2 [J]. Journal of Applied Physics, 1987, 62: 159-162.
[86] TOKIZAKI T, MAKIMURA T, AKIYAMA H, et al. Femtosecond cascade-excitation spectroscopy for nonradiative deexcitation and lattice relaxation of the self-trapped exciton in NaCl [J]. Physical Review Letters, 1991, 67: 2701-2704.
[87] DE JONG M, SEIJO L, MEIJERINK A, et al. Resolving the ambiguity in the relation between Stokes shift and Huang–Rhys parameter [J]. Physical Chemistry Chemical Physics, 2015, 17: 16959-16969.
[88] BELJONNE D, WITTMANN H F, KöHLER A, et al. Spatial extent of the singlet and triplet excitons in transition metal‐containing poly‐ynes [J]. The Journal of Chemical Physics, 1996, 105: 3868-3877.
[89] TANIMURA K, ITOH N. Relaxation of excitons perturbed by self-trapped excitons in RbI: Evidence for exciton fusion in inorganic solids with strong electron-phonon coupling [J]. Physical Review Letters, 1990, 64: 1429-1432.
[90] UNGIER W, SUFFCZYŃSKI M, ADAMOWSKI J. Properties of excitons bound to neutral donors [J]. Physical Review B, 1981, 24: 2109-2114.
[91] LUO H, GUO S, ZHANG Y, et al. Regulating Exciton–Phonon Coupling to Achieve a Near-Unity Photoluminescence Quantum Yield in One-Dimensional Hybrid Metal Halides [J]. Advanced Science, 2021, 8: 2100786.
[92] HUANG K, RHYS A. Theory of light absorption and non-radiative transitions in F-centres [J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1950, 204: 406-423.
[93] ENDO A, SATO K, YOSHIMURA K, et al. Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes [J]. Applied Physics Letters, 2011, 98:
[94] XU S, YUAN Y, CAI X, et al. Tuning the singlet-triplet energy gap: a unique approach to efficient photosensitizers with aggregation-induced emission (AIE) characteristics [J]. Chemical Science, 2015, 6: 5824-5830.
[95] SZYMANSKI H, YELIN R, MARABELLA L. Infrared and Raman Spectra of SbCl5= [J]. The Journal of Chemical Physics, 1967, 47: 1877-1879.
[96] YIN J, ZHANG G, PENG C, et al. An ultrastable metal–organic material emits efficient and broadband bluish white-light emission for luminescent thermometers [J]. Chemical Communications, 2019, 55: 1702-1705.
[97] WANG C, LIN W. Diffusion-Controlled Luminescence Quenching in Metal−Organic Frameworks [J]. Journal of the American Chemical Society, 2011, 133: 4232-4235.
[98] LI Q, WANG Y, PAN W, et al. High-Pressure Band-Gap Engineering in Lead-Free Cs2AgBiBr6 Double Perovskite [J]. Angewandte Chemie International Edition, 2017, 56: 15969-15973.参考文献121
[99] SHI-JIE X J A P S. Huang-Rhys factor and its key role in the interpretation of some optical properties of solids [J]. Acta Physica Sinica, 2019, 68:
[100]TOYOZAWA Y. Phonon structures in the spectra of solids [J]. Journal of Luminescence, 1970, 1-2: 732-746.
[101]LI Q, XU B, CHEN Z, et al. Excitation-Dependent Emission Color Tuning of 0D Cs2InBr5·H2O at High Pressure [J]. Advanced Functional Materials, 2021, 31: 2104923.
[102]ZHANG B, ZHENG T, YOU J, et al. Electron-Phonon Coupling Suppression by Enhanced Lattice Rigidity in 2D Perovskite Single Crystals for High-Performance X-Ray Detection [J]. Advanced Materials, 2023, 35: 2208875.
[103]KONG L, LIU G, GONG J, et al. Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic–inorganic trihalide perovskites [J]. Proceedings of the National Academy of Sciences, 2016, 113: 8910-8915.
[104]ZHANG L, WANG K, LIN Y, et al. Pressure Effects on the Electronic and Optical Properties in Low-Dimensional Metal Halide Perovskites [J]. The Journal of Physical Chemistry Letters, 2020, 11: 4693-4701.
[105]LI Q, ZHANG L, CHEN Z, et al. Metal halide perovskites under compression [J]. Journal of Materials Chemistry A, 2019, 7: 16089-16108.
[106]SONG G, LI M, ZHANG S, et al. Enhancing Photoluminescence Quantum Yield in 0D Metal Halides by Introducing Water Molecules [J]. Advanced Functional Materials, 2020, 30: 2002468.
[107]ALOUI Z, FERRETTI V, ABID S, et al. Synthesis, crystal structure and characterization of a new organic–inorganic hybrid material: [C6H16N2O]SbCl5 [J]. Journal of Molecular Structure, 2015, 1087: 26-32.
[108]BUJAK M, ANGEL R J. Low-temperature single crystal X-ray diffraction and high-pressure Raman studies on [(CH3)2NH2]2[SbCl5] [J]. Journal of Solid State Chemistry, 2007, 180: 3026-3034.
[109]WOJTAŚ M, MEDYCKI W, BARAN J, et al. Thermal, dielectric and vibrational properties of ferroelastic [(CH3)3PH]3[Sb2Cl9] crystal. Molecular motion of trimethylphosphonium cations studied by proton magnetic resonance [J]. Chemical Physics, 2010, 371: 66-75.
[110] SCHMIDT T, LISCHKA K, ZULEHNER W. Excitation-power dependence of the near-band-edge photoluminescence of semiconductors [J]. Physical Review B, 1992, 45: 8989-8994.
[111] YUAN Z, ZHOU C, TIAN Y, et al. One-dimensional organic lead halide perovskites with efficient bluish white-light emission [J]. Nature Communications, 2017, 8: 14051.
[112] HAN K, JIN J, SU B, et al. Molecular dimensionality and photoluminescence of hybrid metal halides [J]. Trends in Chemistry, 2022, 4: 1034-1044.
[113] SMITH M D, CONNOR B A, KARUNADASA H I. Tuning the Luminescence of Layered Halide Perovskites [J]. Chemical Reviews, 2019, 119: 3104-3139.
[114] SMóŁKA S, MĄCZKA M, DROZDOWSKI D, et al. Effect of Dimensionality on Photoluminescence and Dielectric Properties of Imidazolium Lead Bromides [J]. Inorganic Chemistry, 2022, 61: 15225-15238.参考文献122
[115] CINQUINO M, FIERAMOSCA A, MASTRIA R, et al. Managing Growth and Dimensionality of Quasi 2D Perovskite Single-Crystalline Flakes for Tunable Excitons Orientation [J]. Advanced Materials, 2021, 33: 2102326.
[116] HOYE R L Z, HIDALGO J, JAGT R A, et al. The Role of Dimensionality on the Optoelectronic Properties of Oxide and Halide Perovskites, and their Halide Derivatives [J]. Advanced Energy Materials, 2022, 12: 2100499.
[117] BLANCON J C, STIER A V, TSAI H, et al. Scaling law for excitons in 2D perovskite quantum wells [J]. Nature Communications, 2018, 9: 2254.
[118] WANG X, MENG W, LIAO W, et al. Atomistic Mechanism of Broadband Emission in Metal Halide Perovskites [J]. The Journal of Physical Chemistry Letters, 2019, 10: 501-506.
[119] ZHOU G, JIANG X, MOLOKEEV M, et al. Optically Modulated Ultra-Broad-Band Warm White Emission in Mn2+-Doped (C6H18N2O2)PbBr4 Hybrid Metal Halide Phosphor [J]. Chemistry of Materials, 2019, 31: 5788-5795.
[120]KAHMANN S, DUIM H, FANG H-H, et al. Photophysics of Two-Dimensional Perovskites—Learning from Metal Halide Substitution [J]. Advanced Functional Materials, 2021, 31: 2103778.
[121]ZHOU C, LIN H, HE Q, et al. Low dimensional metal halide perovskites and hybrids [J]. Materials Science and Engineering: R: Reports, 2019, 137: 38-65.
[122]MAO L, WU Y, STOUMPOS C C, et al. Tunable White-Light Emission in Single-Cation-Templated Three-Layered 2D Perovskites (CH3CH2NH3)4Pb3Br10–xClx [J]. Journal of the American Chemical Society, 2017, 139: 11956-11963.
[123]GAO Z, LYU P, XU C, et al. Enhanced free-exciton luminescence in Cs2SnBr6−xIx: A first-principles study [J]. Chemical Engineering Journal, 2023, 458: 141533.
[124]LIN H, ZHOU C, NEU J, et al. Bulk Assembly of Corrugated 1D Metal Halides with Broadband Yellow Emission [J]. Advanced Optical Materials, 2019, 7: 1801474.
[125]ZHOU C, XU L-J, LEE S, et al. Recent Advances in Luminescent Zero-Dimensional Organic Metal Halide Hybrids [J]. Advanced Optical Materials, 2021, 9: 2001766.
[126]XIAO Z, MENG W, WANG J, et al. Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality [J]. Materials Horizons, 2017, 4: 206-216.
[127]LUO J, WANG X, LI S, et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites [J]. Nature, 2018, 563: 541-545.
[128]TANG H, WAN B, GAO B, et al. Metal-to-Semiconductor Transition and Electronic Dimensionality Reduction of Ca2N Electride under Pressure [J]. Advanced Science, 2018, 5: 1800666.
[129]ARAPAN S, MAO H-K, AHUJA R. Prediction of incommensurate crystal structure in Ca at high pressure [J]. Proceedings of the National Academy of Sciences, 2008, 105: 20627-20630.
[130]MAO H K, SHIRLEY E L, DING Y, et al. Electronic Structure of Crystalline 4He at High Pressures [J]. Physical Review Letters, 2010, 105: 186404.
[131]HUANG X, ZHU J, GE B, et al. Understanding Fe3O4 Nanocube Assembly with Reconstruction of a Consistent Superlattice Phase Diagram [J]. Journal of the American Chemical Society, 2019, 141:参考文献1233198-3206.
[132]KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid metals [J]. Physical Review B, 1993, 47: 558-561.
[133]KRESSE G, HAFNER J. Ab initio molecular-dynamics simulation of the liquid-metal--amorphous-semiconductor transition in germanium [J]. Physical Review B, 1994, 49: 14251-14269.
[134]KRESSE G, FURTHMüLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Computational Materials Science, 1996, 6: 15-50.
[135]BLöCHL P E. Projector augmented-wave method [J]. Physical Review B, 1994, 50: 17953-17979.
[136]KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Physical Review B, 1999, 59: 1758-1775.
[137]PERDEW J P, BURKE K, ERNZERHOF M. Generalized Gradient Approximation Made Simple [J]. Physical Review Letters, 1996, 77: 3865-3868.
[138]BECKE A D. Density-functional exchange-energy approximation with correct asymptotic behavior [J]. Physical Review A, 1988, 38: 3098-3100.
[139]TAN H, SHAN G, PACCHIONI G. Prediction of 2D ferromagnetism and monovalent europium ions in EuBr/graphene heterojunctions [J]. Physical Chemistry Chemical Physics, 2021, 23: 25500-25506.
[140]WALSH A. Principles of Chemical Bonding and Band Gap Engineering in Hybrid Organic–Inorganic Halide Perovskites [J]. The Journal of Physical Chemistry C, 2015, 119: 5755-5760.
[141]HUANG X, LI X, TAO Y, et al. Understanding Electron–Phonon Interactions in 3D Lead Halide Perovskites from the Stereochemical Expression of 6s2 Lone Pairs [J]. Journal of the American Chemical Society, 2022, 144: 12247-12260.
[142]MA Z, LI Q, LUO J, et al. Pressure-Driven Reverse Intersystem Crossing: New Path toward Bright Deep-Blue Emission of Lead-Free Halide Double Perovskites [J]. Journal of the American Chemical Society, 2021, 143: 15176-15184.
[143]KITAZAWA N, AONO M, WATANABE Y. Temperature-dependent time-resolved photoluminescence of (C6H5C2H4NH3)2PbX4 (X=Br and I) [J]. Materials Chemistry and Physics, 2012, 134: 875-880.
[144]BURRAGE K C, LIN C-M, CHEN W-C, et al. Electronic structure and anisotropic compression of Os2B3 to 358 GPa [J]. Journal of Physics: Condensed Matter, 2020, 32: 405703.
[145]DAMMAK T, FOURATI N, BOUGHZALA H, et al. X-ray diffraction, vibrational and photoluminescence studies of the self-organized quantum well crystal H3N(CH2)6NH3PbBr4 [J]. Journal of Luminescence, 2007, 127: 404-408.
[146]YU Z G. Effective-mass model and magneto-optical properties in hybrid perovskites [J]. Scientific Reports, 2016, 6: 28576.
[147]SARRITZU V, SESTU N, MARONGIU D, et al. Perovskite Excitonics: Primary Exciton Creation and Crossover from Free Carriers to a Secondary Exciton Phase [J]. Advanced Optical Materials, 2018, 6: 1700839.
[148]ZHOU L, ZHANG L, LI H, et al. Defect Passivation in Air-Stable Tin(IV)-Halide Single Crystal for Emissive Self-Trapped Excitons [J]. Advanced Functional Materials, 2021, 31: 2108561.参考文献124
[149]BARANOWSKI M, PLOCHOCKA P. Excitons in Metal-Halide Perovskites [J]. Advanced Energy Materials, 2020, 10: 1903659.
[150]LI X, GUAN Y, LI X, et al. Stereochemically Active Lone Pairs and Nonlinear Optical Properties of Two-Dimensional Multilayered Tin and Germanium Iodide Perovskites [J]. Journal of the American Chemical Society, 2022, 144: 18030-18042.
[151]GU J, TAO Y, FU T, et al. Correlating Photophysical Properties with Stereochemical Expression of 6s2 Lone Pairs in Two-dimensional Lead Halide Perovskites [J]. Angewandte Chemie International Edition, 2023, 62: e202304515.
[152]PEARSON R G. The second-order Jahn-Teller effect [J]. Journal of Molecular Structure: THEOCHEM, 1983, 103: 25-34.
[153]FU Y, JIN S, ZHU X Y. Stereochemical expression of ns2 electron pairs in metal halide perovskites [J]. Nature Reviews Chemistry, 2021, 5: 838-852.
[154]LAURITA G, FABINI D H, STOUMPOS C C, et al. Chemical tuning of dynamic cation off-centering in the cubic phases of hybrid tin and lead halide perovskites [J]. Chemical Science, 2017, 8: 5628-5635.
[155]WAGHMARE U V, SPALDIN N A, KANDPAL H C, et al. First-principles indicators of metallicity and cation off-centricity in the IV-VI rocksalt chalcogenides of divalent Ge, Sn, and Pb [J]. Physical Review B, 2003, 67: 125111.
[156]YANG R X, SKELTON J M, DA SILVA E L, et al. Assessment of dynamic structural instabilities across 24 cubic inorganic halide perovskites [J]. The Journal of Chemical Physics, 2020, 152: 024703.
[157]MAO Y, GUO S, HUANG X, et al. Pressure-Modulated Anomalous Organic–Inorganic Interactions Enhance Structural Distortion and Second-Harmonic Generation in MHyPbBr3 Perovskite [J]. Journal of the American Chemical Society, 2023, 145: 23842-23848.
[158]JIANG S, FANG Y, LI R, et al. Pressure-Induced Phase Transitions and Bandgap-Tuning Effect of Methylammonium Lead Iodide Perovskite [J]. MRS Advances, 2018, 3: 1825-1830.
[159]PYYKKO P, DESCLAUX J P. Relativity and the periodic system of elements [J]. Accounts of Chemical Research, 1979, 12: 276-281.
[160]LAURITA G, SESHADRI R. Chemistry, Structure, and Function of Lone Pairs in Extended Solids [J]. Accounts of Chemical Research, 2022, 55: 1004-1014.
[161]RADHA S K, BHANDARI C, LAMBRECHT W R L. Distortion modes in halide perovskites: To twist or to stretch, a matter of tolerance and lone pairs [J]. Physical Review Materials, 2018, 2: 063605.
[162]STERN E A. Character of Order-Disorder and Displacive Components in Barium Titanate [J]. Physical Review Letters, 2004, 93: 037601.
[163]STEIGMEIER E F, HARBEKE G. Soft phonon mode and ferroelectricity in GeTe [J]. Solid State Communications, 1970, 8: 1275-1279.

所在学位评定分委会
物理学
国内图书分类号
G250.7
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765889
专题南方科技大学
理学院_化学系
推荐引用方式
GB/T 7714
韩江. 零维杂化金属卤化物中激子多态发射的高压调控与机理研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930733-韩江-化学系.pdf(20656KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[韩江]的文章
百度学术
百度学术中相似的文章
[韩江]的文章
必应学术
必应学术中相似的文章
[韩江]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。