中文版 | English
题名

非贵金属羟基氧化物的制备及其在析氧反应中的应用

其他题名
Preparation of non-noble metal oxyhydroxides and their application in oxygen evolution reaction
姓名
姓名拼音
CHEN Yuping
学号
12232070
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
JOKYO(徐强)
导师单位
化学系
论文答辩日期
2024-04-24
论文提交日期
2024-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

       析氧反应(Oxygen Evolution Reaction, OER)在电解水产氢中占据主 导地位,但因其涉及四电子转移而具有缓慢的动力学,严重影响了产氢的 效率,因此,亟需开发高效的催化剂以降低反应能垒,从而加速OER的进行。过渡金属羟基氧化物(MOOH)因其对催化OER具有较高的本征活性而备受关注,但目前大多数MOOH的催化性能受限于导电性较差、比表面积小、结构单一等。本论文通过元素掺杂调控MOOH的微观形貌和电子结构,以此实现高活性和强稳定性OER催化剂的可控制备。具体研究内容如 下:

        通过将W和Fe原子锚定在含有缺陷的CoOOH纳米片的不同位点,成功制备了 W,Fe-CoOOH 催化剂。W 和 Fe 以单原子的形式被锚定在了CoOOH表面,其中,观察到的锚定位置有两种,一种为表面的氧空位位点, 另一种为密排六方堆积(HCP)位点。得益于其表面三种原子的特殊排列对CoOOH晶面间距和微观电子结构的影响,W,Fe-CoOOH对OER具有优异的催化性能,在10 mA cm-2的电流密度下的过电位仅为269 mV并可稳定运行超过700 h。

       通过采用室温浸渍法在泡沫铁上成功制备了自支撑结构的Ni掺杂的FeOOH催化剂(Ni-FeOOH/IF)。由于三维垂直结构的构筑以及Ni离子对FeOOH电子结构的调控作用,Ni-FeOOH/IF催化剂具有充分暴露的活性位点以及快速的电子传输能力。其在碱性纯水和海水中对 OER 均表现出突出的催化活性,分别仅需183和234 mV的过电位即可达到10 mA cm-2的电流密度。

其他摘要

Oxygen evolution reaction (OER) plays a dominant role in water electrolysis for hydrogen production, but its slow kinetics caused by the four-electron transfer seriously affect the efficiency of hydrogen production. Therefore, it is urgent to develop efficient catalysts to reduce the reaction energy barrier to accelerate OER process. Transition metal oxyhydroxides (MOOHs) have attracted much attention due to their high intrinsic activity for OER, but the catalytic performance of most MOOHs is currently limited by the poor electrical conductivity, small specific surface area, and single structure. In this thesis, the micromorphology and electronic structures of MOOHs are modulated by element doping, thus achieving the controllable preparation of highly active and strongly stable OER catalysts. The details are as follows:

A W,Fe-CoOOH catalyst is successfully prepared by anchoring W and Fe atoms at different sites of defective CoOOH nanosheets. W and Fe were anchored to the CoOOH surface as single atoms. Two types of anchoring positions were observed, one for the oxygen vacancy sites on the surface and the other for Hexagonal Close Packed (HCP) sites. Due to the special arrangement of three kinds of atoms on the surface of CoOOH, the interplanar distance and the microscopic electronic structure are affected, and thus the resultant W,Fe-CoOOH exhibits excellent catalytic performance for OER with an overpotential of only 269 mV at a current density of 10 mA cm-2 and stable operation for more than 700 h.

A self-supported Ni-doped FeOOH catalyst is successfully prepared on iron foam by an impregnation method at room temperature (Ni-FeOOH/IF). Due to the construction of three-dimensional vertical structure and the modulation of the electronic structure of FeOOH by Ni ions, the Ni-FeOOH/IF catalyst has fully exposed active sites and fast electron transfer ability. It exhibits outstanding catalytic activity for OER in both alkaline pure water and seawater, reaching a current density of 10 mA cm-2 with only 183 and 234 mV, respectively.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-06
参考文献列表

[1] OLABI A G, ABDELKAREEM M A. Renewable energy and climate change[J]. Renewable and Sustainable Energy Reviews, 2022, 158 : 112111.
[2] YUE M L, LAMBERT H, PAHON E, et al. Hydrogen energy systems: a critical review of technologies, applications, trends and challenges[J]. Renewable and Sustainable Energy Reviews, 2021 , 146: 111180.
[3] EL-SHAFIE M. Hydrogen production by water electrolysis technologies: A review[J]. Results in Engineering, 2023, 20 : 101426.
[4] ZOU C N, XUE H Q, XIONG B, et al. Connotation, innovation and vision of “carbon neutrality”[J]. Natural Gas Industry B, 2021, 8(5): 523 -537.
[5] ZOU C, LI J M, ZHANG X, et al. Industrial status, technological progress, challenges, and prospects of hydrogen energy[J]. Natural Gas Industry B, 2022, 9(5): 427-447.
[6] SHIVA KUMAR S, LIM H. An overview of water electrolysis technologies for green hydrogen production[J]. Energy Reports, 2022, 8: 13793-13813.
[7] PANIGRAHY B, NARAYAN K, RAMACHANDRA RAO B, et al. Green hydrogen production by water electrolysis: a renewable energy perspective[J]. Materials Today: Proceedings, 2022, 67: 1310 -1314.
[8] ZAKARIA Z, KAMARUDIN S K. A review of alkaline solid polymer membrane in the application of AEM electrolyzer: materials and characterization[J]. International Journal of Energy Research, 2021 , 45(13): 18337-18354.
[9] SONG J J, WEI C, HUANG Z F, et al. A review on fundamentals for designing oxygen evolution electrocatalysts[J]. Chemical Society Reviews, 2020 , 49(7): 2196-2214.
[10] LI Z S, LI B L, YU M, et al. Amorphous metallic ultrathin nanostructures: alatent ultra-high-density atomic -level catalyst for electrochemical energy conversion[J]. International Journal of Hydrogen Energy, 2022 , 47(63): 26956-26977.
[11] DAU H, LIMBERG C, REIER T, et al. The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis[J]. ChemCatChem, 2010, 2(7): 724-761.
[12] KIM H J, KIM H Y, JOO J, et al. Recent advances in non-precious group metal based catalysts for water electrolysis and beyond[J]. Journal of Materials Chemistry A, 2022, 10: 50-88.
[13] WANG H X, ZHANG K H L, HOFMANN J P, et al. The electronic structure of transition metal oxides for oxygen evolution reaction[J]. Journal of Materials Chemistry A, 2021, 9: 19465-19488.
[14] LI Q L, SUN F M, ZHANG D, et al. Recent progress of hollow structure platform in assisting oxygen evolution reaction[J]. Chemical Engineering Journal, 2023, 452: 139232.
[15] YU L, YANG J F, GUAN B Y, et al. Hierarchical hollow nanoprisms based on ultrathin Ni-Fe layered double hydroxide nanosheets with enhanced electrocatalytic activity towards oxygen evolution[J]. Angewandte Chemie International Edition, 2018, 57(1): 172 -176.
[16] HUANG C J, XU H M, SHUAI T Y, et al. A review of modulation strategies for improving catalytic performance of transition metal phosphides for oxygen evolution reaction[J]. Applied Catalysis B: Environmental, 2023 , 325: 122313.
[17] CAO Q B, SU W X, LIU H R, et al. Nickel-cobalt phosphide nanowires as precatalysts for surface reconstruction to prepare durable and efficient OER catalysts[J]. Journal of Electroanalytical Chemistry, 2024, 952: 117928.
[18] ZEENAT, AHMAD Z, MAQBOOL A, et al. One-pot solvothermal synthesis of highly catalytic Janus transition metal phosphides (TMPs) for high performance OER[J]. Fuel, 2023, 331: 125913.
[19] LIU Y H, RAN N, GE R Y, et al. Porous Mn-doped cobalt phosphide nanosheets as highly active electrocatalysts for oxygen evolution reaction[J]. Chemical Engineering Journal, 2021, 425: 131642.
[20] LIU H B, GAO J, XU X C, et al. Oriented construction Cu3P and Ni 2P heterojunction to boost overall water splitting[J]. Chemical Engineering Journal, 2022, 448: 137706.
[21] HE R Z, HUANG X Y, FENG L G. Recent progress in transition-metal sulfide catalyst regulation for improved oxygen evolution reaction[J]. Energy and Fuels, 2022, 36(13): 6675-6694.
[22] PRABAKARAN K, INGAVALE S B, KAKADE B. Three dimensional NiS 2 -Ni(OH) 2 /CNT nanostructured assembly for supercapacitor and oxygen evolution reaction[J]. Journal of Alloys and Compounds, 2020, 812: 152126.
[23] ZHAO Y, YOU J H, WANG L, et al. Recent advances in Ni 3S2 -based electrocatalysts for oxygen evolution reaction[J]. International Journal of Hydrogen Energy, 2021, 46(79): 39146 -39182.
[24] WU J, ZHANG Y Y, ZHANG B, et al. Zn-doped CoS2 nanoarrays for an efficient oxygen evolution reaction: understanding the doping effect for a precatalyst[J]. ACS Applied Materials & Interfaces, 2022, 14(12): 14235 -14242.
[25] 张成. 二维 NiFe-LDH/Mo(OS)x 纳米片协同促进电催化析氧反应. 有色金属材料与工程[J]. 2022, 43(4): 21-27.
[26] YANG Z G, XU H M, SHUAI T Y, et al. Recent progress in the synthesis of transition metal nitride catalysts and their applications in electrocatalysis[J]. Nanoscale, 2023, 15: 11777-11800.
[27] JAMIL R, ALI R, LOOMBA S, et al. The role of nitrogen in transition -metal nitrides in electrochemical water splitting[J]. Chem Catalysis, 2021, 1(4): 802-854.
[28] LIU T T, LI M, SU Z M, et al. Monodisperse and tiny Co2N0 . 6 7 nanocrystals uniformly embedded over two curving surfaces of hollow carbon microfibers as efficient electrocatalyst for oxygen evolution reaction[J]. ACS Applied Nano Materials, 2018, 1(9): 44 61-4473.
[29] WU L Q, SHI D D, YAN S M, et al. Iron-doped cobalt nitride nanoparticles (Fe-Co3N): an efficient electrocatalyst for water oxidation[J]. International Journal of Hydrogen Energy, 2021, 46(2): 2086 -2094.
[30] WANG H, LI J M, LI K, et al. Transition metal nitrides for electrochemical energy applications[J]. Chemical Society Reviews, 2021, 50(2): 1354 -1390.
[31] WU M J, ZHANG G X, HU Y F, et al. Graphitic -shell encapsulated FeNi alloy/nitride nanocrystals on biomass-derived N-doped carbon as an efficient electrocatalyst for rechargeable Zn -air battery[J]. Carbon Energy, 2021, 3(1): 176-187.
[32] XU M, WEI M. Layered double hydroxide-based catalysts: recent advances in preparation, structure, and applications[J]. Advanced Functional Materials, 2018, 28(47): 1802943.
[33] XU H, YUAN J J, HE G Y, et al. Current and future trends for spinel-type electrocatalysts in electrocatalytic oxygen evolution reaction[J]. Coordination Chemistry Reviews, 2023, 475: 214869.
[34] ZENG K, LI W, ZHOU Y, et al. Multilayer hollow MnCo 2O4 microsphere with oxygen vacancies as efficient electrocatalyst for oxygen evolution reaction[J]. Chemical Engineering Journal, 2021, 421 : 127831.
[35] SHANG C Y, XIAO X, XU Q. Coordination chemistry in modulating electronic structures of perovskite -type oxide nanocrystals for oxygen evolution catalysis[J]. Coordination Chemistry Reviews, 2023, 485: 215109.
[36] LI S F, ZHENG J, YAN D. Cationic defect engineering in perovskite La 2CoMnO6 for enhanced electrocatalytic oxygen evolution[J]. Inorganic Chemistry, 2023, 62(28): 11009-11015.
[37] LIU Y F, YE C C, ZHAO S N, et al. A dual-site doping strategy for developing efficient perovskite oxide electrocatalysts towards oxygen evolution reaction[J]. Nano Energy, 2022, 99: 107344.
[38] SONG F, HU X. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis[J]. Nature Communications, 2014, 5(1): 4477.
[39] LIU D X, YANG Y, ZHANG J N, et al. Improved OER catalytic performance of NiFe-LDH with hydrothermal carbonization microspheres[J]. Journal of Alloys and Compounds, 2023, 941: 168994.
[40] SARFRAZ B, BASHIR I, RAUF A. CuS/NiFe -LDH/NF as a bifunctional electrocatalyst for hydrogen evolution (HER) and oxygen evolution reactions (OER)[J]. Fuel, 2023, 337: 127253.
[41] SHI D, JI Y J, LU F X, et al. Oxygen vacancies meet partial S substitution: an effective strategy to achieve obvious synergistic effects and adjustable electrochemical behavior in NiFe -LDH for enhanced OER and capacitive performance[J]. Inorganic Chemistry Frontiers, 2023, 10(18): 5391-5405.
[42] WANG X, LIU W, WANG J N, et al. Cobalt and vanadium co -doped FeOOH nanoribbons: an iron-rich electrocatalyst for efficient water oxidation[J]. Materials Chemistry Frontiers, 2021, 5(17): 6485-6490.
[43] SHEN X R, LI H J, ZHANG Y Y, et al. Construction dual-regulated NiCo2S4@Mo-doped CoFe-LDH for oxygen evolution reaction at large current density[J]. Applied Catalysis B: Environmental, 2022, 319: 121917.
[44] WANG Y H, LI L, SHI J H, et al. Oxygen defect engineering promotes synergy between adsorbate evolution and single lattice oxygen mechanisms of OER in transition metal-based (oxy)hydroxide[J]. Advanced Science, 2023, 10(32):2303321.
[45] HUANG C, QIN P, LUO Y, et al. Recent progress and perspective of cobalt based catalysts for water splitting: design and nanoarchitectonics[J]. Materials Today Energy, 2022, 23: 100911.
[46] WANG L G, SU H, TAN G Y, et al. Boosting efficient and sustainable alkaline water oxidation on a W-CoOOH-TT pair-sites catalyst synthesized via topochemical transformation[J]. Advanced Materials, 2024, 2302642.
[47] YAO S Y, JIAO Y, LV C, et al. Lattice-strain engineering of CoOOH induced by NiMn-MOF for high-efficiency supercapacitor and water oxidation electrocatalysis[J]. Journal of Colloid and Interface Science, 2022, 623: 1111 -1121.
[48] ZHONG H Y, ZHANG Q, YU J C, et al. Fundamental understanding of structural reconstruction behaviors in oxygen evolution reaction electrocatalysts[J]. Advanced Energy Materials, 2023, 13(31): 2301391.
[49] WANG H Y, REN X H, CHEN J, et al. Recent advances of emerging oxyhydroxide for electrochemical energy storage applications[J]. Journal of Power Sources, 2023, 554: 232309.
[50] ZHAO D P, ZHANG R, DAI M Z, et al. Constructing high efficiency CoZnxMn2 - xO4 electrocatalyst by regulating the electronic structure and surface reconstruction[J]. Small, 2022, 18(11): 2107268.
[51] LI Y, WU Y Y, HAO H R, et al. In situ unraveling surface reconstruction of Ni 5P4@FeP nanosheet array for superior alkaline oxygen evolution reaction[J]. Applied Catalysis B: Environmental, 2022, 305: 121033.
[52] FAN Y N, ZHANG J J, LUO K L, et al. Oxygen defect engineering on low crystalline iron(Ⅲ) oxyhydroxide as a highly efficient electrocatalyst for water oxidation[J]. Inorganic Chemistry Frontiers, 2024, 11(1): 114 -122.
[53] LI Q, CHEN B Y, HUANG L H, et al. S-doped Ni(Fe)OOH bifunctional electrocatalysts for overall water splitting[J]. International Journal of Hydrogen Energy, 2024, 51: 1392-1406.
[54] ZHANG S Q, YU T, WEN H, et al. The latest development of CoOOH two -dimensional materials used as OER catalysts[J]. Chemical Communications, 2020, 56(98): 15387-15405.
[55] ZHANG B, ZHENG X L, VOZNYY O, et al. Homogeneously dispersed multimetal oxygen-evolving catalysts[J]. Science, 2016, 352(6283): 333 -337.
[56] LIEN H T, CHANG S T, CHEN P T, et al. Probing the active site in single -atom oxygen reduction catalysts via operando X -ray and electrochemical spectroscopy[J]. Nature Communications, 2020, 11(1): 4233.
[57] TENG Z Y, ZHANG Q T, YANG H B, et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide[J]. Nature Catalysis, 2021, 4(5): 374 -384.
[58] ZHANG Z R, FENG C, WANG D D, et al. Selectively anchoring single atoms on specific sites of supports for improved oxygen evolution[J]. Nature Communications, 2022, 13(1): 2473.
[59] MCCRORY C C L, JUNG S, FERRER I M, et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices[J]. Journal of the American Chemical Society, 2015, 137(13): 4347-4357.
[60] LIAO P L, KEITH J A, CARTER E A. Water oxidation on pure and doped hematite (0001) surfaces: prediction of Co and Ni as effective dopants for electrocatalysis[J]. Journal of the American Chemical Society, 2012, 134(32): 13296-13309.
[61] ZHANG B, ZHENG X L, VOZNYY O, et al. Homogeneously dispersed multimetal oxygen-evolving catalysts[J]. Science, 2016, 352(6283): 333-337.
[62] SHEEHAN S W, THOMSEN J M, HINTERMAIR U, et al. A molecular catalyst for water oxidation that binds to metal oxide surfaces[J]. Nature Communications, 2015, 6(1): 6469.
[63] TOMA F M, SARTOREL A, IURLO M, et al. Efficient water oxidation at carbon nanotube-polyoxometalate electrocatalytic interfaces[J]. Nature Chemistry, 2010, 2(10): 826 -831.
[64] LEE W H, HAN M H, KO Y J, et al. Electrode reconstruction strategy for oxygen evolution reaction: maintaining Fe -CoOOH phase with intermediate -spin state during electrolysis[J]. Nature Communications, 2022, 13(1): 605.
[65] MEILAKHS A P, KONIAKHIN S V. New explanation of Raman peak redshift in nanoparticles[J]. Superlattices and Microstructures, 2017, 110: 319 -323.
[66] ALEX C, SARMA S Ch, PETER S C, et al. Competing effect of Co3 +reducibility and oxygen-deficient defects toward high oxygen evolution activity in Co3O4 systems in alkaline medium[J]. ACS Applied Energy Materials, 2020, 3(6): 5439-5447.
[67] HUANG Z F, SONG J J, DU Y H, et al. Chemical and structural origin of lattice oxygen oxidation in Co -Zn oxyhydroxide oxygen evolution electrocatalysts[J]. Nature Energy, 2019, 4(4): 329 -338.
[68] WEI B, XU G C, HEI J C, et al. CoFeP hierarchical nanoarrays supported on nitrogen-doped carbon nanofiber as efficient electrocatalyst for water splitting[J]. Journal of Colloid and Interface Science, 2021, 602: 619 -626.
[69] GANBAVLE V V, AGAWANE G L, MOHOLKAR A V, et al. Structural, optical, electrical, and dielectric properties of the spray -deposited WO3 thin films[J]. Journal of Materials Engineering and Performance, 2014, 23(4): 1204 -1213.
[70] LI X P, ZHENG L R, LIU S J, et al. Heterostructures of NiFe LDH hierarchically assembled on MoS2 nanosheets as high-efficiency electrocatalysts for overall water splitting[J]. Chinese Chemical Letters, 2022, 33(11): 4761-4765.
[71] HAN X T, YU C, ZHOU S, et al. Ultrasensitive iron-triggered nanosized Fe -CoOOH integrated with graphene for highly efficient oxygen evolution[J]. Advanced Energy Materials, 2017, 7(14): 1602148.
[72] WANG P C, XU Z, LIN Y Q, et al. Exceptional performance of MOF-derived N-doped CoP and Fe-doped CoOOH ultrathin nanosheets electrocatalysts for overall water splitting[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(24): 8949-8957.
[73] SUN Z Z, CURTO A, RODRÍGUEZ-FERNÁNDEZ J, et al. The effect of Fe dopant location in Co(Fe)OOHx nanoparticles for the oxygen evolution reaction[J]. ACS Nano, 2021, 15(11): 18226 -18236.
[74] YAN L, ZHANG B, LIU Z G, et al. Synergy of copper doping and oxygen vacancies in porous CoOOH nanoplates for efficient water oxidation[J]. Chemical Engineering Journal, 2021, 405: 126198.
[75] CHEN Z, KRONAWITTER C X, YEH Y W, et al. Activity of pure and transition metal-modified CoOOH for the oxygen evolution reaction in an alkaline medium[J]. Journal of Materials Chemistry A, 2017, 5(2): 842 -850.
[76] CHEN M P, LIU D, FENG J X, et al. In-situ generation of Ni-CoOOH through deep reconstruction for durable alkaline water electrolysis[J]. Chemical Engineering Journal, 2022, 443: 136432.
[77] MA N, GONG C C, XIE H N, et al. Metal-oxygen bonding nanoarchitectonics for regulation of oxygen evolution reaction performance in FeNi -codoped CoOOH[J]. International Journal of Hydrogen Energy, 2022, 47(69): 29762 -29770.
[78] LEE C S, SHIN K Y, JUNG C W, et al. Atomically embedded Ag via electrodiffusion boosts oxygen evolution of CoOOH nanosheet arrays[J]. ACS Catalysis, 2020, 10(1): 562-569.
[79] GUO C, LIU J M, QUAN F, et al. Ce-doped self-assembled ultrathin CoOOH nanosheets as efficient oxygen evolution reaction electrocatalyst[J]. Journal of Alloys and Compounds, 2022, 920: 165898.
[80] WANG J S, LIU J, ZHANG B, et al. Stabilizing the oxygen vacancies and promoting water-oxidation kinetics in cobalt oxides by lower valence -state doping[J]. Nano Energy, 2018, 53: 144 -151.
[81] TANG L, YU L, MA C, et al. Three -dimensional CoOOH nanoframes confining high-density Mo single atoms for large -current-density oxygen evolution[J]. Journal of Materials Chemistry A, 2022, 10(11): 6242 -6250.
[82] NAYAK N, DASH T, DEBASISH D, et al. A novel WC-W2C composite synthesis by arc plasma melt cast technique: microstructural and mechanical studies[J]. SN Applied Sciences, 2021, 3 : 380.
[83] WATMANEE S, SURIYE K, PRASERTHDAM P, et al. Effect of surface tungstate W5 + species on the metathesis activity of W-doped spherical silica catalysts[J]. Topics in Catalysis, 2018, 61: 1615 -1623.
[84] GUO B R, HUO H H, ZHUANG Q X, et al. Iron oxyhydroxide: structure and applications in electrocatalytic oxygen evolution reaction[J]. Advanced Functional Materials, 2023, 33(25): 2300557.
[85] LIU T, LI P, YAO N, et al. Self-sacrificial template-directed vapor-phase growth of MOF assemblies and surface vulcanization for efficient water splitting[J]. Advanced Materials, 2019, 31(21): 1806672.
[86] SUN H M, YAN Z H, LIU F M, et al. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution[J]. Advanced Materials, 2020, 32(3): 1806326.
[87] CHEN Z, LIU D Z, GAO Y X, et al. Corrosive-coordinate engineering to construct 2D-3D nanostructure with trace Pt as efficient bifunctional electrocatalyst for overall water splitting[J]. Science China Materials, 2022, 65(5): 1217-1224.
[88] LIU X P, GONG M X, XIAO D D, et al. Turning waste into treasure: regulating the oxygen corrosion on Fe foam for efficient electrocatalysis[J]. Small, 2020, 16(24): 2000663.
[89] HE K, TADESSE TSEGA T, LIU X, et al. Utilizing the space-charge region of the FeNi-LDH/CoP p-n junction to promote performance in oxygen evolution electrocatalysis[J]. Angewandte Chemie International Edition, 2019, 58(34): 11903-11909.
[90] WU H, LU X, ZHENG G F, et al. Topotactic engineering of ultrathin 2D nonlayered nickel selenides for full water electrolysis[J]. Advanced Energy Materials, 2018, 8(14): 1702704.
[91] WANG H L, ZHAO Z F, XU Z K, et al. Efficient and durable S-doped Ni/FeOOH electrocatalysts for oxygen evolution reactions[J]. Dalton Transactions, 2023, 52(4): 1113 -1121.
[92] CHEN X, WANG Q C, CHENG Y W, et al. S-doping triggers redox reactivities of both iron and lattice oxygen in FeOOH for low-cost and high-performance water oxidation[J]. Advanced Functional Materials, 2022, 32(26): 2112674.
[93] ZANG W J, SUN T, YANG T, et al. Efficient hydrogen evolution of oxidized Ni-N3 defective sites for alkaline freshwater and seawater electrolysis[J]. Advanced Materials, 2021, 33(8): 2003846.
[94] DIONIGI F, REIER T, PAWOLEK Z, et al. Design criteria, operating conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis[J]. ChemSusChem, 2016, 9(9): 962-972.

所在学位评定分委会
材料与化工
国内图书分类号
TQ151.1
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765901
专题南方科技大学
工学院_材料科学与工程系
推荐引用方式
GB/T 7714
陈宇萍. 非贵金属羟基氧化物的制备及其在析氧反应中的应用[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12232070-陈宇萍-材料科学与工程(5849KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[陈宇萍]的文章
百度学术
百度学术中相似的文章
[陈宇萍]的文章
必应学术
必应学术中相似的文章
[陈宇萍]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。