中文版 | English
题名

离-电型柔性温度、硬度传感器及其多模态触觉传感应用研究

其他题名
IONTRONIC FLEXIBLE TEMPERATURE, SOFTNESS SENSOR AND MULTI-MODE TACTILE SENSING APPLICATIONS
姓名
姓名拼音
CHENG Yu
学号
12031275
学位类型
博士
学位专业
物理学
学科门类/专业学位类别
理学
导师
郭传飞
导师单位
材料科学与工程系
论文答辩日期
2024-05-07
论文提交日期
2024-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

柔性触觉传感技术在人机交互等新兴领域具有广阔的应用前景,同时,复杂多样的应用场景对柔性触觉传感器的性能提出了高灵敏度、高分辨率以及多模态等要求。离-电型柔性触觉传感器因其具有高信噪比、低功耗等特点而备受关注。目前,离-电型柔性触觉传感器的研究主要局限于压力传感模态的性能提升,单一化的研究不能满足日益发展的应用需求。本文主要从材料设计、结构设计以及算法设计方法出发,系统地研究了离-电型柔性触觉传感器的温度-硬度传感模态,开发了一种多模态离-电型柔性触觉传感阵列,并实现了离-电型柔性触觉传感器的智能化应用。主要研究内容和结果如下:
制备了一种聚离子弹性体材料,具有宽温度量程内的力学稳定性。将其作为活性层材料,构建了一种超灵敏离-电型柔性温度传感器,在宽量程内(–10~150 °C),实现了高灵敏度(高于已报道柔性温度传感器3~4 个数量级)和高分辨率(0.001 °C)。系统地阐述了离-电型温度传感器的传热-电容影响机制,为高性能离-电型温度传感器的设计提供了理论指导。实现了离-电型柔性温度传感器在呼吸健康检测和非接触式传感等领域的应用。
受手指硬度感知机理启发,制备了一种仿生手指结构的离-电型仿生硬度传感器。提出的位移-压力双参数控制物理接触模型,实现了接触过程中压力-位移等物理信息的获取;提出的多段位移采集数据方法,提高了硬度传感的信号特征丰富度。结合深度学习方法,构建了智能硬度传感系统,并实现了高准确率(>99%)的物体硬度分类应用。
基于智能硬度传感系统的研究基础,制造了一种便携式眼压检测仪,提出了通过眼球硬度识别实现眼压健康状态的检测原理,眼压健康状态检测实现了高达96%以上的准确率。该眼压检测仪具有低成本、高准确率和高重复性等优点,展现了离-电型触觉传感器在可穿戴医疗设备领域的应用价值。
结合温度传感器与硬度传感器的研究基础,制备了一种多模态离-电型柔性触觉传感阵列,利用单一活性层材料制备的传感阵列,实现了压力、温度、硬度、形状、材质等多种传感模态的集成,降低了多模态传感阵列的制备工艺难度。结合深度学习方法,实现了高准确率(>96%)的物体识别应用。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2024-06
参考文献列表

[1] WANG S H, XU J, WANG W C, et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array[J]. Nature, 2018, 555(7694): 83-88.
[2] BOUTRY C M, KAIZAWA Y, SCHROEDER B C, et al. A stretchable and biodegradable strain and pressure sensor for orthopaedic application[J]. Nature Electronics, 2018, 1(5): 314-321.
[3] LI G, HUANG K X, DENG J, et al. Highly Conducting and Stretchable Double-Network Hydrogel for Soft Bioelectronics[J]. Advanced Materials, 2022, 34(15): 2200261.
[4] ROGERS J A, SOMEYA T, HUANG Y G. Materials and Mechanics for Stretchable Electronics[J]. Science, 2010, 327(5973): 1603-1607.
[5] GUTRUF P, YIN R T, LEE K B, et al. Wireless, battery-free, fully implantable multimodal and multisite pacemakers for applications in small animal models[J]. Nature Communications, 2019, 10: 5742.
[6] YAO K M, ZHOU J K, HUANG Q Y, et al. Encoding of tactile information in hand via skin-integrated wireless haptic interface[J]. Nature Machine Intelligence, 2022, 4(10): 893-903.
[7] WAN Y B, WANG Y, GUO C F. Recent progresses on flexible tactile sensors[J]. Materials Today Physics, 2017, 1: 61-73.
[8] CHANG Y, WANG L, LI R, et al. First Decade of Interfacial Iontronic Sensing: From Droplet Sensors to Artificial Skins[J]. Advanced Materials, 2020, 33(7): e2003464.
[9] BAI N N, WANG L, WANG Q, et al. Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity[J]. Nature Communications, 2020, 11(1): 209.
[10] LIU Q, LIU Y, SHI J, et al. High-Porosity Foam-Based Iontronic Pressure Sensor with Superhigh Sensitivity of 9280 kPa−1[J]. Nano-Micro Letters, 2021, 14(1): 1-12.
[11] GAO L, WANG M, WANG W, et al. Highly Sensitive Pseudocapacitive Iontronic Pressure Sensor with Broad Sensing Range[J]. Nano-Micro Letters, 2021, 13(1): 1-14.
[12] BAI N N, WANG L, XUE Y H, et al. Graded Interlocks for Iontronic Pressure Sensors with High Sensitivity and High Linearity over a Broad Range[J]. ACS Nano, 2022, 16(3): 4338-4347.
[13] LU P, WANG L, ZHU P, et al. Iontronic pressure sensor with high sensitivity and linear response over a wide pressure range based on soft micropillared electrodes[J]. Science Bulletin, 2021, 66(11): 1091-1100.
[14] YANG R, DUTTA A, LI B, et al. Iontronic pressure sensor with high sensitivity over ultra-broad linear range enabled by laser-induced gradient micro-pyramids[J]. Nature Communications, 2023, 14(1): 2907.
[15] SHI J L, DAI Y, CHENG Y, et al. Embedment of sensing elements for robust, highly sensitive, and cross-talk-free iontronic skins for robotics applications[J]. Science Advances, 2023, 9(9): eadf8831.
[16] LI L, ZHU G, WANG J, et al. A flexible and ultrasensitive interfacial iontronic multisensory sensor with an array of unique “cup-shaped” microcolumns for detecting pressure and temperature[J]. Nano Energy, 2023, 105: 108012.
[17] WANG J, CUI X H, SONG Y J, et al. Flexible iontronic sensors with high-precision and high-sensitivity detection for pressure and temperature[J]. Composites Communications, 2023, 39: 101544.
[18] LIN Q P, HUANG J, YANG J L, et al. Highly Sensitive Flexible Iontronic Pressure Sensor for Fingertip Pulse Monitoring[J]. Advanced Healthcare Materials, 2020, 9(17): e2001023.
[19] SU Q, ZOU Q, LI Y, et al. A stretchable and strain-unperturbed pressure sensor for motion interference-free tactile monitoring on skins[J]. Science Advances, 2021, 7(48): eabi4563.
[20] LI S, PAN N, ZHU Z, et al. All‐in‐One Iontronic Sensing Paper[J]. Advanced Functional Materials, 2019, 29(11): 1807343.
[21] SUN Z D, ZHU M L, ZHANG Z X, et al. Artificial Intelligence of Things (AIoT) Enabled Virtual Shop Applications Using Self-Powered Sensor Enhanced Soft Robotic Manipulator[J]. Advanced Science, 2021, 8(14): e2100230.
[22] LUO Y, XIAO X, CHEN J, et al. Machine-Learning-Assisted Recognition on Bioinspired Soft Sensor Arrays[J]. ACS Nano, 2022, 16(4): 6734-6743.
[23] SHI Q F, SUN Z D, LE X H, et al. Soft Robotic Perception System with Ultrasonic Auto-Positioning and Multimodal Sensory Intelligence[J]. ACS Nano, 2023, 17(5): 4985-4998.
[24] TAN P C, HAN X, ZOU Y, et al. Self-Powered Gesture Recognition Wristband Enabled by Machine Learning for Full Keyboard and Multicommand Input[J]. Advanced Materials, 2022, 34(21): e2200793.
[25] ZHOU Z H, CHEN K, LI X S, et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays[J]. Nature Electronics, 2020, 3(9): 571-578.
[26] MOIN A, ZHOU A, RAHIMI A, et al. A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition[J]. Nature Electronics, 2021, 4(1): 54-63.
[27] ZHU M L, SUN Z D, ZHANG Z X, et al. Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications[J]. Science Advances, 2020, 6(19): eaaz8693.
[28] ZHU M L, SUN Z D, LEE C K. Soft Modular Glove with Multimodal Sensing and Augmented Haptic Feedback Enabled by Materials' Multifunctionalities[J]. ACS Nano, 2022, 16(9): 14097-14110.
[29] ZHANG Z X, HE T Y Y, ZHU M L, et al. Deep learning-enabled triboelectric smart socks for IoT-based gait analysis and VR applications[J]. npj Flexible Electronics, 2020, 4(1): 29.
[30] YU X, XIE Z, YU Y, et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality[J]. Nature, 2019, 575(7783): 473-479.
[31] SUNDARAM S, KELLNHOFER P, LI Y Z, et al. Learning the signatures of the human grasp using a scalable tactile glove[J]. Nature, 2019, 569(7758): 698-702.
[32] TANG L X, SHANG J, JIANG X Y. Multilayered electronic transfer tattoo that can enable the crease amplification effect[J]. Science Advances, 2021, 7(3): eabe3778.
[33] SUN Z D, ZHU M L, SHAN X C, et al. Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions[J]. Nature Communications, 2022, 13(1): 5224.
[34] LI Y, ZHAO M J, YAN Y D, et al. Multifunctional biomimetic tactile system via a stick-slip sensing strategy for human-machine interactions[J]. NPJ Flexible Electronics, 2022, 6(1): 46.
[35] QIU Y, SUN S S, WANG X E, et al. Nondestructive identification of softness via bioinspired multisensory electronic skins integrated on a robotic hand[J]. NPJ Flexible Electronics, 2022, 6(1): 45.
[36] DUAN S S, SHI Q F, HONG J L, et al. Water-Modulated Biomimetic Hyper- Attribute-Gel Electronic Skin for Robotics and Skin-Attachable Wearables[J]. ACS Nano, 2023, 17(2): 1355-1371.
[37] XIONG W, ZHU C, GUO D, et al. Bio-inspired, intelligent flexible sensing skin for multifunctional flying perception[J]. Nano Energy, 2021, 90: 106550.
[38] LI G, LIU S, MAO Q, et al. Multifunctional Electronic Skins Enable Robots to Safely and Dexterously Interact with Human[J]. Advanced Science, 2022, 9(11): 2104969.
[39] QIAO H Y, SUN S T, WU P Y. Non-equilibrium-Growing Aesthetic Ionic Skin for Fingertip-Like Strain-Undisturbed Tactile Sensation and Texture Recognition[J]. Advanced Materials, 2023, 35(21): 2300593.
[40] LI G Z, LIU S Q, WANG L Q, et al. Skin-inspired quadruple tactile sensors integrated on a robot hand enable object recognition[J]. Science Robotics, 2020, 5(49): eabc8134.
[41] QU X C, LIU Z, TAN P C, et al. Artificial tactile perception smart finger for material identification based on triboelectric sensing[J]. Science Advances, 2022, 8(31): eabq2521.
[42] SHARMA S, PRADHAN G B, JEONG S, et al. Stretchable and All-Directional Strain- Insensitive Electronic Glove for Robotic Skins and Human-Machine Interfacing[J]. ACS Nano, 2023, 17(9): 8355-8366.
[43] LUO J Z, LI Y S, HE M, et al. Rehabilitation of Total Knee Arthroplasty by Integrating Conjoint Isometric Myodynamia and Real-Time Rotation Sensing System[J]. Advanced Science, 2022, 9(8): 2105219.
[44] LI C Y, LIU D, XU C Q, et al. Sensing of joint and spinal bending or stretching via a retractable and wearable badge reel[J]. Nature Communications, 2021, 12(1): 2950.
[45] GU G Y R, ZHANG N B, XU H P, et al. A soft neuroprosthetic hand providing simultaneous myoelectric control and tactile feedback[J]. Nature Biomedical Engineering, 2023, 7(4): 589-598.
[46] GUO X G, HE T Y Y, ZHANG Z X, et al. Artificial Intelligence-Enabled Caregiving Walking Stick Powered by Ultra-Low-Frequency Human Motion[J]. ACS Nano, 2021, 15(12): 19054-19069.
[47] FANG Y S, XU J, XIAO X, et al. A Deep-Learning-Assisted On-Mask Sensor Network for Adaptive Respiratory Monitoring[J]. Advanced Materials, 2022, 34(24): e2200252.
[48] YI Z R, LIU Z X, LI W B, et al. Piezoelectric Dynamics of Arterial Pulse for Wearable Continuous Blood Pressure Monitoring[J]. Advanced Materials, 2022, 34(16): e2110291.
[49] KIM J, PARK J, PARK Y G, et al. A soft and transparent contact lens for the wireless quantitative monitoring of intraocular pressure[J]. Nature Biomedical Engineering, 2021, 5(7): 772-782.
[50] LEE S, KIM J, YUN I, et al. An ultrathin conformable vibration-responsive electronic skin for quantitative vocal recognition[J]. Nature Communications, 2019, 10: 2468.
[51] YANG Q S, JIN W Q, ZHANG Q H, et al. Mixed-modality speech recognition and interaction using a wearable artificial throat[J]. Nature Machine Intelligence, 2023, 5(2): 169-180.
[52] LIN Z W, ZHANG G Q, XIAO X, et al. A Personalized Acoustic Interface for Wearable Human-Machine Interaction[J]. Advanced Functional Materials, 2022, 32(9): 2109430.
[53] YOU I, MACKANIC D G, MATSUHISA N, et al. Artificial multimodal receptors based on ion relaxation dynamics[J]. Science, 2020, 370(6519): 961-965.
[54] CHENG W, WANG X Y, XIONG Z, et al. Frictionless multiphasic interface for near-ideal aero-elastic pressure sensing[J]. Nature Materials, 2023, 22(11): 1352-1360.
[55] SHEN Z Q, ZHANG Z L, ZHANG N B, et al. High-Stretchability, Ultralow-Hysteresis ConductingPolymer Hydrogel Strain Sensors for Soft Machines[J]. Advanced Materials, 2022, 34(32): 2203650.
[56] WANG X Y, DENG Y, JIANG P, et al. Low-hysteresis, pressure-insensitive, and transparent capacitive strain sensor for human activity monitoring[J]. Microsystems & Nanoengineering, 2022, 8(1): 113.
[57] FAN F R, TIAN Z Q, WANG Z L. Flexible triboelectric generator![J]. Nano Energy, 2012, 1(2): 328-334.
[58] JIA L Y, GUO Z H, LI L W, et al. Electricity Generation and Self-Powered Sensing Enabled by Dynamic Electric Double Layer at Hydrogel-Dielectric Elastomer Interfaces[J]. ACS Nano, 2021, 15(12): 19651-19660.
[59] YAN W, NOEL G, LOKE G, et al. Single fibre enables acoustic fabrics via nanometre-scale vibrations[J]. Nature, 2022, 603(7902): 616-623.
[60] LIU W B, DUO Y N, LIU J Q, et al. Touchless interactive teaching of soft robots through flexible bimodal sensory interfaces[J]. Nature Communications, 2022, 13(1): 5030.
[61] MA M Y, ZHANG Z, ZHAO Z N, et al. Self-powered flexible antibacterial tactile sensor based on triboelectric-piezoelectric-pyroelectric multi-effect coupling mechanism[J]. Nano Energy, 2019, 66: 104105.
[62] WEI X L, WANG B C, WU Z Y, et al. An Open-Environment Tactile Sensing System: Toward Simple and Efficient Material Identification[J]. Advanced Materials, 2022, 34(29): e2203073.
[63] GE C Y, LI R Z, ZHOU L J, et al. Dual-Function Tactile Sensor with Linear Pressure and Temperature Perception at Low Degree of Coupling[J]. Advanced Intelligent Systems, 2023, 5(5): 2200398.
[64] JIANG Y, LIANG F, LI H Y, et al. A Flexible and Ultra-Highly Sensitive Tactile Sensor through a Parallel Circuit by a Magnetic Aligned Conductive Composite[J]. ACS Nano, 2022, 16(1): 746-754.
[65] BI S X, ZHAO X, GAO F F, et al. A high-sensitive and self-selective humanoid mechanoreceptor for spatiotemporal tactile stimuli cognition[J]. Nano Research, 2023: 1-10.
[66] NIU H S, LI H, GAO S, et al. Perception-to-Cognition Tactile Sensing Based on Artificial-Intelligence-Motivated Human Full-Skin Bionic Electronic Skin[J]. Advanced Materials, 2022, 34(31): e2202622.
[67] HOU X Y, GUO C F. Sensing mechanisms and applications of flexible pressure sensors[J]. Acta Physica Sinica, 2020, 69(17).
[68] OLDHAM K B. A Gouy-Chapman-Stern model of the double layer at a (metal)/(ionic liquid) interface[J]. Journal of Electroanalytical Chemistry, 2008, 613(2): 131-138.
[69] GAO N W, PAN C F. Intelligent ion gels: Design, performance, and applications[J]. Smartmat, 2023: e1215.
[70] YAMADA S, TOSHIYOSHI H. Temperature Sensor with a Water-Dissolvable Ionic Gel for Ionic Skin[J]. ACS Applied Materials & Interfaces, 2020, 12(32): 36449-36457.
[71] CHEN J W, ZHU G X, WANG J, et al. Multifunctional Iontronic Sensor Based on Liquid Metal-Filled Ho llow Ionogel Fibers in Detecting Pressure, Temperature, and Proximity[J]. ACS Applied Materials & Interfaces, 2023, 15(5): 7485-7495.
[72] NIE B Q, XING S Y, BRANDT J D, et al. Droplet-based interfacial capacitive sensing[J]. Lab on a Chip, 2012, 12(6): 1110-1118.
[73] NIE B Q, LI R Y, BRANDT J D, et al. Iontronic microdroplet array for flexible ultrasensitive tactile sensing[J]. Lab on a Chip, 2014, 14(6): 1107-1116.
[74] NIE B Q, LI R Y, BRANDT J D, et al. Microfluidic tactile sensors for three-dimensional contact force measurements[J]. Lab on a Chip, 2014, 14(22): 4344-4353.
[75] YANG J, LIU Q, DENG Z, et al. Ionic liquid-activated wearable electronics[J]. Materials Today Physics, 2019, 8: 78-85.
[76] MANNSFELD S C B, TEE B C K, STOLTENBERG R M, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers[J]. Nature Materials, 2010, 9(10): 859-864.
[77] BAI N N, XUE Y H, CHEN S Q, et al. A robotic sensory system with high spatiotemporal resolution for texture recognition[J]. Nature Communications, 2023, 14(1): 7121.
[78] QIU Z G, WAN Y B, ZHOU W H, et al. Ionic Skin with Biomimetic Dielectric Layer Templated from Leaf[J]. Advanced Functional Materials, 2018, 28(37): 1802343.
[79] LIU Q X, LIU Z G, LI C G, et al. Highly Transparent and Flexible Iontronic Pressure Sensors Based on an Opaque to Transparent Transition[J]. Advanced Science, 2020, 7(10): 2000348.
[80] LI C C, CHENG J X, HE Y F, et al. Polyelectrolyte elastomer-based ionotronic sensors with multi-mode sensing capabilities via multi-material 3D printing[J]. Nature Communications, 2023, 14(1): 4853.
[81] YUAN Y M, LIU B H, ADIBEIG M R, et al. Microstructured Polyelectrolyte Elastomer-Based Ionotronic Sensors with High Sensitivities and Excellent Stability for Artificial Skins[J]. Advanced Materials, 2023: 2310429.
[82] WAN Y B, QIU Z G, HONG Y, et al. A Highly Sensitive Flexible Capacitive Tactile Sensor with Sparse and High-Aspect-Ratio Microstructures[J]. Advanced Electronic Materials, 2018, 4(4): 1700586.
[83] WAN Y B, QIU Z G, HUANG J, et al. Natural Plant Materials as Dielectric Layer for Highly Sensitive Flexible Electronic Skin[J]. Small, 2018, 14(35): 1801657.
[84] CUI Z Q, WANG W S, GUO L L, et al. Haptically Quantifying Young's Modulus of Soft Materials Using a Self-Locked Stretchable Strain Sensor[J]. Advanced Materials, 2022, 34(25): e2104078.
[85] CUI Z Q, WANG W S, XIA H R, et al. Freestanding and Scalable Force-Softness Bimodal Sensor Arrays for Haptic Body-Feature Identification[J]. Advanced Materials, 2022, 34(47): e2207016.
[86] WANG Y J, ADAM M L, ZHAO Y L, et al. Machine Learning-Enhanced Flexible Mechanical Sensing[J]. Nano-Micro Letters, 2023, 15(1): 55.
[87] YAO P Q, BAO Q W, YAO Y, et al. Environmentally Stable, Robust, Adhesive, and Conductive Supramolecular Deep Eutectic Gels as Ultrasensitive Flexible Temperature Sensor[J]. Advanced Materials, 2023, 35(21): e2300114.
[88] KIM H W, KIM E, OH J, et al. Water-Saturated Ion Gel for Humidity-Independent High Precision Epidermal Ionic Temperature Sensor[J]. Advanced Science, 2022, 9(16): e2200687.
[89] ZHANG H, CHEN H M, LEE J H, et al. Bioinspired Chromotropic Ionic Skin with In-Plane Strain/Temperature/Pressure Multimodal Sensing and Ultrahigh Stimuli Discriminability[J]. Advanced Functional Materials, 2022, 32(47): 2208362.
[90] LU Y, QU X Y, WANG S Y, et al. Ultradurable, freeze-resistant, and healable MXene-based ionic gels for multi-functional electronic skin[J]. Nano Research, 2022, 15(5): 4421-4430.
[91] OTA H, CHEN K, LIN Y J, et al. Highly deformable liquid-state heterojunction sensors[J]. Nature Communications, 2014, 5: 5032.
[92] MA X L, WANG C F, WEI R L, et al. Bimodal Tactile Sensor without Signal Fusion for User-Interactive Applications[J]. ACS Nano, 2022, 16(2): 2789-2797.
[93] LE GOUPIL F, PAYROT G, KHIEV S, et al. Fully Printed Sensors for In Situ Temperature, Heat Flow, and Thermal Conductivity Measurements in Flexible Devices[J]. ACS Omega, 2023, 8(9): 8481-8487.
[94] WANG P, YU W, LI G, et al. Printable, flexible, breathable and sweatproof bifunctional sensors based on an all-nanofiber platform for fully decoupled pressure–temperature sensing application[J]. Chemical Engineering Journal, 2023, 452: 139174.
[95] TRUNG T Q, RAMASUNDARAM S, HWANG B U, et al. An All-Elastomeric Transparent and Stretchable Temperature Sensor for Body-Attachable Wearable Electronics[J]. Advanced Materials, 2016, 28(3): 502-509.
[96] GUO Z H, WANG H L, SHAO J J, et al. Bioinspired soft electroreceptors for artificial precontact somatosensation[J]. Science Advances, 2022, 8(21): eabo5201.
[97] CHORTOS A, BAO Z N. Skin-inspired electronic devices[J]. Materials Today, 2014, 17(7): 321-331.
[98] STRICKLAND E. Andrew Ng, AI Minimalist: The Machine-Learning Pioneer Says Small is the New Big[J]. IEEE Spectrum, 2022, 59(4): 22-50.
[99] LIU M W, ZHANG Y J, WANG J C, et al. A star-nose-like tactile-olfactory bionic sensing array for robust object recognition in non-visual environments[J]. Nature Communications, 2022, 13(1): 79.
[100] WEN F, ZHANG Z X, HE T Y, et al. AI enabled sign language recognition and VR space bidirectional communication using triboelectric smart glove[J]. Nature Communications, 2021, 12(1): 5378.
[101] SHI Q F, ZHANG Z X, HE T Y Y, et al. Deep learning enabled smart mats as a scalable floor monitoring system[J]. Nature Communications, 2020, 11(1): 4609.
[102] LU Y J, TIAN H, CHENG J, et al. Decoding lip language using triboelectric sensors with deep learning[J]. Nature Communications, 2022, 13(1): 1401.
[103] CHENG Y, WU D, HAO S F, et al. Highly stretchable triboelectric tactile sensor for electronic skin[J]. Nano Energy, 2019, 64: 103907.
[104] YAO G, XU L, CHENG X W, et al. Bioinspired Triboelectric Nanogenerators as Self-Powered Electronic Skin for Robotic Tactile Sensing[J]. Advanced Functional Materials, 2020, 30(6): 1907312.
[105] LI T, ZOU J D, XING F, et al. From Dual-Mode Triboelectric Nanogenerator to Smart Tactile Sensor: A Multiplexing Design[J]. ACS Nano, 2017, 11(4): 3950-3956.
[106] LIU M Y, WANG X Y, WU X Y, et al. A stretchable hardness sensor for systemic sclerosis diagnosis[J]. Nano Energy, 2022, 98: 107242.
[107] MACKENZIE W. A Practical Treatise on the Diseases of the Eye [M]. Blanchard and Lea, 1855.
[108] JU F, WANG Y M, ZHANG Z, et al. A miniature piezoelectric spiral tactile sensor for tissue hardness palpation with catheter robot in minimally invasive surgery[J]. Smart Materials and Structures, 2019, 28(2): 025033.
[109] XU J, LI R, XU H, et al. Recent progress of continuous intraocular pressure monitoring[J]. Nano Select, 2021, 3(1): 1-19.
[110] YANG C, WU Q N, LIU J Q, et al. Intelligent wireless theranostic contact lens for electrical sensing and regulation of intraocular pressure[J]. Nature Communications, 2022, 13(1): 2556.
[111] LIU Z D, WANG G, YE C, et al. An Ultrasensitive Contact Lens Sensor Based On Self-Assembly Graphene For Continuous Intraocular Pressure Monitoring[J]. Advanced Functional Materials, 2021, 31(29): 2010991.
[112] YE Y, GE Y C, ZHANG Q W, et al. Smart Contact Lens with Dual-Sensing Platform for Monitoring Intraocular Pressure and Matrix Metalloproteinase-9[J]. Advanced Science, 2022, 9(12): e2104738.
[113] MUTOH T, ISHIKAWA T, NISHIMURA H, et al. Application of the FlexiForce Contact Surface Force Sensor to Continuous Extraocular Compression Monitoring During Craniotomy for Cerebral Aneurysms[J]. Journal of Neurosurgical Anesthesiology, 2010, 22(1): 67-72.
[114] HäKKINEN M, EKSTRöM C. Distribution of intraocular pressure in a Swedish population[J]. Upsala Journal of Medical Sciences, 2022, 127(1): e8829.
[115] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357.
[116] HAAS M. Statistical methodology for reliability studies[J]. Journal of Manipulative and Physiological Therapeutics, 1991, 14(2): 119-132.
[117] WANG Y, WU H T, XU L, et al. Hierarchically patterned self-powered sensors for multifunctional tactile sensing[J]. Science Advances, 2020, 6(34): eabb9083.
[118] DUAN S S, WEI X, ZHAO F Z, et al. Bioinspired Young's Modulus-Hierarchical E-Skin with Decoupling Multimodality and Neuromorphic Encoding Outputs to Biosystems[J]. Advanced Science, 2023: e2304121.
[119] HUA Q L, SUN J L, LIU H T, et al. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing[J]. Nature Communications, 2018, 9(1): 244.
[120] ZHAO S, ZHU R. Electronic Skin with Multifunction Sensors Based on Thermosensation[J]. Advanced Materials, 2017, 29(15): 1606151.

所在学位评定分委会
物理学
国内图书分类号
TP 212.6
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765891
专题南方科技大学
工学院_材料科学与工程系
推荐引用方式
GB/T 7714
程雨. 离-电型柔性温度、硬度传感器及其多模态触觉传感应用研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12031275-程雨-材料科学与工程系(20839KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[程雨]的文章
百度学术
百度学术中相似的文章
[程雨]的文章
必应学术
必应学术中相似的文章
[程雨]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。