中文版 | English
题名

铜催化的自由基不对称 Hiyama C(sp3 )−C(sp2 )交叉偶联反应

其他题名
COPPER-CATALYZED RADICAL ASYMMETRIC HIYAMA C(sp3)−C(sp2) CROSS-COUPLING
姓名
姓名拼音
XU Dantong
学号
12132807
学位类型
硕士
学位专业
0703 化学
学科门类/专业学位类别
07 理学
导师
刘心元
导师单位
化学系
论文答辩日期
2024-05-14
论文提交日期
2024-06-22
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

过渡金属催化的外消旋烷基卤代烃与芳基/烯基金属试剂的自由基不对称交叉 偶联反应是一类构建手性 C(sp3 )−C(sp2 )键的重要方法。反应的核心策略是利用 3d 过渡金属单电子还原将外消旋烷基卤代烃转化为前手性的烷基自由基,随后手性 金属/亲核试剂络合物与产生的烷基自由基发生相互作用,最终实现手性 C(sp3 )−C(sp2 )键的构建。

本论文首先简要地介绍了过渡金属催化的烷基卤代烃与芳基/烯基金属试剂的 自由基不对称交叉偶联反应,总结并分析了不同金属试剂的特点和该领域的研究 进展。相比于其他有机金属试剂,芳基/烯基硅试剂具有易于制备、化学性质稳定、 官能团兼容性好的优势。但芳基/烯基硅试剂参与的自由基不对称交叉偶联反应却 鲜有报道。因此,利用有机硅试剂作为亲核试剂实现自由基不对称 Hiyama C(sp3 )−C(sp2 )交叉偶联反应具有非常重要的研究意义和实际应用价值。 本论文利用 3d 过渡金属铜作为催化剂,以新型金鸡纳碱衍生的 N,N,N-三齿 亚胺阴离子配体为手性控制源,实现了酰胺 α-位和苄位的自由基不对称 Hiyama C(sp3 )−C(sp2 )交叉偶联反应。在具体研究中,首先对硅试剂的活化试剂进行筛选, 确定了四正丁基铵二氟代三苯基硅酸盐(TBAT)能够在温和条件下促进硅试剂 转金属化。随后对反应中配体的种类进行筛选,发现采用金鸡纳碱衍生 N,N,N-三 齿亚胺阴离子配体不仅提高了铜中心的还原能力,还为不对称反应提供了较优的 立体控制环境,并随后基于该类配体骨架进行改造,从而实现了优秀的手性控制。 之后对反应中铜盐、溶剂等也进行了细致的考察,最终确定了优秀的反应条件。 值得一提的是,此类新型配体尚未报道,具有易于合成和修饰的优点。再者,利 用文献中数据比照的方式,确定了两类手性产物的绝对构型,最后通过对反应历 程的研究,提出了可能的反应机理。

综上,本论文发展了一种铜/新型N,N,N-三齿亚胺阴离子配体催化剂实现了有 机硅试剂与外消旋烷基卤代烃的自由基不对称 Hiyama C(sp3 )−C(sp2 )交叉偶联反应。 该反应不仅条件温和,而且具有良好的底物适用性。烷基卤代物能兼容 α-溴代酰 胺与 α-溴烷基苯,有机硅试剂能兼容芳基硅酯与烯基硅酯,实现了一系列手性化 合物的构建。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-07
参考文献列表

[1] CHOI J, FU G C. Transition metal-catalyzed alkyl-alkyl bond formation: Another dimension in cross-coupling chemistry [J]. Science, 2017, 356(6334): eaaf7230.
[2] BIFFIS A, CENTOMO P, DEL ZOTTO A, et al. Pd metal catalysts for cross-couplings and related reactions in the 21st century: A critical review [J]. Chemical Reviews, 2018, 118(4): 2249-2295.
[3] JOHANSSON SEECHURN C C, KITCHING M O, COLACOT T J, et al. Palladium-catalyzed cross-coupling: A historical contextual perspective to the 2010 Nobel Prize [J]. Angewandte Chemie International Edition, 2012, 51(21): 5062-5085.
[4] 王乃兴. 钯催化的交叉偶联反应——2010 年诺贝尔化学奖获奖工作介绍 [J]. 有 机 化 学, 2011, 31(8): 1319-1323.
[5] BUSKES M J, BLANCO M J. Impact of cross-coupling reactions in drug discovery and development [J]. Molecules, 2020, 25(15): 3493-3514.
[6] MAGANO J, DUNETZ J R. Large-scale applications of transition metal-catalyzed couplings for the synthesis of pharmaceuticals [J]. Chemical Reviews, 2011, 111(3): 2177-2250.
[7] YASUDA N. Application of cross-coupling reactions in Merck [J]. Journal of Organometallic Chemistry, 2002, 253: 279-287.
[8] TAMAO K, KISO Y, SUMITANI K, et al. Alkyl group isomerization in the cross-coupling reaction of secondary alkyl Grignard reagents with organic halides in the presence of nickel-phosphine complexes as catalysts [J]. Journal of the American Chemical Society, 1972, 94(26): 9268-9269.
[9] CORRIU R J P, MASSE J P. Activation of Grignard reagents by transition-metal complexes. A new and simple synthesis of trans-stilbenes and polyphenyls [J]. Journal of the Chemical Society, Chemical Communications, 1972, (3): 144.
[10] HASSAN J, SEVIGNON M, GOZZI C, et al. Aryl-aryl bond formation one century after the discovery of the Ullmann reaction [J]. Chemical Reviews, 2002, 102(5): 1359-1470.
[11] FU G C. Transition-metal catalysis of nucleophilic substitution reactions: A radical alternative to SN1 and SN2 Processes [J]. ACS Central Science, 2017, 3(7): 692-700.
[12] MANOLIKAKES G. 3.08 Coupling reactions between sp3 and sp2 carbon centers [M]. Comprehensive Organic Synthesis II. 2014: 392-464.
[13] GOMBERG M. An instance of trivalent carbon: triphenylmethyl [J]. Journal of the American Chemical Society, 1900, 22(11): 757-771.
[14] YAN M, LO J C, EDWARDS J T, et al. Radicals: Reactive intermediates with translational potential [J]. Journal of the American Chemical Society, 2016, 138(39): 12692-12714.
[15] IWASAKI T, KAMBE N. Ni-catalyzed C-C couplings using alkyl electrophiles [J]. Topics in Current Chemistry, 2016, 374(5): 66-101.
[16] CHERNEY A H, KADUNCE N T, REISMAN S E. Enantioselective and enantiospecific transition-metal-catalyzed cross-coupling reactions of organometallic reagents to construct C-C bonds [J]. Chemical Reviews, 2015, 115(17): 9587-9652.
[17] MONDAL S, DUMUR F, GIGMES D, et al. Enantioselective radical reactions using chiral catalysts [J]. Chemical Reviews, 2022, 122(6): 5842-5976.
[18] SHU T, COSSY J. Enantioselective cross-couplings between halide derivatives and organometallics by using iron and cobalt catalysts: Formation of C-C bonds [J]. Chemistry—A European Journal, 2021, 27(43): 11021-11029.
[19] YUS M, NAJERA C, FOUBELO F, et al. Metal-catalyzed enantioconvergent transformations [J]. Chemical Reviews, 2023, 123(20): 11817-11893.
[20] ZHOU H, LI Z-L, GU Q-S, et al. Ligand-enabled copper(I)-catalyzed asymmetric radical C(sp3)–C cross-coupling reactions [J]. ACS Catalysis, 2021, 11(13): 7978-7986.
[21] SIBI M P, MANYEM S, ZIMMERMAN J. Enantioselective radical processes [J]. Chemical Reviews, 2003, 103(8): 3263-3296.
[22] JANA R, PATHAK T P, SIGMAN M S. Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners [J]. Chemical Reviews, 2011, 111(3): 1417-1492.
[23] HERAVI M M, ZADSIRJAN V, HAJIABBASI P, et al. Advances in Kumada–Tamao–Corriu cross-coupling reaction: an update [J]. Monatshefte für Chemie - Chemical Monthly, 2019, 150(4): 535-591.
[24] ZEMBAYASHI M, TAMAO K, HAYASHI T, et al. A new asymmetric Grignard cross-coupling reaction via an alkyl group isomerization catalyzed by chiral phosphine-nickel complexes [J]. Tetrahedron Letters, 1977, 18(21): 1799-1802.
[25] LOU S, FU G C. Nickel/bis(oxazoline)-catalyzed asymmetric Kumada reactions of alkyl electrophiles: cross-couplings of racemic alpha-bromoketones [J]. Journal of the American Chemical Society, 2010, 132(4): 1264-1266.
[26] ADRIO J, CARRETERO J C. Functionalized Grignard reagents in Kumada cross‐coupling reactions [J]. ChemCatChem, 2010, 2(11): 1384-1386.
[27] YIN H, FU G C. Mechanistic investigation of enantioconvergent Kumada reactions of racemic alpha-bromoketones catalyzed by a Nickel/Bis(oxazoline) complex [J]. Journal of the American Chemical Society, 2019, 141(38): 15433-15440.
[28] MAO J, LIU F, WANG M, et al. Cobalt-bisoxazoline-catalyzed asymmetric Kumada cross-coupling of racemic alpha-bromo esters with aryl Grignard reagents [J]. Journal of the American Chemical Society, 2014, 136(50): 17662-17668.
[29] JIN M, ADAK L, NAKAMURA M. Iron-catalyzed enantioselective cross-coupling reactions of alpha-chloroesters with aryl Grignard reagents [J]. Journal of the American Chemical Society, 2015, 137(22): 7128-7134.
[30] ZHOU Y, WANG L, YUAN G, et al. Cobalt-bisoxazoline-catalyzed enantioselective cross-coupling of alpha-bromo esters with alkenyl Grignard reagents [J]. Organic Letters, 2020, 22(11): 4532-4536.
[31] CHEMLA F, FERREIRA F, JACKOWSKI O, et al. Carbon–carbon bond forming reactions mediated by organozinc reagents [M]. Metal‐Catalyzed Cross‐Coupling Reactions and More. 2014: 279-364.
[32] SMITH S W, FU G C. Nickel-catalyzed asymmetric cross-couplings of racemic propargylic halides with arylzinc reagents [J]. Journal of the American Chemical Society, 2008, 130(38): 12645-12647.
[33] SCHLEY N D, FU G C. Nickel-catalyzed Negishi arylations of propargylic bromides: a mechanistic investigation [J]. Journal of the American Chemical Society, 2014, 136(47): 16588-16593.
[34] LUNDIN P M, ESQUIVIAS J, FU G C. Catalytic asymmetric cross-couplings of racemic alpha-bromoketones with arylzinc reagents [J]. Angewandte Chemie International Edition, 2009, 48(1): 154-156.
[35] CHOI J, FU G C. Catalytic asymmetric synthesis of secondary nitriles via stereoconvergent Negishi arylations and alkenylations of racemic alpha-bromonitriles [J]. Journal of the American Chemical Society, 2012, 134(22): 9102-9105.
[36] OELKE A J, SUN J, FU G C. Nickel-catalyzed enantioselective cross-couplings of racemic secondary electrophiles that bear an oxygen leaving group [J]. Journal of the American Chemical Society, 2012, 134(6): 2966-2969.
[37] DO H Q, CHANDRASHEKAR E R, FU G C. Nickel/bis(oxazoline)-catalyzed asymmetric Negishi arylations of racemic secondary benzylic electrophiles to generate enantioenriched 1,1-diarylalkanes [J]. Journal of the American Chemical Society, 2013, 135(44): 16288-16291.
[38] LIANG Y, FU G C. Catalytic asymmetric synthesis of tertiary alkyl fluorides: Negishi cross-couplings of racemic alpha,alpha-dihaloketones [J]. Journal of the American Chemical Society, 2014, 136(14): 5520-5524.
[39] CHOI J, MARTIN-GAGO P, FU G C. Stereoconvergent arylations and alkenylations of unactivated alkyl electrophiles: catalytic enantioselective synthesis of secondary sulfonamides and sulfones [J]. Journal of the American Chemical Society, 2014, 136(34): 12161-12165.
[40] LIANG Y, FU G C. Stereoconvergent Negishi arylations of racemic secondary alkyl electrophiles: Differentiating between a CF3 and an alkyl group [J]. Journal of the American Chemical Society, 2015, 137(30): 9523-9526.
[41] LIU F, ZHONG J, ZHOU Y, et al. Cobalt-catalyzed enantioselective Negishi cross-coupling of racemic alpha-bromo esters with arylzincs [J]. Chemistry—A European Journal, 2018, 24(9): 2059-2064.
[42] LI Z, CHENG X-Y, YANG N-Y, et al. A cobalt-catalyzed enantioconvergent radical Negishi C(sp3)–C(sp2) cross-coupling with chiral multidentate N,N,P-Ligand [J]. Organometallics, 2021, 40(14): 2215-2219.
[43] WANG J, SHEN X, CHEN X, et al. Cobalt-catalyzed enantioconvergent Negishi cross-coupling of alpha-bromoketones [J]. Journal of the American Chemical Society, 2023, 145(45): 24958−24964.
[44] LOU S, FU G C. Enantioselective alkenylation via nickel-catalyzed cross-coupling with organozirconium reagents [J]. Journal of the American Chemical Society, 2010, 132(14): 5010-5011.
[45] WANG Z, YANG Z P, FU G C. Quaternary stereocentres via catalytic enantioconvergent nucleophilic substitution reactions of tertiary alkyl halides [J]. Nature Chemistry, 2021, 13(3): 236-242.
[46] LUNDIN P M, FU G C. Asymmetric Suzuki cross-couplings of activated secondary alkyl electrophiles: arylations of racemic alpha-chloroamides [J]. Journal of the American Chemical Society, 2010, 132(32): 11027-11029.
[47] CONG H, FU G C. Catalytic enantioselective cyclization/cross-coupling with alkyl electrophiles [J]. Journal of the American Chemical Society, 2014, 136(10): 3788-3791.
[48] HUANG W, WAN X, SHEN Q. Enantioselective construction of trifluoromethoxylated stereogenic centers by a nickel-catalyzed asymmetric Suzuki-Miyaura coupling of secondary benzyl bromides [J]. Angewandte Chemie International Edition, 2017, 56(39): 11986-11989.
[49] HUANG W, HU M, WAN X, et al. Facilitating the transmetalation step with aryl-zincates in nickel-catalyzed enantioselective arylation of secondary benzylic halides [J]. Nature Communications, 2019, 10(1): 2963-2970.
[50] IWAMOTO T, OKUZONO C, ADAK L, et al. Iron-catalysed enantioselective Suzuki-Miyaura coupling of racemic alkyl bromides [J]. Chemical Communications, 2019, 55(8): 1128-1131.
[51] TYROL C C, YONE N S, GALLIN C F, et al. Iron-catalysed enantioconvergent Suzuki-Miyaura cross-coupling to afford enantioenriched 1,1-diarylalkanes [J]. Chemical Communications, 2020, 56(93): 14661-14664.
[52] JIANG S-P, DONG X-Y, GU Q-S, et al. Copper-catalyzed enantioconvergent radical Suzuki-Miyaura C(sp3)-C(sp2) cross-coupling [J]. Journal of the American Chemical Society, 2020, 142(46): 19652-19659.
[53] HUANG W, WAN X, SHEN Q. Cobalt-catalyzed asymmetric cross-coupling reaction of fluorinated secondary benzyl bromides with lithium aryl boronates/ZnBr2 [J]. Organic Letters, 2020, 22(11): 4327-4332.
[54] XU S Y, ZHANG R, ZHANG S S, et al. Enantioselective synthesis of 3-aryl-phthalides through a nickel-catalyzed stereoconvergent cross-coupling reaction [J]. Organic & Biomolecular Chemistry, 2021, 19(20): 4492-4496.
[55] WANG P-F, YU J, GUO K-X, et al. Design of hemilabile N,N,N-ligands in copper-catalyzed enantioconvergent radical cross-coupling of benzyl/propargyl halides with alkenylboronate esters [J]. Journal of the American Chemical Society, 2022, 144(14): 6442-6452.
[56] WANG F-L, LIU L, YANG C-J, et al. Synthesis of alpha-quaternary beta-lactams via copper-catalyzed enantioconvergent radical C(sp3)-C(sp2 ) cross-coupling with organoboronate esters [J]. Angewandte Chemie International Edition, 2023, 62(2): e202214709.
[57] O'DONOVAN M R, MEE C D, FENNER S, et al. Boronic acids-a novel class of bacterial mutagen [J]. Mutation Research, 2011, 724(1-2): 1-6.
[58] HANSEN M M, JOLLY R A, LINDER R J. Boronic acids and derivatives—probing the structure–activity relationships for mutagenicity [J]. Organic Process Research & Development, 2015, 19(11): 1507-1516.
[59] DAI X, STROTMAN N A, FU G C. Catalytic asymmetric Hiyama cross-couplings of racemic alpha-bromo esters [J]. Journal of the American Chemical Society, 2008, 130(11): 3302-3303.
[60] VARENIKOV A, GANDELMAN M. Synthesis of chiral alpha-trifluoromethyl alcohols and ethers via enantioselective Hiyama cross-couplings of bisfunctionalized electrophiles [J]. Nature Communications, 2018, 9(1): 3566-3572.
[61] KOMIYAMA T, MINAMI Y, HIYAMA T. Recent advances in transition-metal-catalyzed synthetic transformations of organosilicon reagents [J]. ACS Catalysis, 2016, 7(1): 631-651.
[62] 张志强. 铜催化芳基硅烷与烷基卤化物的交叉偶联 反应研究 [D], 2023.
[63] HATANAKA Y, HIYAMA T. Cross-coupling of organosilanes with organic halides mediated by a palladium catalyst and tris(diethylamino)sulfonium difluorotrimethylsilicate [J]. The Journal of Organic Chemistry, 1988, 53(4): 918-920.
[64] HIYAMA T. How I came across the silicon-based cross-coupling reaction [J]. Journal of Organometallic Chemistry, 2002, 653: 58-61.
[65] LUO H, ZHANG Z, LIU H, et al. Advance of organosilane in transition-metal-catalyzed C—H functionalization for CC bond formation [J]. Chinese Journal of Organic Chemistry, 2015, 35(4): 802-812.
[66] MONFARED A, MOHAMMADI R, AHMADI S, et al. Recent advances in the application of nano-catalysts for Hiyama cross-coupling reactions [J]. RSC Advances, 2019, 9(6): 3185-3202.
[67] NAKAO Y, HIYAMA T. Silicon-based cross-coupling reaction: an environmentally benign version [J]. Chemical Society Reviews, 2011, 40(10): 4893-4901.
[68] EVANO G, THEUNISSEN C, PRADAL A. Impact of copper-catalyzed cross-coupling reactions in natural product synthesis: the emergence of new retrosynthetic paradigms [J]. Nature Product Reports, 2013, 30(12): 1467-1489.
[69] ULLMANN F, BIELECKI J. Ueber synthesen in der biphenylreihe [J]. Berichte der deutschen chemischen Gesellschaft, 1901, 34(2): 2174-2185.
[70] RIBAS X, GüELL I. Cu(I)/Cu(III) catalytic cycle involved in Ullmann-type cross-coupling reactions [J]. Pure and Applied Chemistry, 2014, 86(3): 345-360.
[71] EVANO G, BLANCHARD N, TOUMI M. Copper-mediated coupling reactions and their applications in natural products and designed biomolecules synthesis [J]. Chemical Reviews, 2008, 108(8): 3054-3131.
[72] ZHOU F, CAI Q. Recent advances in copper-catalyzed asymmetric coupling reactions [J]. Beilstein Journal of Organic Chemistry, 2015, 11: 2600-2615.
[73] DONG X-Y, LI Z-L, GU Q-S, et al. Ligand development for copper-catalyzed enantioconvergent radical cross-coupling of racemic alkyl halides [J]. Journal of the American Chemical Society, 2022, 144(38): 17319-17329.
[74] DONG X-Y, ZHANG Y-F, MA C-L, et al. A general asymmetric copper-catalysed Sonogashira C(sp3)-C(sp) coupling [J]. Nature Chemistry, 2019, 11(12): 1158-1166.
[75] XIA H-D, LI Z-L, GU Q-S, et al. Photoinduced copper-catalyzed asymmetric decarboxylative alkynylation with terminal alkynes [J]. Angewandte Chemie International Edition, 2020, 59(39): 16926-16932.
[76] WANG F-L, YANG C-J, LIU J-R, et al. Mechanism-based ligand design for copper-catalysed enantioconvergent C(sp3)-C(sp) cross-coupling of tertiary electrophiles with alkynes [J]. Nature Chemistry, 2022, 14(8): 949-957.
[77] CHEN J-J, FANG J-H, DU X-Y, et al. Enantioconvergent Cu-catalysed N-alkylation of aliphatic amines [J]. Nature, 2023, 618(7964): 294-300.
[78] CHEN J-J, ZHANG J-Y, FANG J-H, et al. Copper-catalyzed enantioconvergent radical C(sp3)-N cross-coupling of activated racemic alkyl halides with (hetero)aromatic amines under ambient conditions [J]. Journal of the American Chemical Society, 2023, 145(27): 14686-14696.
[79] ZHANG Y-F, WANG J-H, YANG N-Y, et al. Copper-catalyzed enantioconvergent radical C(sp3)-N cross-coupling: access to alpha,alpha-disubstituted amino acids [J]. Angewandte Chemie International Edition, 2023, 62(27): e202302983.
[80] ZHENG J-J, LIU W-L, GU Q-S, et al. Copper-catalyzed enantioconvergent radical C(sp3)–N cross-coupling to access chiral α-amino-β-lactams [J]. Precision Chemistry, 2023, 1(10): 576-582.
[81] TIAN Y, LI X-T, LIU J-R, et al. A general copper-catalysed enantioconvergent C(sp3)-S cross-coupling via biomimetic radical homolytic substitution [J]. Nature Chemistry, 2024, 16(3): 466-475.
[82] ZHANG W, TIAN Y, LIU X-D, et al. Copper-catalyzed enantioselective C(sp3 )-SCF3 coupling of carbon-centered benzyl radicals with (Me4N)SCF3 [J]. Angewandte Chemie International Edition, 2024, 63(11): e202319850.
[83] WANG L-L, ZHOU H, CAO Y-X, et al. A general copper-catalysed enantioconvergent radical Michaelis–Becker-type C(sp3)–P cross-coupling [J]. Nature Synthesis, 2023, 2(5): 430-438.
[84] YAO Y H, YANG H Y, CHEN M, et al. Asymmetric Markovnikov hydroaminocarbonylation of alkenes enabled by Palladium-monodentate phosphoramidite catalysis [J]. Journal of the American Chemical Society, 2021, 143(1): 85-91.
[85] XU L-W, XU Z, HUANG W-S, et al. Recent advances in transition-metal-catalyzed silylations of arenes with hydrosilanes: C–X bond cleavage or C–H bond activation­ synchronized with Si–H bond activation [J]. Synthesis, 2015, 47(23): 3645-3668.
[86] CHENG C, HARTWIG J F. Catalytic silylation of unactivated C-H Bonds [J]. Chemical Reviews, 2015, 115(17): 8946-8975.

所在学位评定分委会
化学
国内图书分类号
O621.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765897
专题南方科技大学
理学院_化学系
推荐引用方式
GB/T 7714
徐丹彤. 铜催化的自由基不对称 Hiyama C(sp3 )−C(sp2 )交叉偶联反应[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132807-徐丹彤-化学系.pdf(14138KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[徐丹彤]的文章
百度学术
百度学术中相似的文章
[徐丹彤]的文章
必应学术
必应学术中相似的文章
[徐丹彤]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。