[1] SAHL S J, HELL S W, JAKOBS S. Fluorescence nanoscopy in cell biology [J]. Nature Reviews: Molecular Cell Biology, 2017, 18(11): 685-701.
[2] SCHERMELLEH L, FERRAND A, HUSER T, et al. Super-resolution microscopy demystified [J]. Nature Cell Biology, 2019, 21: 72-84.
[3] BARENTINE A E S, LIN Y, COURVAN E M, et al. An integrated platform for high-throughput nanoscopy [J]. Nature Biotechnology, 2023, 41(11): 1549-1556.
[4] MAHECIC D, GAMBAROTTO D, DOUGLASS K M, et al. Homogeneous multifocal excitation for high-throughput super-resolution imaging [J]. Nature Methods, 2020, 17(7): 726-733.
[5] LELEK M, GYPARAKI M T, BELIU G, et al. Single-molecule localization microscopy [J]. Nature Reviews Methods Primers, 2021, 1: 39.
[6] HUANG B, WANG W, BATES M, et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy [J]. Science, 2008, 319(5864): 810-813.
[7] JUETTE M F, GOULD T J, LESSARD M D, et al. Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples [J]. Nature Methods, 2008, 5(6): 527-529.
[8] HUANG F, SIRINAKIS G, ALLGEYER E S, et al. Ultra-High Resolution 3D Imaging of Whole Cells [J]. Cell, 2016, 166(4): 1028-1040.
[9] HUANG B, JONES S A, BRANDENBURG B, et al. Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution [J]. Nature Methods, 2008, 5(12): 1047-1052.
[10] SHTENGEL G, GALBRAITH J A, GALBRAITH C G, et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure [J]. Proceedings of the National Academy of Sciences, 2009, 106(9): 3125-3130.
[11] ROZARIO A M, MOREY A, ELLIOTT C, et al. 3D Single Molecule Super-Resolution Microscopy of Whole Nuclear Lamina [J]. Frontiers in Chemistry, 2022, 10: 863610.
[12] XU F, MA D, MACPHERSON K P, et al. Three-dimensional nanoscopy of whole cells and tissues with in situ point spread function retrieval [J]. Nature Methods, 2020, 17(5): 531-540.
[13] ARISTOV A, LELANDAIS B, RENSEN E, et al. ZOLA-3D allows flexible 3D localization microscopy over an adjustable axial range [J]. Nature Communications, 2018, 9: 2409.
[14] NEHME E, FREEDMAN D, GORDON R, et al. DeepSTORM3D: dense 3D localization microscopy and PSF design by deep learning [J]. Nature Methods, 2020, 17(7): 734-740.
[15] BURKE D, PATTON B, HUANG F, et al. Adaptive optics correction of specimen-induced aberrations in single-molecule switching microscopy [J]. Optica, 2015, 2(2): 177-185.
[16] MLODZIANOSKI M J, CHENG-HATHAWAY P J, BEMILLER S M, et al. Active PSF shaping and adaptive optics enable volumetric localization microscopy through brain sections [J]. Nature Methods, 2018, 15(8): 583-586.
[17] NAVIKAS V, DESCLOUX A C, GRUSSMAYER K S, et al. Adaptive optics enables multimode 3D super-resolution microscopy via remote focusing [J]. Nanophotonics, 2021, 10(9): 2451-2458.
[18] CHI W, QIAO Q, WANG C, et al. Descriptor ΔGC‐O enables the quantitative design of spontaneously blinking rhodamines for live‐cell super‐resolution imaging [J]. Angewandte Chemie, 2020, 132(45): 20390-20398.
[19] PEGORARO G, MISTELI T. High-throughput imaging for the discovery of cellular mechanisms of disease [J]. Trends in Genetics, 2017, 33(9): 604-615.
[20] HOLDEN S J, PENGO T, MEIBOM K L, et al. High throughput 3D super-resolution microscopy reveals Caulobacter crescentus in vivo Z-ring organization [J]. Proceedings of the National Academy of Sciences, 2014, 111(12): 4566-4571.
[21] BEGHIN A, KECHKAR A, BUTLER C, et al. Localization-based super-resolution imaging meets high-content screening [J]. Nature Methods, 2017, 14(12): 1184-1190.
[22] DU Y, WANG C, ZHANG C, et al. Computational framework for generating large panoramic super-resolution images from localization microscopy [J]. Biomedical Optics Express, 2021, 12(8): 4759-4778.
[23] DIEKMANN R, HELLE Ø I, ØIE C I, et al. Chip-based wide field-of-view nanoscopy [J]. Nature Photonics, 2017, 11(5): 322-328.
[24] ZHAO Z, XIN B, LI L, et al. High-power homogeneous illumination for super-resolution localization microscopy with large field-of-view [J]. Optics Express, 2017, 25(12): 13382-13395.
[25] DOUGLASS K M, SIEBEN C, ARCHETTI A, et al. Super-resolution imaging of multiple cells by optimized flat-field epi-illumination [J]. Nature Photonics, 2016, 10(11): 705-708.
[26] MAU A, FRIEDL K, LETERRIER C, et al. Fast widefield scan provides tunable and uniform illumination optimizing super-resolution microscopy on large fields [J]. Nature Communications, 2021, 12: 3077.
[27] MEHTA D S, NAIK D N, SINGH R K, et al. Laser speckle reduction by multimode optical fiber bundle with combined temporal, spatial, and angular diversity [J]. Applied Optics, 2012, 51(12): 1894-1904.
[28] RAMES M J, KENISON J P, HEINECK D, et al. Multiplexed and Millimeter-Scale Fluorescence Nanoscopy of Cells and Tissue Sections via Prism-Illumination and Microfluidics-Enhanced DNA-PAINT [J]. Chemical & Biomedical Imaging, 2023, 1(9): 817-830.
[29] ABBE E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung [J]. Archiv für mikroskopische Anatomie, 1873, 9: 413-468.
[30] DONNERT G, KELLER J, MEDDA R, et al. Macromolecular-scale resolution in biological fluorescence microscopy [J]. Proceedings of the National Academy of Sciences, 2006, 103(31): 11440-11445.
[31] HELL S W, WICHMANN J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy [J]. Optics Letters, 1994, 19(11): 780-782.
[32] KLAR T A, JAKOBS S, DYBA M, et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission [J]. Proceedings of the National Academy of Sciences, 2000, 97(15): 8206-8210.
[33] GUSTAFSSON M G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy [J]. Journal of microscopy, 2000, 198(2): 82-87.
[34] HEINTZMANN R, JOVIN T M, CREMER C. Saturated patterned excitation microscopy--a concept for optical resolution improvement [J]. Journal of the Optical Society of America A, 2002, 19(8): 1599-1609.
[35] BETZIG E, PATTERSON G H, SOUGRAT R, et al. Imaging intracellular fluorescent proteins at nanometer resolution [J]. Science, 2006, 313(5793): 1642-1645.
[36] RUST M J, BATES M, ZHUANG X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) [J]. Nature Methods, 2006, 3(10): 793-795.
[37] SHROFF H, WHITE H, BETZIG E. Photoactivated Localization Microscopy (PALM) of adhesion complexes [J]. Current protocols in cell biology, 2013, 58: 4-21.
[38] HESS S T, GIRIRAJAN T P, MASON M D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy [J]. Biophysical Journal, 2006, 91(11): 4258-4272.
[39] HEILEMANN M, VAN DE LINDE S, SCHUTTPELZ M, et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes [J]. Angewandte Chemie-International Edition, 2008, 47(33): 6172-6176.
[40] VAN DE LINDE S, LOSCHBERGER A, KLEIN T, et al. Direct stochastic optical reconstruction microscopy with standard fluorescent probes [J]. Nature Protocols, 2011, 6(7): 991-1009.
[41] SHANER N C, PATTERSON G H, DAVIDSON M W. Advances in fluorescent protein technology [J]. Journal of Cell Science, 2007, 120(24): 4247-4260.
[42] ZHENG Q, JUETTE M F, JOCKUSCH S, et al. Ultra-stable organic fluorophores for single-molecule research [J]. Chemical Society Reviews, 2014, 43(4): 1044-1056.
[43] GOULD T J, VERKHUSHA V V, HESS S T. Imaging biological structures with fluorescence photoactivation localization microscopy [J]. Nature Protocols, 2009, 4(3): 291-308.
[44] DEMPSEY G T, BATES M, KOWTONIUK W E, et al. Photoswitching mechanism of cyanine dyes [J]. Journal of the American Chemical Society, 2009, 131(51): 18192-18193.
[45] TAKAKURA H, ZHANG Y, ERDMANN R S, et al. Long time-lapse nanoscopy with spontaneously blinking membrane probes [J]. Nature Biotechnology, 2017, 35(8): 773-780.
[46] UNO S-N, KAMIYA M, MOROZUMI A, et al. A green-light-emitting, spontaneously blinking fluorophore based on intramolecular spirocyclization for dual-colour super-resolution imaging [J]. Chemical communications, 2018, 54: 102-105.
[47] MACDONALD P J, GAYDA S, HAACK R A, et al. Rhodamine-derived fluorescent dye with inherent blinking behavior for super-resolution imaging [J]. Analytical Chemistry, 2018, 90(15): 9165-9173.
[48] LEE S, BATJIKH I, KANG S H. Toward Sub-Diffraction Imaging of Single-DNA Molecule Sensors Based on Stochastic Switching Localization Microscopy [J]. Sensors, 2020, 20(22): 6667.
[49] HUGELIER S, COLOSI P L, LAKADAMYALI M. Quantitative Single-Molecule Localization Microscopy [J]. Review of Biophysics, 2023, 52: 139-160.
[50] VON DIEZMANN L, SHECHTMAN Y, MOERNER W E. Three-Dimensional Localization of Single Molecules for Super-Resolution Imaging and Single-Particle Tracking [J]. Chemical Reviews, 2017, 117(11): 7244-7275.
[51] BETZIG E. Proposed method for molecular optical imaging [J]. Optics Letters, 1995, 20(3): 237-239.
[52] HUANG B, WANG W, BATES M, et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy [J]. Science, 2008, 319(5864): 810-813.
[53] PAVANI S R, THOMPSON M A, BITEEN J S, et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function [J]. Proceedings of the National Academy of Sciences, 2009, 106(9): 2995-2999.
[54] JIA S, VAUGHAN J C, ZHUANG X. Isotropic three-dimensional super-resolution imaging with a self-bending point spread function [J]. Nature Photonics, 2014, 8(4): 302-306.
[55] RAM S, PRABHAT P, WARD E S, et al. Improved single particle localization accuracy with dual objective multifocal plane microscopy [J]. Optics Express, 2009, 17(8): 6881-6898.
[56] LIU S, HOESS P, RIES J. Super-resolution microscopy for structural cell biology [J]. Annual Review of Biophysics, 2022, 51: 301-326.
[57] OVESNY M, KRIZEK P, BORKOVEC J, et al. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging [J]. Bioinformatics, 2014, 30(16): 2389-2390.
[58] CHENG C-Y, HSIEH C-L. Background estimation and correction for high-precision localization microscopy [J]. ACS Photonics, 2017, 4(7): 1730-1739.
[59] THOMPSON R E, LARSON D R, WEBB W W. Precise nanometer localization analysis for individual fluorescent probes [J]. Biophysical Journal, 2002, 82(5): 2775-2783.
[60] OBER R J, RAM S, WARD E S. Localization accuracy in single-molecule microscopy [J]. Biophysical Journal, 2004, 86(2): 1185-1200.
[61] MORTENSEN K I, CHURCHMAN L S, SPUDICH J A, et al. Optimized localization analysis for single-molecule tracking and super-resolution microscopy [J]. Nature Methods, 2010, 7(5): 377-381.
[62] SAGE D, PHAM T A, BABCOCK H, et al. Super-resolution fight club: assessment of 2D and 3D single-molecule localization microscopy software [J]. Nature Methods, 2019, 16(5): 387-395.
[63] SMALL A, STAHLHEBER S. Fluorophore localization algorithms for super-resolution microscopy [J]. Nature Methods, 2014, 11(3): 267-279.
[64] LI Y M, MUND M, HOESS P, et al. Real-time 3D single-molecule localization using experimental point spread functions [J]. Nature Methods, 2018, 15(5): 367-369.
[65] HENRIQUES R, LELEK M, FORNASIERO E F, et al. QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ [J]. Nature Methods, 2010, 7(5): 339-340.
[66] NIEUWENHUIZEN R P J, LIDKE K A, BATES M, et al. Measuring image resolution in optical nanoscopy [J]. Nature Methods, 2013, 10(6): 557-562.
[67] THEVATHASAN J V, KAHNWALD M, CIESLINSKI K, et al. Nuclear pores as versatile reference standards for quantitative superresolution microscopy [J]. Nature Methods, 2019, 16(10): 1045-1053.
[68] STALLINGA S, RIEGER B. Accuracy of the gaussian point spread function model in 2D localization microscopy [J]. Optics Express, 2010, 18(24): 24461-24476.
[69] SIEMONS M, HULLEMAN C N, THORSEN R O, et al. High precision wavefront control in point spread function engineering for single emitter localization [J]. Optics Express, 2018, 26(7): 8397-8416.
[70] FU S, LI M, ZHOU L, et al. Deformable mirror based optimal PSF engineering for 3D super-resolution imaging [J]. Optics Letters, 2022, 47(12): 3031-3034.
[71] ORANGE-KEDEM R, NEHME E, WEISS L E, et al. 3D printable diffractive optical elements by liquid immersion [J]. Nature Communications, 2021, 12: 3067.
[72] ANTONELLO J. Interferometric calibration of a deformable mirror. https://doi.org/10.5281/zenodo.3714951 (Zenodo, 2020).
[73] YAN T, RICHARDSON C J, ZHANG M, et al. Computational correction of spatially variant optical aberrations in 3D single-molecule localization microscopy [J]. Optics Express, 2019, 27(9): 12582-12599.
[74] SPEISER A, MULLER L R, HOESS P, et al. Deep learning enables fast and dense single-molecule localization with high accuracy [J]. Nature Methods, 2021, 18(9): 1082-1090.
[75] KIM T, MOON S, XU K. Information-rich localization microscopy through machine learning [J]. Nature Communications, 2019, 10: 1996.
[76] NEHME E, FERDMAN B, WEISS L E, et al. Learning Optimal Wavefront Shaping for Multi-Channel Imaging [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(7): 2179-2192.
[77] ZHANG P, MA D, CHENG X, et al. Deep learning-driven adaptive optics for single-molecule localization microscopy [J]. Nature Methods, 2023, 20(11): 1748–1758.
[78] LIU R, LEHMAN J, MOLINO P, et al. An intriguing failing of convolutional neural networks and the coordconv solution [C]. Advances in neural information processing systems, 2018.
[79] LOSHCHILOV I, HUTTER F. Decoupled Weight Decay Regularization [C]. The International Conference on Learning Representations, 2019.
[80] MOCKL L, ROY A R, PETROV P N, et al. Accurate and rapid background estimation in single-molecule localization microscopy using the deep neural network BGnet [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(1): 60-67.
[81] RIES J. SMAP: a modular super-resolution microscopy analysis platform for SMLM data [J]. Nature Methods, 2020, 17(9): 870-872.
[82] WANG Y N, SCHNITZBAUER J, HU Z, et al. Localization events-based sample drift correction for localization microscopy with redundant cross-correlation algorithm [J]. Optics Express, 2014, 22(13): 15982-15991.
[83] NOVAK T, GAJDOS T, SINKO J, et al. TestSTORM: Versatile simulator software for multimodal super-resolution localization fluorescence microscopy [J]. Scientific reports, 2017, 7: 951.
[84] VON DIEZMANN A, LEE M Y, LEW M D, et al. Correcting field-dependent aberrations with nanoscale accuracy in three-dimensional single-molecule localization microscopy [J]. Optica, 2015, 2(11): 985-993.
[85] ZHANG B, ZERUBIA J, OLIVO-MARIN J C. Gaussian approximations of fluorescence microscope point-spread function models [J]. Applied Optics, 2007, 46(10): 1819-1829.
[86] THOMA E C, WISCHMEYER E, OFFEN N, et al. Ectopic expression of neurogenin 2 alone is sufficient to induce differentiation of embryonic stem cells into mature neurons [J]. PLoS One, 2012, 7(6): e38651.
[87] ZHANG Y, PAK C, HAN Y, et al. Rapid single-step induction of functional neurons from human pluripotent stem cells [J]. Neuron, 2013, 78(5): 785-798.
[88] ZHANG Y, SCHROEDER L K, LESSARD M D, et al. Nanoscale subcellular architecture revealed by multicolor three-dimensional salvaged fluorescence imaging [J]. Nature Methods, 2020, 17(2): 225-231.
[89] ZHOU R, HAN B, NOWAK R, et al. Proteomic and functional analyses of the periodic membrane skeleton in neurons [J]. Nature Communications, 2022, 13: 3196.
[90] DESCHAMPS J, RIES J. EMU: reconfigurable graphical user interfaces for Micro-Manager [J]. BMC Bioinformatics, 2020, 21: 456.
[91] XU K, ZHONG G S, ZHUANG X W. Actin, Spectrin, and Associated Proteins Form a Periodic Cytoskeletal Structure in Axons [J]. Science, 2013, 339(6118): 452-456.
[92] ZHANG Q, HU Q, BERLAGE C, et al. Adaptive optics for optical microscopy [J]. Biomedical Optics Express, 2023, 14(4): 1732-1756.
[93] KANG S Y, DUOCASTELLA M, ARNOLD C B. Variable optical elements for fast focus control [J]. Nature Photonics, 2020, 14(9): 533-542.
[94] QIN Z, SHE Z, CHEN C, et al. Deep tissue multi-photon imaging using adaptive optics with direct focus sensing and shaping [J]. Nature Biotechnology, 2022, 40(11): 1663-1671.
[95] ZURAUSKAS M, BARNSTEDT O, FRADE-RODRIGUEZ M, et al. Rapid adaptive remote focusing microscope for sensing of volumetric neural activity [J]. Biomedical Optics Express, 2017, 8(10): 4369-4379.
[96] CUI J, TURCOTTE R, EMPTAGE N J, et al. Extended range and aberration-free autofocusing via remote focusing and sequence-dependent learning [J]. Optics Express, 2021, 29(22): 36660-36674.
[97] BATHE-PETERS M, ANNIBALE P, LOHSE M J. All-optical microscope autofocus based on an electrically tunable lens and a totally internally reflected IR laser [J]. Optics Express, 2018, 26(3): 2359-2368.
[98] BASUMATARY J, BARO N, JOSHI P, et al. Scanning single molecule localization microscopy (scanSMLM) for super-resolution volume imaging [J]. Communications Biology, 2023, 6: 1050.
[99] LI Y M, BUGLAKOVA E, ZHANG Y D, et al. Accurate 4Pi single-molecule localization using an experimental PSF model [J]. Optics Letters, 2020, 45(13): 3765-3768.
[100] WANG J Y, ALLGEYER E S, SIRINAKIS G, et al. Implementation of a 4Pi-SMS super-resolution microscope [J]. Nature Protocols, 2021, 16(2): 677–727.
[101] PINKARD H, STUURMAN N, IVANOV I E, et al. Pycro-Manager: open-source software for customized and reproducible microscope control [J]. Nature Methods, 2021, 18(3): 226-228.
[102] LIU S, CHEN J, HELLGOTH J, et al. Universal inverse modelling of point spread functions for SMLM localization and microscope characterization [J]. bioRxiv, 2023.
[103] YANNY K, MONAKHOVA K, SHUAI R W, et al. Deep learning for fast spatially varying deconvolution [J]. Optica, 2022, 9(1): 96-99.
[104] HE Y, DING Y, LIU P, et al. Learning filter pruning criteria for deep convolutional neural networks acceleration [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.
[105] ALWANI M, WANG Y, MADHAVAN V. Decore: Deep compression with reinforcement learning [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.
[106] KIM Y, CHOI H, LEE J, et al. Towards an optimized distributed deep learning framework for a heterogeneous multi-GPU cluster [J]. Cluster Computing, 2020, 23(3): 2287-2300.
[107] CHEN Z, ZHAO X, ZHI C, et al. DeepBoot: Dynamic Scheduling System for Training and Inference Deep Learning Tasks in GPU Cluster [J]. IEEE Transactions on Parallel and Distributed Systems, 2023, 34(9): 2553 - 2567.
[108] SIEMONS M E, HANEMAAIJER N A K, KOLE M H P, et al. Robust adaptive optics for localization microscopy deep in complex tissue [J]. Nature Communications, 2021, 12: 3407.
[109] PARK S, JO Y, KANG M, et al. Label-free adaptive optics single-molecule localization microscopy for whole zebrafish [J]. Nature Communications, 2023, 14: 4185.
[110] HUISKEN J, SWOGER J, DEL BENE F, et al. Optical sectioning deep inside live embryos by selective plane illumination microscopy [J]. Science, 2004, 305(5686): 1007-1009.
[111] KE M T, NAKAI Y, FUJIMOTO S, et al. Super-Resolution Mapping of Neuronal Circuitry With an Index-Optimized Clearing Agent [J]. cell reports, 2016, 14(11): 2718-2732.
[112] MATSUMOTO K, MITANI T T, HORIGUCHI S A, et al. Advanced CUBIC tissue clearing for whole-organ cell profiling [J]. Nature Protocols, 2019, 14(12): 3506-3537.
[113] LEE Y, LEE Y, LEE M, et al. STORM imaging buffer with a refractive index matched to standard immersion oil [J]. ACS Photonics, 2023, 10(8): 2589-2597.
[114] CREECH M K, WANG J, NAN X, et al. Superresolution imaging of clinical formalin fixed paraffin embedded breast cancer with single molecule localization microscopy [J]. Scientific reports, 2017, 7: 40766.
[115] XU J, MA H, MA H, et al. Super-resolution imaging reveals the evolution of higher-order chromatin folding in early carcinogenesis [J]. Nature Communications, 2020, 11: 1899.
[116] XU J, SUN X, KIM K, et al. Ultrastructural visualization of chromatin in cancer pathogenesis using a simple small-molecule fluorescent probe [J]. Science Advances, 2022, 8: eabm8293.
修改评论