[1] STEPHENS D J, ALLAN V J. Light Microscopy Techniques for Live Cell Imaging[J]. Science, 2003, 300(5616): 82–86.
[2] ABBE E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung[J]. Archiv für Mikroskopische Anatomie, 1873, 9(1): 413–468.
[3] KÜHLBRANDT W. The Resolution Revolution[J]. Science, 2014, 343(6178): 1443–1444.
[4] GUSTAFSSON M G L. Surpassing the Lateral Resolution Limit by a Factor of Two Using Structured Illumination Microscopy[J]. Journal of Microscopy, 2000, 198(2): 82–87.
[5] HELL S W, WICHMANN J. Breaking the Diffraction Resolution Limit by Stimulated Emission: Stimulated-Emission-Depletion Fluorescence Microscopy[J]. Optics Letters, 1994, 19(11): 780–782.
[6] BETZIG E, PATTERSON G H, SOUGRAT R, et al. Imaging Intracellular Fluorescent Proteins at Nanometer Resolution[J]. Science, 2006, 313(5793): 1642–1645.
[7] RUST M J, BATES M, ZHUANG X. Sub-Diffraction-Limit Imaging by Stochastic Optical Reconstruction Microscopy (STORM)[J]. Nature Methods, 2006, 3(10): 793–796.
[8] HESS S T, GIRIRAJAN T P K, MASON M D. Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy[J]. Biophysical Journal, 2006, 91(11): 4258–4272.
[9] GUSTAFSSON M G L, SHAO L, CARLTON P M, et al. Three-Dimensional Resolution Doubling in Wide-Field Fluorescence Microscopy by Structured Illumination[J]. Biophysical Journal, 2008, 94(12): 4957–4970.
[10] SCHERMELLEH L, FERRAND A, HUSER T, et al. Super-Resolution Microscopy Demystified[J]. Nature Cell Biology, 2019, 21(1): 72–84.
[11] LICHTMAN J W, CONCHELLO J-A. Fluorescence Microscopy[J]. Nature Methods, 2005, 2(12): 910–919.
[12] VOIE A H, BURNS D H, SPELMAN F A. Orthogonal-Plane Fluorescence Optical Sectioning: Three-Dimensional Imaging of Macroscopic Biological Specimens[J]. Journal of Microscopy, 1993, 170(3): 229–236.
[13] HUISKEN J, SWOGER J, DEL BENE F, et al. Optical Sectioning Deep Inside Live Embryos by Selective Plane Illumination Microscopy[J]. Science, 2004, 305(5686): 1007–1009.
[14] PLANCHON T A, GAO L, MILKIE D E, et al. Rapid Three-Dimensional Isotropic Imaging of Living Cells Using Bessel Beam Plane Illumination[J]. Nature Methods, 2011, 8(5): 417–423.
[15] CHEN B-C, LEGANT W R, WANG K, et al. Lattice Light-Sheet Microscopy: Imaging Molecules to Embryos at High Spatiotemporal Resolution[J]. Science, 2014, 346(6208): 1257998.
[16] CHEN R, WU R, ZHANG G, et al. Electron Transfer-Based Single Molecule Fluorescence as a Probe for Nano-Environment Dynamics[J]. Sensors, 2014, 14(2): 2449–2467.
[17] SHEPPARD C J, WILSON T. The Theory of the Direct-View Confocal Microscope[J]. Journal of Microscopy, 1981, 124(2): 107–117.
[18] WANG E, BABBEY C M, DUNN K W. Performance Comparison between the High-Speed Yokogawa Spinning Disc Confocal System and Single-Point Scanning Confocal Systems[J]. Journal of Microscopy, 2005, 218(2): 148–159.
[19] IM K-B, HAN S, PARK H, et al. Simple High-Speed Confocal Line-Scanning Microscope[J]. Optics Express, 2005, 13(13): 5151–5156.
[20] HUFF J. The Airyscan Detector from ZEISS: Confocal Imaging with Improved Signal-to-Noise Ratio and Super-Resolution[J]. Nature Methods, 2015, 12(12): i–ii.
[21] BORN M, WOLF E. Principles of Optics[M]. 7 edition. Cambridge: Cambridge University Press, 2019.
[22] RAYLEIGH, Lord. On the Theory of Optical Images, with Special Reference to the Microscope[J]. Journal of the Royal Microscopical Society, 1903, 23(4): 447–473.
[23] ZHAO Z, XIN B, LI L, et al. High-Power Homogeneous Illumination for Super-Resolution Localization Microscopy with Large Field-of-View[J]. Optics Express, 2017, 25(12): 13382–13395.
[24] MAU A, FRIEDL K, LETERRIER C, et al. Fast Widefield Scan Provides Tunable and Uniform Illumination Optimizing Super-Resolution Microscopy on Large Fields[J]. Nature Communications, 2021, 12(1): 3077.
[25] HUANG B, BATES M, ZHUANG X. Super-Resolution Fluorescence Microscopy[J]. Annual Review of Biochemistry, 2009, 78(1): 993–1016.
[26] DENK W, STRICKLER J H, WEBB W W. Two-Photon Laser Scanning Fluorescence Microscopy[J]. Science, 1990, 248(4951): 73–76.
[27] BOOTH M J. Adaptive Optical Microscopy: The Ongoing Quest for a Perfect Image[J]. Light: Science & Applications, 2014, 3(4): e165–e165.
[28] SCHERMELLEH L, HEINTZMANN R, LEONHARDT H. A Guide to Super-Resolution Fluorescence Microscopy[J]. Journal of Cell Biology, 2010, 190(2): 165–175.
[29] HELL S W. Far-Field Optical Nanoscopy[J]. Science, 2007, 316(5828): 1153–1158.
[30] HELL S W, KROUG M. Ground-State-Depletion Fluorscence Microscopy: A Concept for Breaking the Diffraction Resolution Limit[J]. Applied Physics B Lasers and Optics, 1995, 60(5): 495–497.
[31] HEINTZMANN R, JOVIN T M, CREMER C. Saturated Patterned Excitation Microscopy—a Concept for Optical Resolution Improvement[J]. Journal of the Optical Society of America A, 2002, 19(8): 1599–1609.
[32] GUSTAFSSON M G L. Nonlinear Structured-Illumination Microscopy: Wide-Field Fluorescence Imaging with Theoretically Unlimited Resolution[J]. Proceedings of the National Academy of Sciences, 2005, 102(37): 13081–13086.
[33] HEILEMANN M, VAN DE LINDE S, SCHÜTTPELZ M, et al. Subdiffraction-Resolution Fluorescence Imaging with Conventional Fluorescent Probes[J]. Angewandte Chemie International Edition, 2008, 47(33): 6172–6176.
[34] SHARONOV A, HOCHSTRASSER R M. Wide-Field Subdiffraction Imaging by Accumulated Binding of Diffusing Probes[J]. Proceedings of the National Academy of Sciences, 2006, 103(50): 18911–18916.
[35] JUNGMANN R, STEINHAUER C, SCHEIBLE M, et al. Single-Molecule Kinetics and Super-Resolution Microscopy by Fluorescence Imaging of Transient Binding on DNA Origami[J]. Nano Letters, 2010, 10(11): 4756–4761.
[36] FÖLLING J, BOSSI M, BOCK H, et al. Fluorescence Nanoscopy by Ground-State Depletion and Single-Molecule Return[J]. Nature Methods, 2008, 5(11): 943–945.
[37] LEMMER P, GUNKEL M, BADDELEY D, et al. SPDM: Light Microscopy with Single-Molecule Resolution at the Nanoscale[J]. Applied Physics B, 2008, 93(1): 1–12.
[38] JUETTE M F, GOULD T J, LESSARD M D, et al. Three-Dimensional Sub–100 nm Resolution Fluorescence Microscopy of Thick Samples[J]. Nature Methods, 2008, 5(6): 527–529.
[39] HUANG B, WANG W, BATES M, et al. Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy[J]. Science, 2008, 319(5864): 810–813.
[40] VON DIEZMANN L, SHECHTMAN Y, MOERNER W E. Three-Dimensional Localization of Single Molecules for Super-Resolution Imaging and Single-Particle Tracking[J]. Chemical Reviews, 2017, 117(11): 7244–7275.
[41] PAVANI S R P, THOMPSON M A, BITEEN J S, et al. Three-Dimensional, Single-Molecule Fluorescence Imaging beyond the Diffraction Limit by Using a Double-Helix Point Spread Function[J]. Proceedings of the National Academy of Sciences, 2009, 106(9): 2995–2999.
[42] KAY S M. Fundamentals of Statistical Signal Processing: Estimation Theory[M]. USA: Prentice-Hall, Inc., 1993.
[43] SMITH C S, JOSEPH N, RIEGER B, et al. Fast, Single-Molecule Localization That Achieves Theoretically Minimum Uncertainty[J]. Nature Methods, 2010, 7(5): 373–375.
[44] PIESTUN R, SCHECHNER Y Y, SHAMIR J. Propagation-Invariant Wave Fields with Finite Energy[J]. Journal of the Optical Society of America A, 2000, 17(2): 294–303.
[45] GROVER G, QUIRIN S, FIEDLER C, et al. Photon Efficient Double-Helix PSF Microscopy with Application to 3D Photo-Activation Localization Imaging[J]. Biomedical Optics Express, 2011, 2(11): 3010–3020.
[46] PRASAD S. Rotating Point Spread Function via Pupil-Phase Engineering[J]. Optics Letters, 2013, 38(4): 585–587.
[47] WANG Z, CAI Y, LIANG Y, et al. Single Shot, Three-Dimensional Fluorescence Microscopy with a Spatially Rotating Point Spread Function[J]. Biomedical Optics Express, 2017, 8(12): 5493–5506.
[48] BERLICH R, STALLINGA S. High-Order-Helix Point Spread Functions for Monocular Three-Dimensional Imaging with Superior Aberration Robustness[J]. Optics Express, 2018, 26(4): 4873–4891.
[49] LI H, WANG F, WEI T, et al. Particles 3D Tracking with Large Axial Depth by Using the 2π-DH-PSF[J]. Optics Letters, 2021, 46(20): 5088–5091.
[50] SHECHTMAN Y, SAHL S J, BACKER A S, et al. Optimal Point Spread Function Design for 3D Imaging[J]. Physical Review Letters, 2014, 113(13): 133902.
[51] SHECHTMAN Y, WEISS L E, BACKER A S, et al. Precise Three-Dimensional Scan-Free Multiple-Particle Tracking over Large Axial Ranges with Tetrapod Point Spread Functions[J]. Nano Letters, 2015, 15(6): 4194–4199.
[52] SHECHTMAN Y, WEISS L E, BACKER A S, et al. Multicolour Localization Microscopy by Point-Spread-Function Engineering[J]. Nature Photonics, 2016, 10(9): 590–594.
[53] SHTENGEL G, GALBRAITH J A, GALBRAITH C G, et al. Interferometric Fluorescent Super-Resolution Microscopy Resolves 3D Cellular Ultrastructure[J]. Proceedings of the National Academy of Sciences, 2009, 106(9): 3125–3130.
[54] HUANG F, SIRINAKIS G, ALLGEYER E S, et al. Ultra-High Resolution 3D Imaging of Whole Cells[J]. Cell, 2016, 166(4): 1028–1040.
[55] BURKE D, PATTON B, HUANG F, et al. Adaptive Optics Correction of Specimen-Induced Aberrations in Single-Molecule Switching Microscopy[J]. Optica, 2015, 2(2): 177–185.
[56] LI Y, LI Y, BUGLAKOVA E, et al. Accurate 4Pi Single-Molecule Localization Using an Experimental PSF Model[J]. Optics Letters, 2020, 45(13): 3765–3768.
[57] BATES M, KELLER-FINDEISEN J, PRZYBYLSKI A, et al. Optimal Precision and Accuracy in 4Pi-STORM Using Dynamic Spline PSF Models[J]. Nature Methods, 2022, 19(5): 603–612.
[58] STALLINGA S, RIEGER B. Accuracy of the Gaussian Point Spread Function Model in 2D Localization Microscopy[J]. Optics Express, 2010, 18(24): 24461–24476.
[59] STALLINGA S, RIEGER B. Position and Orientation Estimation of Fixed Dipole Emitters Using an Effective Hermite Point Spread Function Model[J]. Optics Express, 2012, 20(6): 5896–5921.
[60] HULLEMAN C N, THORSEN R Ø, KIM E, et al. Simultaneous Orientation and 3D Localization Microscopy with a Vortex Point Spread Function[J]. Nature Communications, 2021, 12(1): 5934.
[61] SMITH C, HUISMAN M, SIEMONS M, et al. Simultaneous Measurement of Emission Color and 3D Position of Single Molecules[J]. Optics Express, 2016, 24(5): 4996–5013.
[62] BABCOCK H P, ZHUANG X. Analyzing Single Molecule Localization Microscopy Data Using Cubic Splines[J]. Scientific Reports, 2017, 7(1): 552.
[63] LI Y, MUND M, HOESS P, et al. Real-Time 3D Single-Molecule Localization Using Experimental Point Spread Functions[J]. Nature Methods, 2018, 15(5): 367–369.
[64] LI Y, SHI W, LIU S, et al. Global Fitting for High-Accuracy Multi-Channel Single-Molecule Localization[J]. Nature Communications, 2022, 13(1): 3133.
[65] REYMOND L, REYMOND L, ZIEGLER J, et al. SIMPLE: Structured Illumination Based Point Localization Estimator with Enhanced Precision[J]. Optics Express, 2019, 27(17): 24578–24590.
[66] GU L, LI Y, ZHANG S, et al. Molecular Resolution Imaging by Repetitive Optical Selective Exposure[J]. Nature Methods, 2019, 16(11): 1114–1118.
[67] CNOSSEN J, HINSDALE T, THORSEN R Ø, et al. Localization Microscopy at Doubled Precision with Patterned Illumination[J]. Nature Methods, 2020, 17(1): 59–63.
[68] GU L, LI Y, ZHANG S, et al. Molecular-Scale Axial Localization by Repetitive Optical Selective Exposure[J]. Nature Methods, 2021, 18(4): 369–373.
[69] JOUCHET P, CABRIEL C, BOURG N, et al. Nanometric Axial Localization of Single Fluorescent Molecules with Modulated Excitation[J]. Nature Photonics, 2021, 15(4): 297–304.
[70] BALZAROTTI F, EILERS Y, GWOSCH K C, et al. Nanometer Resolution Imaging and Tracking of Fluorescent Molecules with Minimal Photon Fluxes[J]. Science, 2017, 355(6325): 606–612.
[71] GWOSCH K C, PAPE J K, BALZAROTTI F, et al. MINFLUX Nanoscopy Delivers 3D Multicolor Nanometer Resolution in Cells[J]. Nature Methods, 2020, 17(2): 217–224.
[72] WEBER M, LEUTENEGGER M, STOLDT S, et al. MINSTED Fluorescence Localization and Nanoscopy[J]. Nature Photonics, 2021, 15(5): 361–366.
[73] WEBER M, VON DER EMDE H, LEUTENEGGER M, et al. MINSTED Nanoscopy Enters the Ångström Localization Range[J]. Nature Biotechnology, 2023, 41(4): 569–576.
[74] SHROFF H, GALBRAITH C G, GALBRAITH J A, et al. Live-Cell Photoactivated Localization Microscopy of Nanoscale Adhesion Dynamics[J]. Nature Methods, 2008, 5(5): 417–423.
[75] LEGANT W R, SHAO L, GRIMM J B, et al. High-Density Three-Dimensional Localization Microscopy across Large Volumes[J]. Nature Methods, 2016, 13(4): 359–365.
[76] JONES S A, SHIM S-H, HE J, et al. Fast, Three-Dimensional Super-Resolution Imaging of Live Cells[J]. Nature Methods, 2011, 8(6): 499–505.
[77] KEPPLER A, GENDREIZIG S, GRONEMEYER T, et al. A General Method for the Covalent Labeling of Fusion Proteins with Small Molecules in Vivo[J]. Nature Biotechnology, 2003, 21(1): 86–89.
[78] TAKAKURA H, ZHANG Y, ERDMANN R S, et al. Long Time-Lapse Nanoscopy with Spontaneously Blinking Membrane Probes[J]. Nature Biotechnology, 2017, 35(8): 773–780.
[79] UNO S, KAMIYA M, YOSHIHARA T, et al. A Spontaneously Blinking Fluorophore Based on Intramolecular Spirocyclization for Live-Cell Super-Resolution Imaging[J]. Nature Chemistry, 2014, 6(8): 681–689.
[80] HOLDEN S J, UPHOFF S, KAPANIDIS A N. DAOSTORM: An Algorithm for High- Density Super-Resolution Microscopy[J]. Nature Methods, 2011, 8(4): 279–280.
[81] HUANG F, SCHWARTZ S L, BYARS J M, et al. Simultaneous Multiple-Emitter Fitting for Single Molecule Super-Resolution Imaging[J]. Biomedical Optics Express, 2011, 2(5): 1377–1393.
[82] QUAN T, ZHU H, LIU X, et al. High-Density Localization of Active Molecules Using Structured Sparse Model and Bayesian Information Criterion[J]. Optics Express, 2011, 19(18): 16963–16974.
[83] ZHU L, ZHANG W, ELNATAN D, et al. Faster STORM Using Compressed Sensing[J]. Nature Methods, 2012, 9(7): 721–723.
[84] OVESNÝ M, KŘÍŽEK P, ŠVINDRYCH Z, et al. High Density 3D Localization Microscopy Using Sparse Support Recovery[J]. Optics Express, 2014, 22(25): 31263–31276.
[85] NEHME E, FREEDMAN D, GORDON R, et al. DeepSTORM3D: Dense 3D Localization Microscopy and PSF Design by Deep Learning[J]. Nature Methods, 2020, 17(7): 734–740.
[86] SPEISER A, MÜLLER L-R, HOESS P, et al. Deep Learning Enables Fast and Dense Single-Molecule Localization with High Accuracy[J]. Nature Methods, 2021, 18(9): 1082–1090.
[87] SAGE D, PHAM T-A, BABCOCK H, et al. Super-Resolution Fight Club: Assessment of 2D and 3D Single-Molecule Localization Microscopy Software[J]. Nature Methods, 2019, 16(5): 387–395.
[88] OUYANG W, ARISTOV A, LELEK M, et al. Deep Learning Massively Accelerates Super-Resolution Localization Microscopy[J]. Nature Biotechnology, 2018, 36(5): 460–468.
[89] WANG Y, JIA S, ZHANG H F, et al. Blind Sparse Inpainting Reveals Cytoskeletal Filaments with Sub-Nyquist Localization[J]. Optica, 2017, 4(10): 1277–1284.
[90] THOMPSON R E, LARSON D R, WEBB W W. Precise Nanometer Localization Analysis for Individual Fluorescent Probes[J]. Biophysical Journal, 2002, 82(5): 2775–2783.
[91] HUANG F, HARTWICH T M P, RIVERA-MOLINA F E, et al. Video-Rate Nanoscopy Using sCMOS Camera–Specific Single-Molecule Localization Algorithms[J]. Nature Methods, 2013, 10(7): 653–658.
[92] LIU S, MLODZIANOSKI M J, HU Z, et al. sCMOS Noise-Correction Algorithm for Microscopy Images[J]. Nature Methods, 2017, 14(8): 760–761.
[93] ZHANG Z, WANG Y, PIESTUN R, et al. Characterizing and Correcting Camera Noise in Back-Illuminated sCMOS Cameras[J]. Optics Express, 2021, 29(5): 6668–6690.
[94] DIEKMANN R, DESCHAMPS J, LI Y, et al. Photon-Free (s)CMOS Camera Characterization for Artifact Reduction in High- and Super-Resolution Microscopy[J]. Nature Communications, 2022, 13(1): 3362.
[95] DOUGLASS K M, SIEBEN C, ARCHETTI A, et al. Super-Resolution Imaging of Multiple Cells by Optimized Flat-Field Epi-Illumination[J]. Nature Photonics, 2016, 10(11): 705–708.
[96] DIEKMANN R, HELLE Ø I, ØIE C I, et al. Chip-Based Wide Field-of-View Nanoscopy[J]. Nature Photonics, 2017, 11(5): 322–328.
[97] HELLE Ø I, COUCHERON D A, TINGUELY J-C, et al. Nanoscopy On-a-Chip: Super-Resolution Imaging on the Millimeter Scale[J]. Optics Express, 2019, 27(5): 6700–6710.
[98] LI L, XIN B, KUANG W, et al. Divide and Conquer: Real-Time Maximum Likelihood Fitting of Multiple Emitters for Super-Resolution Localization Microscopy[J]. Optics Express, 2019, 27(15): 21029–21049.
[99] YANNY K, MONAKHOVA K, SHUAI R W, et al. Deep Learning for Fast Spatially Varying Deconvolution[J]. Optica, 2022, 9(1): 96–99.
[100] LOHMANN A W, PARIS D P. Space-Variant Image Formation*[J]. Journal of the Optical Society of America, 1965, 55(8): 1007–1013.
[101] VON DIEZMANN L, LEE M Y, LEW M D, et al. Correcting Field-Dependent Aberrations with Nanoscale Accuracy in Three-Dimensional Single-Molecule Localization Microscopy[J]. Optica, 2015, 2(11): 985–993.
[102] YAN T, RICHARDSON C J, ZHANG M, et al. Computational Correction of Spatially Variant Optical Aberrations in 3D Single-Molecule Localization Microscopy[J]. Optics Express, 2019, 27(9): 12582–12599.
[103] LIU S, HUH H, LEE S-H, et al. Three-Dimensional Single-Molecule Localization Microscopy in Whole-Cell and Tissue Specimens[J]. Annual Review of Biomedical Engineering, 2020, 22(1): 155–184.
[104] JIA S, VAUGHAN J C, ZHUANG X. Isotropic Three-Dimensional Super-Resolution Imaging with a Self-Bending Point Spread Function[J]. Nature Photonics, 2014, 8(4): 302–306.
[105] MASHANOV G I, TACON D, KNIGHT A E, et al. Visualizing Single Molecules inside Living Cells Using Total Internal Reflection Fluorescence Microscopy[J]. Methods, 2003, 29(2): 142–152.
[106] DONG B, ALMASSALHA L M, STYPULA-CYRUS Y, et al. Superresolution Intrinsic Fluorescence Imaging of Chromatin Utilizing Native, Unmodified Nucleic Acids for Contrast[J]. Proceedings of the National Academy of Sciences, 2016, 113(35): 9716–9721.
[107] CELLA ZANACCHI F, LAVAGNINO Z, PERRONE DONNORSO M, et al. Live-Cell 3D Super-Resolution Imaging in Thick Biological Samples[J]. Nature Methods, 2011, 8(12): 1047–1049.
[108] KIM J, WOJCIK M, WANG Y, et al. Oblique-Plane Single-Molecule Localization Microscopy for Tissues and Small Intact Animals[J]. Nature Methods, 2019, 16(9): 853–857.
[109] YANG B, CHEN X, WANG Y, et al. Epi-Illumination SPIM for Volumetric Imaging with High Spatial-Temporal Resolution[J]. Nature Methods, 2019, 16(6): 501–504.
[110] DUNSBY C. Optically Sectioned Imaging by Oblique Plane Microscopy[J]. Optics Express, 2008, 16(25): 20306–20316.
[111] MLODZIANOSKI M J, CHENG-HATHAWAY P J, BEMILLER S M, et al. Active PSF Shaping and Adaptive Optics Enable Volumetric Localization Microscopy through Brain Sections[J]. Nature Methods, 2018, 15(8): 583–586.
[112] XU F, MA D, MACPHERSON K P, et al. Three-Dimensional Nanoscopy of Whole Cells and Tissues with in Situ Point Spread Function Retrieval[J]. Nature Methods, 2020, 17(5): 531–540.
[113] ZHANG P, MA D, CHENG X, et al. Deep Learning-Driven Adaptive Optics for Single-Molecule Localization Microscopy[J]. Nature Methods, 2023, 20(11): 1748–1758.
[114] WOLF E. Electromagnetic Diffraction in Optical Systems - I. An Integral Representation of the Image Field[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1959, 253(1274): 349–357.
[115] RICHARDS B, WOLF E. Electromagnetic Diffraction in Optical Systems, II. Structure of the Image Field in an Aplanatic System[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1959, 253(1274): 358–379.
[116] LEUTENEGGER M, LOB E S I. Fast Focus Field Calculations[J]. Optics Express, 2006, 14(23): 11277–11291.
[117] HU Y, WANG Z, WANG X, et al. Efficient Full-Path Optical Calculation of Scalar and Vector Diffraction Using the Bluestein Method[J]. Light: Science & Applications, 2020, 9(1): 119.
[118] BRIGHAM E O, MORROW R E. The Fast Fourier Transform[J]. IEEE Spectrum, 1967, 4(12): 63–70.
[119] RABINER L R, SCHAFER R W, RADER C M. The Chirp Z-Transform Algorithm and Its Application[J]. Bell System Technical Journal, 1969, 48(5): 1249–1292.
[120] SIEMONS M E, KAPITEIN L C, STALLINGA S. Axial Accuracy in Localization Microscopy with 3D Point Spread Function Engineering[J]. Optics Express, 2022, 30(16): 28290–28300.
[121] HANSER B M, GUSTAFSSON M G L, AGARD D A, et al. Phase-Retrieved Pupil Functions in Wide-Field Fluorescence Microscopy[J]. Journal of Microscopy, 2004, 216(1): 32–48.
[122] CHANG H, FU S, LI Y. Optimal Sampling Rate for 3D Single Molecule Localization[J]. Optics Express, 2023, 31(24): 39703–39716.
[123] BAKX J L. Efficient Computation of Optical Disk Readout by Use of the Chirp z Transform[J]. Applied Optics, 2002, 41(23): 4897–4903.
[124] GREENGARD A, SCHECHNER Y Y, PIESTUN R. Depth from Diffracted Rotation[J]. Optics Letters, 2006, 31(2): 181–183.
[125] GROVER G, PAVANI S R P, PIESTUN R. Performance Limits on Three-Dimensional Particle Localization in Photon-Limited Microscopy[J]. Optics Letters, 2010, 35(19): 3306–3308.
[126] LAKSHMINARAYANAN V, FLECK A. Zernike Polynomials: A Guide[J]. Journal of Modern Optics, 2011, 58(7): 545–561.
[127] SHEN Y, WANG X, XIE Z, et al. Optical Vortices 30 Years on: OAM Manipulation from Topological Charge to Multiple Singularities[J]. Light: Science & Applications, 2019, 8(1): 90.
[128] PAVANI S R P, PIESTUN R. High-Efficiency Rotating Point Spread Functions[J]. Optics Express, 2008, 16(5): 3484–3489.
[129] GROVER G, DELUCA K, QUIRIN S, et al. Super-Resolution Photon-Efficient Imaging by Nanometric Double-Helix Point Spread Function Localization of Emitters (SPINDLE)[J]. Optics Express, 2012, 20(24): 26681–26695.
[130] BARANEK M, BOUCHAL Z. Rotating Vortex Imaging Implemented by a Quantized Spiral Phase Modulation[J]. Journal of the European Optical Society - Rapid Publications, 2013, 8(1): 13017.
[131] ROIDER C, JESACHER A, BERNET S, et al. Axial Super-Localisation Using Rotating Point Spread Functions Shaped by Polarisation-Dependent Phase Modulation[J]. Optics Express, 2014, 22(4): 4029–4037.
[132] BARÁNEK M, BOUCHAL Z. Optimizing the rotating point spread function by SLM aided spiral phase modulation[C] // 19th Polish-Slovak-Czech Optical Conference on Wave and Quantum Aspects of Contemporary Optics. Poland: SPIE, 2014: 161–170.
[133] MAHAJAN V N. Zernike Circle Polynomials and Optical Aberrations of Systems with Circular Pupils[J]. Applied Optics, 1994, 33(34): 8121–8124.
[134] HOLTZER L, MECKEL T, SCHMIDT T. Nanometric Three-Dimensional Tracking of Individual Quantum Dots in Cells[J]. Applied Physics Letters, 2007, 90(5): 053902.
[135] STETSON P B. DAOPHOT: A Computer Program for Crowded-Field Stellar Photometry [J]. Publications of the Astronomical Society of the Pacific, 1987, 99(613): 191.
[136] TAHMASBI A, WARD E S, OBER R J. Determination of Localization Accuracy Based on Experimentally Acquired Image Sets: Applications to Single Molecule Microscopy[J]. Optics Express, 2015, 23(6): 7630–7652.
[137] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale[Z/OL]. Preprint at arXiv:2010.11929, 2021.
[138] LECUN Y, BENGIO Y, HINTON G. Deep Learning[J]. Nature, 2015, 521(7553): 436–444.
[139] WEIGERT M, SCHMIDT U, BOOTHE T, et al. Content-Aware Image Restoration: Pushing the Limits of Fluorescence Microscopy[J]. Nature Methods, 2018, 15(12): 1090–1097.
[140] ZHOU Z, WU J, WANG Z, et al. Deep Learning Using a Residual Deconvolutional Network Enables Real-Time High-Density Single-Molecule Localization Microscopy[J]. Biomedical Optics Express, 2023, 14(4): 1833–1847.
[141] LI X, ZHANG G, WU J, et al. Reinforcing Neuron Extraction and Spike Inference in Calcium Imaging Using Deep Self-Supervised Denoising[J]. Nature Methods, 2021, 18(11): 1395–1400.
[142] LI X, HU X, CHEN X, et al. Spatial Redundancy Transformer for Self-Supervised Fluorescence Image Denoising[J]. Nature Computational Science, 2023, 3(1): 1067–1080.
[143] HORNIK K. Approximation Capabilities of Multilayer Feedforward Networks[J]. Neural Networks, 1991, 4(2): 251–257.
[144] ZHANG P, LIU S, CHAURASIA A, et al. Analyzing Complex Single-Molecule Emission Patterns with Deep Learning[J]. Nature Methods, 2018, 15(11): 913–916.
[145] NEHME E, WEISS L E, MICHAELI T, et al. Deep-STORM: Super-Resolution Single-Molecule Microscopy by Deep Learning[J]. Optica, 2018, 5(4): 458–464.
[146] RIES J, KAPLAN C, PLATONOVA E, et al. A Simple, Versatile Method for GFP-Based Super-Resolution Microscopy via Nanobodies[J]. Nature Methods, 2012, 9(6): 582–584.
[147] ANTONELLO J, WANG J, HE C, et al. Interferometric Calibration of a Deformable Mirror[Z/OL]. Preprint at 10.5281/zenodo.3714950, 2020.
[148] TAKEDA M, INA H, KOBAYASHI S. Fourier-Transform Method of Fringe-Pattern Analysis for Computer-Based Topography and Interferometry[J]. Journal of the Optical Society of America, 1982, 72(1): 156–160.
[149] NOFRINI V, DI GIACOMO D, MECUCCI C. Nucleoporin Genes in Human Diseases[J]. European Journal of Human Genetics, 2016, 24(10): 1388–1395.
[150] THEVATHASAN J V, KAHNWALD M, CIEŚLIŃSKI K, et al. Nuclear Pores as Versatile Reference Standards for Quantitative Superresolution Microscopy[J]. Nature Methods, 2019, 16(10): 1045–1053.
[151] BANTERLE N, BUI K H, LEMKE E A, et al. Fourier Ring Correlation as a Resolution Criterion for Super-Resolution Microscopy[J]. Journal of Structural Biology, 2013, 183(3): 363–367.
[152] NIEUWENHUIZEN R P J, LIDKE K A, BATES M, et al. Measuring Image Resolution in Optical Nanoscopy[J]. Nature Methods, 2013, 10(6): 557–562.
[153] DIEKMANN R, KAHNWALD M, SCHOENIT A, et al. Optimizing Imaging Speed and Excitation Intensity for Single-Molecule Localization Microscopy[J]. Nature Methods, 2020, 17(9): 909–912.
[154] ALMADA P, CULLEY S, HENRIQUES R. PALM and STORM: Into Large Fields and High-Throughput Microscopy with sCMOS Detectors[J]. Methods, 2015, 88: 109–121.
[155] DEMPSEY G T. A User’s Guide to Localization-Based Super-Resolution Fluorescence Imaging[J]. Methods in Cell Biology, 2013, 114: 561–592.
[156] GERCHBERG R. A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures[J]. Optik, 1972, 35: 237–246.
[157] HANSER B M, GUSTAFSSON M G L, AGARD D A, et al. Phase Retrieval for High-Numerical-Aperture Optical Systems[J]. Optics Letters, 2003, 28(10): 801–803.
[158] LAURENCE T A, CHROMY B A. Efficient Maximum Likelihood Estimator Fitting of Histograms[J]. Nature Methods, 2010, 7(5): 338–339.
[159] BATTAGLIA P W, HAMRICK J B, BAPST V, et al. Relational Inductive Biases, Deep Learning, and Graph Networks[Z/OL]. Preprint at arXiv:1806.01261, 2018.
[160] LIU R, LEHMAN J, MOLINO P, et al. An Intriguing Failing of Convolutional Neural Networks and the CoordConv Solution[Z/OL]. Preprint at arXiv:1807.03247, 2018.
[161] RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional Networks for Biomedical Image Segmentation[Z/OL]. Preprint at arXiv:1505.04597, 2015.
[162] KINGMA D P, WELLING M. Auto-Encoding Variational Bayes[Z/OL]. Preprint at arXiv:1312.6114, 2014.
[163] BORNSCHEIN J, BENGIO Y. Reweighted Wake-Sleep[Z/OL]. Preprint at arXiv:1406.2751, 2015.
[164] ANNIBALE P, VANNI S, SCARSELLI M, et al. Quantitative Photo Activated Localization Microscopy: Unraveling the Effects of Photoblinking[J]. PLOS ONE, 2011, 6(7): e22678.
[165] MÖCKL L, ROY A R, PETROV P N, et al. Accurate and Rapid Background Estimation in Single-Molecule Localization Microscopy Using the Deep Neural Network BGnet[J]. Proceedings of the National Academy of Sciences, 2020, 117(1): 60–67.
[166] PERLIN K. Improving Noise[J]. ACM Transactions on Graphics, 2002, 21(3): 681–682.
[167] NOVÁK T, GAJDOS T, SINKÓ J, et al. TestSTORM: Versatile Simulator Software for Multimodal Super-Resolution Localization Fluorescence Microscopy[J]. Scientific Reports, 2017, 7(1): 951.
[168] RIES J. SMAP: A Modular Super-Resolution Microscopy Analysis Platform for SMLM Data[J]. Nature Methods, 2020, 17(9): 870–872.
[169] STAUDT T, LANG M C, MEDDA R, et al. 2,2′-Thiodiethanol: A New Water Soluble Mounting Medium for High Resolution Optical Microscopy[J]. Microscopy Research and Technique, 2007, 70(1): 1–9.
[170] ZHANG Y, SCHROEDER L K, LESSARD M D, et al. Nanoscale Subcellular Architecture Revealed by Multicolor Three-Dimensional Salvaged Fluorescence Imaging[J]. Nature Methods, 2020, 17(2): 225–231.
[171] CHAUDHRY A, SHI R, LUCIANI D S. A Pipeline for Multidimensional Confocal Analysis of Mitochondrial Morphology, Function, and Dynamics in Pancreatic β-Cells[J]. American Journal of Physiology-Endocrinology and Metabolism, 2020, 318(2): E87–E101.
[172] XU K, ZHONG G, ZHUANG X. Actin, Spectrin, and Associated Proteins Form a Periodic Cytoskeletal Structure in Axons[J]. Science, 2013, 339(6118): 452–456.
[173] THOMA E C, WISCHMEYER E, OFFEN N, et al. Ectopic Expression of Neurogenin 2 Alone Is Sufficient to Induce Differentiation of Embryonic Stem Cells into Mature Neurons[J]. PLOS ONE, 2012, 7(6): e38651.
[174] ZHANG Y, PAK C, HAN Y, et al. Rapid Single-Step Induction of Functional Neurons from Human Pluripotent Stem Cells[J]. Neuron, 2013, 78(5): 785–798.
[175] ZHOU R, HAN B, NOWAK R, et al. Proteomic and Functional Analyses of the Periodic Membrane Skeleton in Neurons[J]. Nature Communications, 2022, 13(1): 3196.
修改评论