[1] OLABI A G, ABDELKAREEM M A. Renewable energy and climate change[J]. Renewable and Sustainable Energy Reviews, 2022, 158 : 112111.
[2] YUE M L, LAMBERT H, PAHON E, et al. Hydrogen energy systems: a critical review of technologies, applications, trends and challenges[J]. Renewable and Sustainable Energy Reviews, 2021 , 146: 111180.
[3] EL-SHAFIE M. Hydrogen production by water electrolysis technologies: A review[J]. Results in Engineering, 2023, 20 : 101426.
[4] ZOU C N, XUE H Q, XIONG B, et al. Connotation, innovation and vision of “carbon neutrality”[J]. Natural Gas Industry B, 2021, 8(5): 523 -537.
[5] ZOU C, LI J M, ZHANG X, et al. Industrial status, technological progress, challenges, and prospects of hydrogen energy[J]. Natural Gas Industry B, 2022, 9(5): 427-447.
[6] SHIVA KUMAR S, LIM H. An overview of water electrolysis technologies for green hydrogen production[J]. Energy Reports, 2022, 8: 13793-13813.
[7] PANIGRAHY B, NARAYAN K, RAMACHANDRA RAO B, et al. Green hydrogen production by water electrolysis: a renewable energy perspective[J]. Materials Today: Proceedings, 2022, 67: 1310 -1314.
[8] ZAKARIA Z, KAMARUDIN S K. A review of alkaline solid polymer membrane in the application of AEM electrolyzer: materials and characterization[J]. International Journal of Energy Research, 2021 , 45(13): 18337-18354.
[9] SONG J J, WEI C, HUANG Z F, et al. A review on fundamentals for designing oxygen evolution electrocatalysts[J]. Chemical Society Reviews, 2020 , 49(7): 2196-2214.
[10] LI Z S, LI B L, YU M, et al. Amorphous metallic ultrathin nanostructures: alatent ultra-high-density atomic -level catalyst for electrochemical energy conversion[J]. International Journal of Hydrogen Energy, 2022 , 47(63): 26956-26977.
[11] DAU H, LIMBERG C, REIER T, et al. The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis[J]. ChemCatChem, 2010, 2(7): 724-761.
[12] KIM H J, KIM H Y, JOO J, et al. Recent advances in non-precious group metal based catalysts for water electrolysis and beyond[J]. Journal of Materials Chemistry A, 2022, 10: 50-88.
[13] WANG H X, ZHANG K H L, HOFMANN J P, et al. The electronic structure of transition metal oxides for oxygen evolution reaction[J]. Journal of Materials Chemistry A, 2021, 9: 19465-19488.
[14] LI Q L, SUN F M, ZHANG D, et al. Recent progress of hollow structure platform in assisting oxygen evolution reaction[J]. Chemical Engineering Journal, 2023, 452: 139232.
[15] YU L, YANG J F, GUAN B Y, et al. Hierarchical hollow nanoprisms based on ultrathin Ni-Fe layered double hydroxide nanosheets with enhanced electrocatalytic activity towards oxygen evolution[J]. Angewandte Chemie International Edition, 2018, 57(1): 172 -176.
[16] HUANG C J, XU H M, SHUAI T Y, et al. A review of modulation strategies for improving catalytic performance of transition metal phosphides for oxygen evolution reaction[J]. Applied Catalysis B: Environmental, 2023 , 325: 122313.
[17] CAO Q B, SU W X, LIU H R, et al. Nickel-cobalt phosphide nanowires as precatalysts for surface reconstruction to prepare durable and efficient OER catalysts[J]. Journal of Electroanalytical Chemistry, 2024, 952: 117928.
[18] ZEENAT, AHMAD Z, MAQBOOL A, et al. One-pot solvothermal synthesis of highly catalytic Janus transition metal phosphides (TMPs) for high performance OER[J]. Fuel, 2023, 331: 125913.
[19] LIU Y H, RAN N, GE R Y, et al. Porous Mn-doped cobalt phosphide nanosheets as highly active electrocatalysts for oxygen evolution reaction[J]. Chemical Engineering Journal, 2021, 425: 131642.
[20] LIU H B, GAO J, XU X C, et al. Oriented construction Cu3P and Ni 2P heterojunction to boost overall water splitting[J]. Chemical Engineering Journal, 2022, 448: 137706.
[21] HE R Z, HUANG X Y, FENG L G. Recent progress in transition-metal sulfide catalyst regulation for improved oxygen evolution reaction[J]. Energy and Fuels, 2022, 36(13): 6675-6694.
[22] PRABAKARAN K, INGAVALE S B, KAKADE B. Three dimensional NiS 2 -Ni(OH) 2 /CNT nanostructured assembly for supercapacitor and oxygen evolution reaction[J]. Journal of Alloys and Compounds, 2020, 812: 152126.
[23] ZHAO Y, YOU J H, WANG L, et al. Recent advances in Ni 3S2 -based electrocatalysts for oxygen evolution reaction[J]. International Journal of Hydrogen Energy, 2021, 46(79): 39146 -39182.
[24] WU J, ZHANG Y Y, ZHANG B, et al. Zn-doped CoS2 nanoarrays for an efficient oxygen evolution reaction: understanding the doping effect for a precatalyst[J]. ACS Applied Materials & Interfaces, 2022, 14(12): 14235 -14242.
[25] 张成. 二维 NiFe-LDH/Mo(OS)x 纳米片协同促进电催化析氧反应. 有色金属材料与工程[J]. 2022, 43(4): 21-27.
[26] YANG Z G, XU H M, SHUAI T Y, et al. Recent progress in the synthesis of transition metal nitride catalysts and their applications in electrocatalysis[J]. Nanoscale, 2023, 15: 11777-11800.
[27] JAMIL R, ALI R, LOOMBA S, et al. The role of nitrogen in transition -metal nitrides in electrochemical water splitting[J]. Chem Catalysis, 2021, 1(4): 802-854.
[28] LIU T T, LI M, SU Z M, et al. Monodisperse and tiny Co2N0 . 6 7 nanocrystals uniformly embedded over two curving surfaces of hollow carbon microfibers as efficient electrocatalyst for oxygen evolution reaction[J]. ACS Applied Nano Materials, 2018, 1(9): 44 61-4473.
[29] WU L Q, SHI D D, YAN S M, et al. Iron-doped cobalt nitride nanoparticles (Fe-Co3N): an efficient electrocatalyst for water oxidation[J]. International Journal of Hydrogen Energy, 2021, 46(2): 2086 -2094.
[30] WANG H, LI J M, LI K, et al. Transition metal nitrides for electrochemical energy applications[J]. Chemical Society Reviews, 2021, 50(2): 1354 -1390.
[31] WU M J, ZHANG G X, HU Y F, et al. Graphitic -shell encapsulated FeNi alloy/nitride nanocrystals on biomass-derived N-doped carbon as an efficient electrocatalyst for rechargeable Zn -air battery[J]. Carbon Energy, 2021, 3(1): 176-187.
[32] XU M, WEI M. Layered double hydroxide-based catalysts: recent advances in preparation, structure, and applications[J]. Advanced Functional Materials, 2018, 28(47): 1802943.
[33] XU H, YUAN J J, HE G Y, et al. Current and future trends for spinel-type electrocatalysts in electrocatalytic oxygen evolution reaction[J]. Coordination Chemistry Reviews, 2023, 475: 214869.
[34] ZENG K, LI W, ZHOU Y, et al. Multilayer hollow MnCo 2O4 microsphere with oxygen vacancies as efficient electrocatalyst for oxygen evolution reaction[J]. Chemical Engineering Journal, 2021, 421 : 127831.
[35] SHANG C Y, XIAO X, XU Q. Coordination chemistry in modulating electronic structures of perovskite -type oxide nanocrystals for oxygen evolution catalysis[J]. Coordination Chemistry Reviews, 2023, 485: 215109.
[36] LI S F, ZHENG J, YAN D. Cationic defect engineering in perovskite La 2CoMnO6 for enhanced electrocatalytic oxygen evolution[J]. Inorganic Chemistry, 2023, 62(28): 11009-11015.
[37] LIU Y F, YE C C, ZHAO S N, et al. A dual-site doping strategy for developing efficient perovskite oxide electrocatalysts towards oxygen evolution reaction[J]. Nano Energy, 2022, 99: 107344.
[38] SONG F, HU X. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis[J]. Nature Communications, 2014, 5(1): 4477.
[39] LIU D X, YANG Y, ZHANG J N, et al. Improved OER catalytic performance of NiFe-LDH with hydrothermal carbonization microspheres[J]. Journal of Alloys and Compounds, 2023, 941: 168994.
[40] SARFRAZ B, BASHIR I, RAUF A. CuS/NiFe -LDH/NF as a bifunctional electrocatalyst for hydrogen evolution (HER) and oxygen evolution reactions (OER)[J]. Fuel, 2023, 337: 127253.
[41] SHI D, JI Y J, LU F X, et al. Oxygen vacancies meet partial S substitution: an effective strategy to achieve obvious synergistic effects and adjustable electrochemical behavior in NiFe -LDH for enhanced OER and capacitive performance[J]. Inorganic Chemistry Frontiers, 2023, 10(18): 5391-5405.
[42] WANG X, LIU W, WANG J N, et al. Cobalt and vanadium co -doped FeOOH nanoribbons: an iron-rich electrocatalyst for efficient water oxidation[J]. Materials Chemistry Frontiers, 2021, 5(17): 6485-6490.
[43] SHEN X R, LI H J, ZHANG Y Y, et al. Construction dual-regulated NiCo2S4@Mo-doped CoFe-LDH for oxygen evolution reaction at large current density[J]. Applied Catalysis B: Environmental, 2022, 319: 121917.
[44] WANG Y H, LI L, SHI J H, et al. Oxygen defect engineering promotes synergy between adsorbate evolution and single lattice oxygen mechanisms of OER in transition metal-based (oxy)hydroxide[J]. Advanced Science, 2023, 10(32):2303321.
[45] HUANG C, QIN P, LUO Y, et al. Recent progress and perspective of cobalt based catalysts for water splitting: design and nanoarchitectonics[J]. Materials Today Energy, 2022, 23: 100911.
[46] WANG L G, SU H, TAN G Y, et al. Boosting efficient and sustainable alkaline water oxidation on a W-CoOOH-TT pair-sites catalyst synthesized via topochemical transformation[J]. Advanced Materials, 2024, 2302642.
[47] YAO S Y, JIAO Y, LV C, et al. Lattice-strain engineering of CoOOH induced by NiMn-MOF for high-efficiency supercapacitor and water oxidation electrocatalysis[J]. Journal of Colloid and Interface Science, 2022, 623: 1111 -1121.
[48] ZHONG H Y, ZHANG Q, YU J C, et al. Fundamental understanding of structural reconstruction behaviors in oxygen evolution reaction electrocatalysts[J]. Advanced Energy Materials, 2023, 13(31): 2301391.
[49] WANG H Y, REN X H, CHEN J, et al. Recent advances of emerging oxyhydroxide for electrochemical energy storage applications[J]. Journal of Power Sources, 2023, 554: 232309.
[50] ZHAO D P, ZHANG R, DAI M Z, et al. Constructing high efficiency CoZnxMn2 - xO4 electrocatalyst by regulating the electronic structure and surface reconstruction[J]. Small, 2022, 18(11): 2107268.
[51] LI Y, WU Y Y, HAO H R, et al. In situ unraveling surface reconstruction of Ni 5P4@FeP nanosheet array for superior alkaline oxygen evolution reaction[J]. Applied Catalysis B: Environmental, 2022, 305: 121033.
[52] FAN Y N, ZHANG J J, LUO K L, et al. Oxygen defect engineering on low crystalline iron(Ⅲ) oxyhydroxide as a highly efficient electrocatalyst for water oxidation[J]. Inorganic Chemistry Frontiers, 2024, 11(1): 114 -122.
[53] LI Q, CHEN B Y, HUANG L H, et al. S-doped Ni(Fe)OOH bifunctional electrocatalysts for overall water splitting[J]. International Journal of Hydrogen Energy, 2024, 51: 1392-1406.
[54] ZHANG S Q, YU T, WEN H, et al. The latest development of CoOOH two -dimensional materials used as OER catalysts[J]. Chemical Communications, 2020, 56(98): 15387-15405.
[55] ZHANG B, ZHENG X L, VOZNYY O, et al. Homogeneously dispersed multimetal oxygen-evolving catalysts[J]. Science, 2016, 352(6283): 333 -337.
[56] LIEN H T, CHANG S T, CHEN P T, et al. Probing the active site in single -atom oxygen reduction catalysts via operando X -ray and electrochemical spectroscopy[J]. Nature Communications, 2020, 11(1): 4233.
[57] TENG Z Y, ZHANG Q T, YANG H B, et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide[J]. Nature Catalysis, 2021, 4(5): 374 -384.
[58] ZHANG Z R, FENG C, WANG D D, et al. Selectively anchoring single atoms on specific sites of supports for improved oxygen evolution[J]. Nature Communications, 2022, 13(1): 2473.
[59] MCCRORY C C L, JUNG S, FERRER I M, et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices[J]. Journal of the American Chemical Society, 2015, 137(13): 4347-4357.
[60] LIAO P L, KEITH J A, CARTER E A. Water oxidation on pure and doped hematite (0001) surfaces: prediction of Co and Ni as effective dopants for electrocatalysis[J]. Journal of the American Chemical Society, 2012, 134(32): 13296-13309.
[61] ZHANG B, ZHENG X L, VOZNYY O, et al. Homogeneously dispersed multimetal oxygen-evolving catalysts[J]. Science, 2016, 352(6283): 333-337.
[62] SHEEHAN S W, THOMSEN J M, HINTERMAIR U, et al. A molecular catalyst for water oxidation that binds to metal oxide surfaces[J]. Nature Communications, 2015, 6(1): 6469.
[63] TOMA F M, SARTOREL A, IURLO M, et al. Efficient water oxidation at carbon nanotube-polyoxometalate electrocatalytic interfaces[J]. Nature Chemistry, 2010, 2(10): 826 -831.
[64] LEE W H, HAN M H, KO Y J, et al. Electrode reconstruction strategy for oxygen evolution reaction: maintaining Fe -CoOOH phase with intermediate -spin state during electrolysis[J]. Nature Communications, 2022, 13(1): 605.
[65] MEILAKHS A P, KONIAKHIN S V. New explanation of Raman peak redshift in nanoparticles[J]. Superlattices and Microstructures, 2017, 110: 319 -323.
[66] ALEX C, SARMA S Ch, PETER S C, et al. Competing effect of Co3 +reducibility and oxygen-deficient defects toward high oxygen evolution activity in Co3O4 systems in alkaline medium[J]. ACS Applied Energy Materials, 2020, 3(6): 5439-5447.
[67] HUANG Z F, SONG J J, DU Y H, et al. Chemical and structural origin of lattice oxygen oxidation in Co -Zn oxyhydroxide oxygen evolution electrocatalysts[J]. Nature Energy, 2019, 4(4): 329 -338.
[68] WEI B, XU G C, HEI J C, et al. CoFeP hierarchical nanoarrays supported on nitrogen-doped carbon nanofiber as efficient electrocatalyst for water splitting[J]. Journal of Colloid and Interface Science, 2021, 602: 619 -626.
[69] GANBAVLE V V, AGAWANE G L, MOHOLKAR A V, et al. Structural, optical, electrical, and dielectric properties of the spray -deposited WO3 thin films[J]. Journal of Materials Engineering and Performance, 2014, 23(4): 1204 -1213.
[70] LI X P, ZHENG L R, LIU S J, et al. Heterostructures of NiFe LDH hierarchically assembled on MoS2 nanosheets as high-efficiency electrocatalysts for overall water splitting[J]. Chinese Chemical Letters, 2022, 33(11): 4761-4765.
[71] HAN X T, YU C, ZHOU S, et al. Ultrasensitive iron-triggered nanosized Fe -CoOOH integrated with graphene for highly efficient oxygen evolution[J]. Advanced Energy Materials, 2017, 7(14): 1602148.
[72] WANG P C, XU Z, LIN Y Q, et al. Exceptional performance of MOF-derived N-doped CoP and Fe-doped CoOOH ultrathin nanosheets electrocatalysts for overall water splitting[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(24): 8949-8957.
[73] SUN Z Z, CURTO A, RODRÍGUEZ-FERNÁNDEZ J, et al. The effect of Fe dopant location in Co(Fe)OOHx nanoparticles for the oxygen evolution reaction[J]. ACS Nano, 2021, 15(11): 18226 -18236.
[74] YAN L, ZHANG B, LIU Z G, et al. Synergy of copper doping and oxygen vacancies in porous CoOOH nanoplates for efficient water oxidation[J]. Chemical Engineering Journal, 2021, 405: 126198.
[75] CHEN Z, KRONAWITTER C X, YEH Y W, et al. Activity of pure and transition metal-modified CoOOH for the oxygen evolution reaction in an alkaline medium[J]. Journal of Materials Chemistry A, 2017, 5(2): 842 -850.
[76] CHEN M P, LIU D, FENG J X, et al. In-situ generation of Ni-CoOOH through deep reconstruction for durable alkaline water electrolysis[J]. Chemical Engineering Journal, 2022, 443: 136432.
[77] MA N, GONG C C, XIE H N, et al. Metal-oxygen bonding nanoarchitectonics for regulation of oxygen evolution reaction performance in FeNi -codoped CoOOH[J]. International Journal of Hydrogen Energy, 2022, 47(69): 29762 -29770.
[78] LEE C S, SHIN K Y, JUNG C W, et al. Atomically embedded Ag via electrodiffusion boosts oxygen evolution of CoOOH nanosheet arrays[J]. ACS Catalysis, 2020, 10(1): 562-569.
[79] GUO C, LIU J M, QUAN F, et al. Ce-doped self-assembled ultrathin CoOOH nanosheets as efficient oxygen evolution reaction electrocatalyst[J]. Journal of Alloys and Compounds, 2022, 920: 165898.
[80] WANG J S, LIU J, ZHANG B, et al. Stabilizing the oxygen vacancies and promoting water-oxidation kinetics in cobalt oxides by lower valence -state doping[J]. Nano Energy, 2018, 53: 144 -151.
[81] TANG L, YU L, MA C, et al. Three -dimensional CoOOH nanoframes confining high-density Mo single atoms for large -current-density oxygen evolution[J]. Journal of Materials Chemistry A, 2022, 10(11): 6242 -6250.
[82] NAYAK N, DASH T, DEBASISH D, et al. A novel WC-W2C composite synthesis by arc plasma melt cast technique: microstructural and mechanical studies[J]. SN Applied Sciences, 2021, 3 : 380.
[83] WATMANEE S, SURIYE K, PRASERTHDAM P, et al. Effect of surface tungstate W5 + species on the metathesis activity of W-doped spherical silica catalysts[J]. Topics in Catalysis, 2018, 61: 1615 -1623.
[84] GUO B R, HUO H H, ZHUANG Q X, et al. Iron oxyhydroxide: structure and applications in electrocatalytic oxygen evolution reaction[J]. Advanced Functional Materials, 2023, 33(25): 2300557.
[85] LIU T, LI P, YAO N, et al. Self-sacrificial template-directed vapor-phase growth of MOF assemblies and surface vulcanization for efficient water splitting[J]. Advanced Materials, 2019, 31(21): 1806672.
[86] SUN H M, YAN Z H, LIU F M, et al. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution[J]. Advanced Materials, 2020, 32(3): 1806326.
[87] CHEN Z, LIU D Z, GAO Y X, et al. Corrosive-coordinate engineering to construct 2D-3D nanostructure with trace Pt as efficient bifunctional electrocatalyst for overall water splitting[J]. Science China Materials, 2022, 65(5): 1217-1224.
[88] LIU X P, GONG M X, XIAO D D, et al. Turning waste into treasure: regulating the oxygen corrosion on Fe foam for efficient electrocatalysis[J]. Small, 2020, 16(24): 2000663.
[89] HE K, TADESSE TSEGA T, LIU X, et al. Utilizing the space-charge region of the FeNi-LDH/CoP p-n junction to promote performance in oxygen evolution electrocatalysis[J]. Angewandte Chemie International Edition, 2019, 58(34): 11903-11909.
[90] WU H, LU X, ZHENG G F, et al. Topotactic engineering of ultrathin 2D nonlayered nickel selenides for full water electrolysis[J]. Advanced Energy Materials, 2018, 8(14): 1702704.
[91] WANG H L, ZHAO Z F, XU Z K, et al. Efficient and durable S-doped Ni/FeOOH electrocatalysts for oxygen evolution reactions[J]. Dalton Transactions, 2023, 52(4): 1113 -1121.
[92] CHEN X, WANG Q C, CHENG Y W, et al. S-doping triggers redox reactivities of both iron and lattice oxygen in FeOOH for low-cost and high-performance water oxidation[J]. Advanced Functional Materials, 2022, 32(26): 2112674.
[93] ZANG W J, SUN T, YANG T, et al. Efficient hydrogen evolution of oxidized Ni-N3 defective sites for alkaline freshwater and seawater electrolysis[J]. Advanced Materials, 2021, 33(8): 2003846.
[94] DIONIGI F, REIER T, PAWOLEK Z, et al. Design criteria, operating conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis[J]. ChemSusChem, 2016, 9(9): 962-972.
修改评论