[1] CHOI J, FU G C. Transition metal-catalyzed alkyl-alkyl bond formation: Another dimension in cross-coupling chemistry [J]. Science, 2017, 356(6334): eaaf7230.
[2] BIFFIS A, CENTOMO P, DEL ZOTTO A, et al. Pd metal catalysts for cross-couplings and related reactions in the 21st century: A critical review [J]. Chemical Reviews, 2018, 118(4): 2249-2295.
[3] JOHANSSON SEECHURN C C, KITCHING M O, COLACOT T J, et al. Palladium-catalyzed cross-coupling: A historical contextual perspective to the 2010 Nobel Prize [J]. Angewandte Chemie International Edition, 2012, 51(21): 5062-5085.
[4] 王乃兴. 钯催化的交叉偶联反应——2010 年诺贝尔化学奖获奖工作介绍 [J]. 有 机 化 学, 2011, 31(8): 1319-1323.
[5] BUSKES M J, BLANCO M J. Impact of cross-coupling reactions in drug discovery and development [J]. Molecules, 2020, 25(15): 3493-3514.
[6] MAGANO J, DUNETZ J R. Large-scale applications of transition metal-catalyzed couplings for the synthesis of pharmaceuticals [J]. Chemical Reviews, 2011, 111(3): 2177-2250.
[7] YASUDA N. Application of cross-coupling reactions in Merck [J]. Journal of Organometallic Chemistry, 2002, 253: 279-287.
[8] TAMAO K, KISO Y, SUMITANI K, et al. Alkyl group isomerization in the cross-coupling reaction of secondary alkyl Grignard reagents with organic halides in the presence of nickel-phosphine complexes as catalysts [J]. Journal of the American Chemical Society, 1972, 94(26): 9268-9269.
[9] CORRIU R J P, MASSE J P. Activation of Grignard reagents by transition-metal complexes. A new and simple synthesis of trans-stilbenes and polyphenyls [J]. Journal of the Chemical Society, Chemical Communications, 1972, (3): 144.
[10] HASSAN J, SEVIGNON M, GOZZI C, et al. Aryl-aryl bond formation one century after the discovery of the Ullmann reaction [J]. Chemical Reviews, 2002, 102(5): 1359-1470.
[11] FU G C. Transition-metal catalysis of nucleophilic substitution reactions: A radical alternative to SN1 and SN2 Processes [J]. ACS Central Science, 2017, 3(7): 692-700.
[12] MANOLIKAKES G. 3.08 Coupling reactions between sp3 and sp2 carbon centers [M]. Comprehensive Organic Synthesis II. 2014: 392-464.
[13] GOMBERG M. An instance of trivalent carbon: triphenylmethyl [J]. Journal of the American Chemical Society, 1900, 22(11): 757-771.
[14] YAN M, LO J C, EDWARDS J T, et al. Radicals: Reactive intermediates with translational potential [J]. Journal of the American Chemical Society, 2016, 138(39): 12692-12714.
[15] IWASAKI T, KAMBE N. Ni-catalyzed C-C couplings using alkyl electrophiles [J]. Topics in Current Chemistry, 2016, 374(5): 66-101.
[16] CHERNEY A H, KADUNCE N T, REISMAN S E. Enantioselective and enantiospecific transition-metal-catalyzed cross-coupling reactions of organometallic reagents to construct C-C bonds [J]. Chemical Reviews, 2015, 115(17): 9587-9652.
[17] MONDAL S, DUMUR F, GIGMES D, et al. Enantioselective radical reactions using chiral catalysts [J]. Chemical Reviews, 2022, 122(6): 5842-5976.
[18] SHU T, COSSY J. Enantioselective cross-couplings between halide derivatives and organometallics by using iron and cobalt catalysts: Formation of C-C bonds [J]. Chemistry—A European Journal, 2021, 27(43): 11021-11029.
[19] YUS M, NAJERA C, FOUBELO F, et al. Metal-catalyzed enantioconvergent transformations [J]. Chemical Reviews, 2023, 123(20): 11817-11893.
[20] ZHOU H, LI Z-L, GU Q-S, et al. Ligand-enabled copper(I)-catalyzed asymmetric radical C(sp3)–C cross-coupling reactions [J]. ACS Catalysis, 2021, 11(13): 7978-7986.
[21] SIBI M P, MANYEM S, ZIMMERMAN J. Enantioselective radical processes [J]. Chemical Reviews, 2003, 103(8): 3263-3296.
[22] JANA R, PATHAK T P, SIGMAN M S. Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners [J]. Chemical Reviews, 2011, 111(3): 1417-1492.
[23] HERAVI M M, ZADSIRJAN V, HAJIABBASI P, et al. Advances in Kumada–Tamao–Corriu cross-coupling reaction: an update [J]. Monatshefte für Chemie - Chemical Monthly, 2019, 150(4): 535-591.
[24] ZEMBAYASHI M, TAMAO K, HAYASHI T, et al. A new asymmetric Grignard cross-coupling reaction via an alkyl group isomerization catalyzed by chiral phosphine-nickel complexes [J]. Tetrahedron Letters, 1977, 18(21): 1799-1802.
[25] LOU S, FU G C. Nickel/bis(oxazoline)-catalyzed asymmetric Kumada reactions of alkyl electrophiles: cross-couplings of racemic alpha-bromoketones [J]. Journal of the American Chemical Society, 2010, 132(4): 1264-1266.
[26] ADRIO J, CARRETERO J C. Functionalized Grignard reagents in Kumada cross‐coupling reactions [J]. ChemCatChem, 2010, 2(11): 1384-1386.
[27] YIN H, FU G C. Mechanistic investigation of enantioconvergent Kumada reactions of racemic alpha-bromoketones catalyzed by a Nickel/Bis(oxazoline) complex [J]. Journal of the American Chemical Society, 2019, 141(38): 15433-15440.
[28] MAO J, LIU F, WANG M, et al. Cobalt-bisoxazoline-catalyzed asymmetric Kumada cross-coupling of racemic alpha-bromo esters with aryl Grignard reagents [J]. Journal of the American Chemical Society, 2014, 136(50): 17662-17668.
[29] JIN M, ADAK L, NAKAMURA M. Iron-catalyzed enantioselective cross-coupling reactions of alpha-chloroesters with aryl Grignard reagents [J]. Journal of the American Chemical Society, 2015, 137(22): 7128-7134.
[30] ZHOU Y, WANG L, YUAN G, et al. Cobalt-bisoxazoline-catalyzed enantioselective cross-coupling of alpha-bromo esters with alkenyl Grignard reagents [J]. Organic Letters, 2020, 22(11): 4532-4536.
[31] CHEMLA F, FERREIRA F, JACKOWSKI O, et al. Carbon–carbon bond forming reactions mediated by organozinc reagents [M]. Metal‐Catalyzed Cross‐Coupling Reactions and More. 2014: 279-364.
[32] SMITH S W, FU G C. Nickel-catalyzed asymmetric cross-couplings of racemic propargylic halides with arylzinc reagents [J]. Journal of the American Chemical Society, 2008, 130(38): 12645-12647.
[33] SCHLEY N D, FU G C. Nickel-catalyzed Negishi arylations of propargylic bromides: a mechanistic investigation [J]. Journal of the American Chemical Society, 2014, 136(47): 16588-16593.
[34] LUNDIN P M, ESQUIVIAS J, FU G C. Catalytic asymmetric cross-couplings of racemic alpha-bromoketones with arylzinc reagents [J]. Angewandte Chemie International Edition, 2009, 48(1): 154-156.
[35] CHOI J, FU G C. Catalytic asymmetric synthesis of secondary nitriles via stereoconvergent Negishi arylations and alkenylations of racemic alpha-bromonitriles [J]. Journal of the American Chemical Society, 2012, 134(22): 9102-9105.
[36] OELKE A J, SUN J, FU G C. Nickel-catalyzed enantioselective cross-couplings of racemic secondary electrophiles that bear an oxygen leaving group [J]. Journal of the American Chemical Society, 2012, 134(6): 2966-2969.
[37] DO H Q, CHANDRASHEKAR E R, FU G C. Nickel/bis(oxazoline)-catalyzed asymmetric Negishi arylations of racemic secondary benzylic electrophiles to generate enantioenriched 1,1-diarylalkanes [J]. Journal of the American Chemical Society, 2013, 135(44): 16288-16291.
[38] LIANG Y, FU G C. Catalytic asymmetric synthesis of tertiary alkyl fluorides: Negishi cross-couplings of racemic alpha,alpha-dihaloketones [J]. Journal of the American Chemical Society, 2014, 136(14): 5520-5524.
[39] CHOI J, MARTIN-GAGO P, FU G C. Stereoconvergent arylations and alkenylations of unactivated alkyl electrophiles: catalytic enantioselective synthesis of secondary sulfonamides and sulfones [J]. Journal of the American Chemical Society, 2014, 136(34): 12161-12165.
[40] LIANG Y, FU G C. Stereoconvergent Negishi arylations of racemic secondary alkyl electrophiles: Differentiating between a CF3 and an alkyl group [J]. Journal of the American Chemical Society, 2015, 137(30): 9523-9526.
[41] LIU F, ZHONG J, ZHOU Y, et al. Cobalt-catalyzed enantioselective Negishi cross-coupling of racemic alpha-bromo esters with arylzincs [J]. Chemistry—A European Journal, 2018, 24(9): 2059-2064.
[42] LI Z, CHENG X-Y, YANG N-Y, et al. A cobalt-catalyzed enantioconvergent radical Negishi C(sp3)–C(sp2) cross-coupling with chiral multidentate N,N,P-Ligand [J]. Organometallics, 2021, 40(14): 2215-2219.
[43] WANG J, SHEN X, CHEN X, et al. Cobalt-catalyzed enantioconvergent Negishi cross-coupling of alpha-bromoketones [J]. Journal of the American Chemical Society, 2023, 145(45): 24958−24964.
[44] LOU S, FU G C. Enantioselective alkenylation via nickel-catalyzed cross-coupling with organozirconium reagents [J]. Journal of the American Chemical Society, 2010, 132(14): 5010-5011.
[45] WANG Z, YANG Z P, FU G C. Quaternary stereocentres via catalytic enantioconvergent nucleophilic substitution reactions of tertiary alkyl halides [J]. Nature Chemistry, 2021, 13(3): 236-242.
[46] LUNDIN P M, FU G C. Asymmetric Suzuki cross-couplings of activated secondary alkyl electrophiles: arylations of racemic alpha-chloroamides [J]. Journal of the American Chemical Society, 2010, 132(32): 11027-11029.
[47] CONG H, FU G C. Catalytic enantioselective cyclization/cross-coupling with alkyl electrophiles [J]. Journal of the American Chemical Society, 2014, 136(10): 3788-3791.
[48] HUANG W, WAN X, SHEN Q. Enantioselective construction of trifluoromethoxylated stereogenic centers by a nickel-catalyzed asymmetric Suzuki-Miyaura coupling of secondary benzyl bromides [J]. Angewandte Chemie International Edition, 2017, 56(39): 11986-11989.
[49] HUANG W, HU M, WAN X, et al. Facilitating the transmetalation step with aryl-zincates in nickel-catalyzed enantioselective arylation of secondary benzylic halides [J]. Nature Communications, 2019, 10(1): 2963-2970.
[50] IWAMOTO T, OKUZONO C, ADAK L, et al. Iron-catalysed enantioselective Suzuki-Miyaura coupling of racemic alkyl bromides [J]. Chemical Communications, 2019, 55(8): 1128-1131.
[51] TYROL C C, YONE N S, GALLIN C F, et al. Iron-catalysed enantioconvergent Suzuki-Miyaura cross-coupling to afford enantioenriched 1,1-diarylalkanes [J]. Chemical Communications, 2020, 56(93): 14661-14664.
[52] JIANG S-P, DONG X-Y, GU Q-S, et al. Copper-catalyzed enantioconvergent radical Suzuki-Miyaura C(sp3)-C(sp2) cross-coupling [J]. Journal of the American Chemical Society, 2020, 142(46): 19652-19659.
[53] HUANG W, WAN X, SHEN Q. Cobalt-catalyzed asymmetric cross-coupling reaction of fluorinated secondary benzyl bromides with lithium aryl boronates/ZnBr2 [J]. Organic Letters, 2020, 22(11): 4327-4332.
[54] XU S Y, ZHANG R, ZHANG S S, et al. Enantioselective synthesis of 3-aryl-phthalides through a nickel-catalyzed stereoconvergent cross-coupling reaction [J]. Organic & Biomolecular Chemistry, 2021, 19(20): 4492-4496.
[55] WANG P-F, YU J, GUO K-X, et al. Design of hemilabile N,N,N-ligands in copper-catalyzed enantioconvergent radical cross-coupling of benzyl/propargyl halides with alkenylboronate esters [J]. Journal of the American Chemical Society, 2022, 144(14): 6442-6452.
[56] WANG F-L, LIU L, YANG C-J, et al. Synthesis of alpha-quaternary beta-lactams via copper-catalyzed enantioconvergent radical C(sp3)-C(sp2 ) cross-coupling with organoboronate esters [J]. Angewandte Chemie International Edition, 2023, 62(2): e202214709.
[57] O'DONOVAN M R, MEE C D, FENNER S, et al. Boronic acids-a novel class of bacterial mutagen [J]. Mutation Research, 2011, 724(1-2): 1-6.
[58] HANSEN M M, JOLLY R A, LINDER R J. Boronic acids and derivatives—probing the structure–activity relationships for mutagenicity [J]. Organic Process Research & Development, 2015, 19(11): 1507-1516.
[59] DAI X, STROTMAN N A, FU G C. Catalytic asymmetric Hiyama cross-couplings of racemic alpha-bromo esters [J]. Journal of the American Chemical Society, 2008, 130(11): 3302-3303.
[60] VARENIKOV A, GANDELMAN M. Synthesis of chiral alpha-trifluoromethyl alcohols and ethers via enantioselective Hiyama cross-couplings of bisfunctionalized electrophiles [J]. Nature Communications, 2018, 9(1): 3566-3572.
[61] KOMIYAMA T, MINAMI Y, HIYAMA T. Recent advances in transition-metal-catalyzed synthetic transformations of organosilicon reagents [J]. ACS Catalysis, 2016, 7(1): 631-651.
[62] 张志强. 铜催化芳基硅烷与烷基卤化物的交叉偶联 反应研究 [D], 2023.
[63] HATANAKA Y, HIYAMA T. Cross-coupling of organosilanes with organic halides mediated by a palladium catalyst and tris(diethylamino)sulfonium difluorotrimethylsilicate [J]. The Journal of Organic Chemistry, 1988, 53(4): 918-920.
[64] HIYAMA T. How I came across the silicon-based cross-coupling reaction [J]. Journal of Organometallic Chemistry, 2002, 653: 58-61.
[65] LUO H, ZHANG Z, LIU H, et al. Advance of organosilane in transition-metal-catalyzed C—H functionalization for CC bond formation [J]. Chinese Journal of Organic Chemistry, 2015, 35(4): 802-812.
[66] MONFARED A, MOHAMMADI R, AHMADI S, et al. Recent advances in the application of nano-catalysts for Hiyama cross-coupling reactions [J]. RSC Advances, 2019, 9(6): 3185-3202.
[67] NAKAO Y, HIYAMA T. Silicon-based cross-coupling reaction: an environmentally benign version [J]. Chemical Society Reviews, 2011, 40(10): 4893-4901.
[68] EVANO G, THEUNISSEN C, PRADAL A. Impact of copper-catalyzed cross-coupling reactions in natural product synthesis: the emergence of new retrosynthetic paradigms [J]. Nature Product Reports, 2013, 30(12): 1467-1489.
[69] ULLMANN F, BIELECKI J. Ueber synthesen in der biphenylreihe [J]. Berichte der deutschen chemischen Gesellschaft, 1901, 34(2): 2174-2185.
[70] RIBAS X, GüELL I. Cu(I)/Cu(III) catalytic cycle involved in Ullmann-type cross-coupling reactions [J]. Pure and Applied Chemistry, 2014, 86(3): 345-360.
[71] EVANO G, BLANCHARD N, TOUMI M. Copper-mediated coupling reactions and their applications in natural products and designed biomolecules synthesis [J]. Chemical Reviews, 2008, 108(8): 3054-3131.
[72] ZHOU F, CAI Q. Recent advances in copper-catalyzed asymmetric coupling reactions [J]. Beilstein Journal of Organic Chemistry, 2015, 11: 2600-2615.
[73] DONG X-Y, LI Z-L, GU Q-S, et al. Ligand development for copper-catalyzed enantioconvergent radical cross-coupling of racemic alkyl halides [J]. Journal of the American Chemical Society, 2022, 144(38): 17319-17329.
[74] DONG X-Y, ZHANG Y-F, MA C-L, et al. A general asymmetric copper-catalysed Sonogashira C(sp3)-C(sp) coupling [J]. Nature Chemistry, 2019, 11(12): 1158-1166.
[75] XIA H-D, LI Z-L, GU Q-S, et al. Photoinduced copper-catalyzed asymmetric decarboxylative alkynylation with terminal alkynes [J]. Angewandte Chemie International Edition, 2020, 59(39): 16926-16932.
[76] WANG F-L, YANG C-J, LIU J-R, et al. Mechanism-based ligand design for copper-catalysed enantioconvergent C(sp3)-C(sp) cross-coupling of tertiary electrophiles with alkynes [J]. Nature Chemistry, 2022, 14(8): 949-957.
[77] CHEN J-J, FANG J-H, DU X-Y, et al. Enantioconvergent Cu-catalysed N-alkylation of aliphatic amines [J]. Nature, 2023, 618(7964): 294-300.
[78] CHEN J-J, ZHANG J-Y, FANG J-H, et al. Copper-catalyzed enantioconvergent radical C(sp3)-N cross-coupling of activated racemic alkyl halides with (hetero)aromatic amines under ambient conditions [J]. Journal of the American Chemical Society, 2023, 145(27): 14686-14696.
[79] ZHANG Y-F, WANG J-H, YANG N-Y, et al. Copper-catalyzed enantioconvergent radical C(sp3)-N cross-coupling: access to alpha,alpha-disubstituted amino acids [J]. Angewandte Chemie International Edition, 2023, 62(27): e202302983.
[80] ZHENG J-J, LIU W-L, GU Q-S, et al. Copper-catalyzed enantioconvergent radical C(sp3)–N cross-coupling to access chiral α-amino-β-lactams [J]. Precision Chemistry, 2023, 1(10): 576-582.
[81] TIAN Y, LI X-T, LIU J-R, et al. A general copper-catalysed enantioconvergent C(sp3)-S cross-coupling via biomimetic radical homolytic substitution [J]. Nature Chemistry, 2024, 16(3): 466-475.
[82] ZHANG W, TIAN Y, LIU X-D, et al. Copper-catalyzed enantioselective C(sp3 )-SCF3 coupling of carbon-centered benzyl radicals with (Me4N)SCF3 [J]. Angewandte Chemie International Edition, 2024, 63(11): e202319850.
[83] WANG L-L, ZHOU H, CAO Y-X, et al. A general copper-catalysed enantioconvergent radical Michaelis–Becker-type C(sp3)–P cross-coupling [J]. Nature Synthesis, 2023, 2(5): 430-438.
[84] YAO Y H, YANG H Y, CHEN M, et al. Asymmetric Markovnikov hydroaminocarbonylation of alkenes enabled by Palladium-monodentate phosphoramidite catalysis [J]. Journal of the American Chemical Society, 2021, 143(1): 85-91.
[85] XU L-W, XU Z, HUANG W-S, et al. Recent advances in transition-metal-catalyzed silylations of arenes with hydrosilanes: C–X bond cleavage or C–H bond activation synchronized with Si–H bond activation [J]. Synthesis, 2015, 47(23): 3645-3668.
[86] CHENG C, HARTWIG J F. Catalytic silylation of unactivated C-H Bonds [J]. Chemical Reviews, 2015, 115(17): 8946-8975.
修改评论