中文版 | English
题名

基于光纤激光的海洋传感技术研究

其他题名
RESEARCH ON OCEAN SENSING TECHNOLOGY BASED ON FIBER LASER
姓名
姓名拼音
ZHAO Fang
学号
12031197
学位类型
博士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
邵理阳
导师单位
电子与电气工程系
论文答辩日期
2024-04-30
论文提交日期
2024-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

  光纤传感器凭借体积小、灵敏度高、抗电磁干扰及在恶劣环境下的稳 定性而备受研究关注。然而,传统的宽带光源调制的干涉仪存在解调精度 低、成本高等方面的不足,难以满足特定应用的需求。本文聚焦于海洋传 感技术中对温度和盐度测量的核心需求,通过融合光纤激光传感原理及多 样化的光纤类型,设计出多种传感结构,并结合波长解调和散斑解调技术 进行了实验研究。具体研究内容包括:

  在材料增敏方面,利用掺铒光纤(Er-Doped Fiber, EDF)的特性提升 灵敏度,并通过低成本熔接技术制备了基于双花生内嵌拉锥的马赫曾德尔 干涉结构传感器。该结构利用纤芯失配技术增强了系统的灵敏性,同时拉 锥结构进一步强化了光与物质的相互作用,实验结果显示其折射率灵敏度 高达 441.56 nm/RIU,相较于普通单模光纤结构提升了 115.22 nm/RIU。 更进一步实验证明该结构在海洋传感领域应用的潜力,测得温度和盐度灵 敏度分别为-0.046 nm/℃和 0.2368 nm/‰。

  在结构增敏方面,利用游标效应有效提高灵敏度的原理,提出并验证 了 Sagnac 内嵌拉锥保偏光纤结构,通过游标效应显著提升温度和盐度测量 的灵敏度。实验结果表明,该传感器的温度和盐度灵敏度分别达到-3.992 nm/℃和 0.2687 nm/‰。此外,利用单模光纤-空芯光纤-多模光纤级联结构 制备了高稳定性的光纤温度传感器,该传感器温度灵敏度为 69.2 pm/℃。 进一步实验中,设计了一种基于散斑图像识别的单模光纤-空芯光纤-EDF的游标效应传感器,通过零均值归一化互相关算法处理散斑场变化以实现 测量。其温度灵敏度为-0.0224 /℃,盐度灵敏度为-0.0439 /%。这种散 斑解调方式数据处理简单,且结果具有唯一性。

  在系统优化方面,利用光纤激光的高 Q 值、高分辨力特点,设计了两 款光纤环形激光传感器。其中,基于拉锥边孔光纤的马赫曾德尔干涉结构 在激光器中作为滤波器与传感器使用,实现了-0.4270 nm/℃的温度灵敏 度和 0.3347 nm/‰的盐度灵敏度。另一种基于 Sagnac 干涉仪内嵌拉锥边 孔光纤的光纤环形激光传感器,实现了-0.3041 nm/℃和 0.2867 nm/‰的 温度和盐度灵敏度。

  在降本增效方面,利用散斑解调的高分辨力特性,提出了一种多模光纤散斑解调 DBR 光纤激光器的解调方案。利用倾斜光纤光栅的温度盐度传 感特性以及散斑解调的高分辨率优势进行测量。实验测得,该传感器温度 灵敏度为-0.0150 /℃,盐度灵敏度为-0.0158 /‰。

  综上,这四个维度在提升光纤传感器性能上相互关联。材料增敏通过 选用 EDF 材料提高灵敏度,结构增敏则通过设计游标效应结构进一步放大 响应信号,系统优化确保这些增强的信号能够被精确捕捉与处理,而降本 增效则在保持高性能的同时,实现了技术的经济性和广泛应用的可能性。

其他摘要

Fiber optic sensors have gained significant attention due to their small size, high sensitivity, anti-electromagnetic interference, and stability in harsh environments. However, the traditional interferometer modulated by a wideband light source has some drawbacks, such as low demodulation precision, high cost, and difficulty in meeting specific application needs. This thesis focuses on the essential requirements of ocean sensing technology, namely, temperature and salinity measurement. The study integrates the principle of fiber laser sensing and various fiber types to design several sensing structures. The research also carries out experimental investigations by combining wavelength demodulation and speckle demodulation techniques. The specific research topics include:

The utilization of detection sensitivity for material sensitization can be achieved through the use of Er-doped fiber (EDF) properties. A Mach-Zehnder interferometer (MZI) sensor based on a peanut embedded taper structure is developed using low-cost fusion technology. The taper structure enhances the interaction between light and matter, resulting in a refractive index sensitivity of 441.56 nm/RIU, which is higher than that of the ordinary single-mode fiber structure by 115.22 nm/RIU. Further experiments demonstrate the potential of the structure in the field of ocean sensing, the temperature and salinity sensitivity reach 0.046 nm/℃ and 0.2368 nm/‰, respectively.

In terms of structural sensitization, the principle of using Vernier effect can effectively improve the sensitivity. A Sagnac embedded taper polarization-maintaining fiber structure has been proposed and verified. The structure significantly improves the sensitivity of temperature and salinity measurements through the vernier effect. The experimental results show that the temperature and salinity sensitivity of the sensor reach -3.992 nm/℃ and 0.2687 nm/‰, respectively. Additionally, a high-stability optical fiber temperature sensor has been developed, which employs a cascade structure of single-mode fiber, hollow core fiber, and multi-mode fiber. This sensor has a temperature sensitivity of 69.2 pm/℃. Furthermore, a single-mode fiber-hollow fiber-EDF Vernier effect sensor based on speckle image recognition has been designed. The zero-mean normalized cross-correlation algorithm is utilized to process speckle field changes for measurement. The experimental results show that the temperature and salinity sensitivity of the sensor reach -0.0224 /℃ and -0.0439 /%, respectively. The data processing of this speckle demodulation method is simple and the results are unique.

Two fiber ring laser sensors have been designed for system optimization, utilizing the high Q-value and high resolution of fiber laser. One of them uses the MZI structure based on side-hole fiber as a filter and sensor in the laser, achieving a temperature sensitivity of -0.4270 nm/℃ and a salinity sensitivity of 0.3347 nm/‰. The other fiber ring laser sensor employs a Sagnac interferometer embedded with a taper side-hole fiber, resulting in temperature and salinity sensitivities of -0.3041 nm/ °C and 0.2867 nm/‰.

A new method for demodulating multimode fiber speckle demodulation DBR fiber lasers has been proposed to increase efficiency while reducing cost. The proposal utilizes the temperature and salinity sensing characteristics of inclined fiber grating, along with the high-resolution advantage of speckle demodulation for measurement. The sensor has a temperature sensitivity of -0.0150 /℃ and a salinity sensitivity of -0.0158 /‰.

Overall, these four dimensions are interrelated in improving the performance of optical fiber sensors. Material sensitization improves the sensitivity by selecting EDF materials, and structural sensitization further amplifies the response signal by designing a cursors effect structure. System optimization ensures that these enhanced signals can be accurately captured and processed, and cost reduction and efficiency increase while maintaining high performance. The economy of the technology and the possibility of wide application are realized.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2024-06
参考文献列表

[1] YANG H Z, QIAO X G, LIM K S, et al. Optical fiber sensing of salinity and liquid level[J]. IEEE Photonics Technology Letters, 2014, 26(17): 1742-1745.
[2] DíAZ-HERRERA N, ESTEBAN O, NAVARRETE M C, et al. In situ salinity measurements in seawater with a fibre-optic probe[J]. Measurement Science and Technology, 2006, 17(8): 2227.
[3] ZHAO Y, WU Q L, ZHANG Y N. Simultaneous measurement of salinity, temperature and pressure in seawater using optical fiber spr sensor[J]. Measurement, 2019, 148: 106792.
[4] AN G, LIU L, HU P, et al. Probe type tfbg-excited spr fiber sensor for simultaneous measurement of multiple ocean parameters assisted by cfbg[J]. Optics Express, 2023, 31(3): 4229-4237.
[5] ZHAO Y, ZHAO J, ZHAO Q. High sensitivity seawater temperature sensor based on no-core optical fiber[J]. Optical Fiber Technology, 2020, 54: 102115.
[6] CULLUM J, STEVENS D P, JOSHI M M. Importance of ocean salinity for climate and habitability[J]. Proceedings of the National Academy of Sciences, 2016, 113(16): 4278-4283.
[7] GE M, LI Y, HAN Y, et al. High-sensitivity double-parameter sensor based on the fibre-tip fabry–pérot interferometer[J]. Journal of Modern Optics, 2017, 64(6): 596-600.
[8] SU H, ZHANG Y, MA K, et al. High-temperature sensor based on suspended-core microstructured optical fiber[J]. Optics Express, 2019, 27(15): 20156-20164.
[9] CAI L, LIU Y, HU S, et al. Optical fiber temperature sensor based on modal interference in multimode fiber lengthened by a short segment of polydimethylsiloxane[J]. Microwave and Optical Technology Letters, 2019, 61(6): 1656-1660.
[10] QIAN J-K, LV R-Q, WANG S-N, et al. High-sensitivity temperature sensor based on single-mode fiber for temperature-measurement application in the ocean[J]. Optical Engineering, 2018, 57(10): 107101.
[11] XIA F, ZHAO Y, ZHENG H-K, et al. Ultra-sensitive seawater temperature sensor using an fbg-cascaded microfiber mzi operating at dispersion turning point[J]. Optics & Laser Technology, 2020, 132: 106458.
[12] YU Y, BIAN Q, LU Y, et al. High sensitivity all optical fiber conductivity-temperature-depth (ctd) sensing based on an optical microfiber coupler (omc)[J]. Journal of Lightwave Technology, 2019, 37(11): 2739-2747.
[13] ZHOU L, YU Y, CAO L, et al. Fabrication and characterization of seawater temperature sensor with self-calibration based on optical microfiber coupler interferometer[J]. Applied Sciences, 2020, 10(17): 6018.
[14] ZHAI C, LI Y, WANG S, et al. Experimental research on temperature sensing of seawater based on three interferometers incorporated with bow tie fiber[J]. Photonic Sensors, 2023, 13(4): 230413.
[15] ZHANG D, WANG J, WANG Y, et al. A fast response temperature sensor based on fiber bragg grating[J]. Measurement Science and Technology, 2014, 25(7): 075105.
[16] AMEEN O F, YOUNUS M H, AZIZ M S, et al. Graphene diaphragm integrated fbg sensors for simultaneous measurement of water level and temperature[J]. Sensors and Actuators A: Physical, 2016, 252(1): 225-232.
[17] SHAO L-Y, LUO Y, ZHANG Z, et al. Sensitivity-enhanced temperature sensor with cascaded fiber optic sagnac interferometers based on vernier-effect[J]. Optics Communications, 2015, 336: 73-76.
[18] KONG L, ZHANG Y, ZHANG W, et al. Cylinder-type fiber-optic vernier probe based on cascaded fabry-perot interferometers with a controlled fsr ratio[J]. Applied Optics, 2018, 57(18): 5043-5047.
[19] PAN R, LIU M, BIAN Y, et al. High-sensitive temperature sensor with parallel pdms-filled fpis based on dual vernier effect[J]. Optics Communications, 2022, 518: 128284.
[20] LIAO H, PING L U, XIN F U, et al. Sensitivity amplification of fiber-optic in-line mach–zehnder interferometer sensors with modified vernier-effect[J]. Optics Express, 2017, 25(22): 26898-26909.
[21] YANG H, KONG L, LI L, et al. Enhanced-sensitive dual microfiber knot resonators based sensor with vernier effect for simultaneous measurement of refractive index and temperature[J]. Optik, 2022, 250: 168350.
[22] HOU L, ZHAO C, XU B, et al. Highly sensitive pdms-filled fabry–perot interferometer temperature sensor based on the vernier effect[J]. Applied Optics, 2019, 58(18): 4858-4865.
[23] SU H, ZHANG Y, ZHAO Y, et al. Parallel double-fpis temperature sensor based on suspended-core microstructured optical fiber[J]. IEEE Photonics Technology Letters, 2019, 31(24): 1905-1908.
[24] WANG Z, HUANG L, LIU C, et al. Sensitivity-enhanced fiber temperature sensor based on vernier effect and dual in-line mach–zehnder interferometers[J]. IEEE Sensors Journal, 2019, 19(18): 7983-7987.
[25] LIU F, ZHANG Y, MENG F, et al. Complex optical fiber sensor based on the vernier effect for temperature sensing[J]. Optical Fiber Technology, 2021, 61: 10424.
[26] WU K Y, ZUO C, ZHAO S Y, et al. Highly sensitive fiber-optic temperature sensor based on lyot filter cascaded with fabry-perot interferometer[J]. Optical Fiber Technology, 2023, 80: 103451.
[27] ZHAO X, WU X, ZUO C, et al. Sensitivity-enhanced temperature sensor by cascaded configuration of polarization mode interferometer and lyot filter based on vernier effect[J]. Optical Fiber Technology, 2022, 73: 103017.
[28] ZHANG W, WU X, ZUO C, et al. Highly sensitive temperature and strain sensor based on fiber sagnac interferometer with vernier effect[J]. Optics Communications, 2022, 506: 127543.
[29] SHI J, WANG Y, XU D, et al. Temperature sensor based on fiber ring laser with sagnac loop[J]. IEEE Photonics Technology Letters, 2016, 28(7): 794-797.
[30] CAI L, ZHAO Y, LI X-G. A fiber ring cavity laser sensor for refractive index and temperature measurement with core-offset modal interferometer as tunable filter[J]. Sensors and Actuators B: Chemical, 2017, 242: 673-678.
[31] MARTIN-VELA J A, SIERRA-HERNANDEZ J M, GALLEGOS-ARELLANO E, et al. Switchable and tunable multi-wavelength fiber laser based on a core-offset aluminum coated mach-zehnder interferometer[J]. Optics and Laser Technology, 2020, 125: 106039.
[32] MĄDRY M, ALWIS L, BINETTI L, et al. Simultaneous measurement of temperature and relative humidity using a dual-wavelength erbium-doped fiber ring laser sensor[J]. IEEE Sensors Journal, 2019, 19(20): 9215-9220.
[33] ZOU H, MA L, XIONG H, et al. Fiber ring laser sensor based on fabry–perot cavity interferometer for temperature sensing[J]. Laser Physics, 2018, 28(1): 015102.
[34] LIN W, ZHAO F, SHAO L Y, et al. Temperature sensor based on er-doped cascaded-peanut taper structure in-line interferometer in fiber ring laser[J]. IEEE Sensors Journal, 2021, 21(19): 21594-21599.
[35] LIN W, HU J, ZHAO F, et al. Adaptive fiber-ring lasers based on isopropanol filled microfiber coupler for high-sensitivity temperature sensing[J]. Micromachines 2022, 13(10): 1697.
[36] LIN W, LIU Y, SHAO L, et al. A fiber ring laser sensor with a side polished evanescent enhanced fiber for highly sensitive temperature measurement[J]. Micromachines 2021, 12(5): 586.
[37] YANG X, LU Y, LIU B, et al. Fiber ring laser temperature sensor based on liquid-filled photonic crystal fiber[J]. IEEE Sensors Journal, 2017, 17(21): 6948-6952.
[38] LIU H, HU D J J, SUN Q, et al. Specialty optical fibers for advanced sensing applications[J]. Opto-Electronic Science, 2023, 2(2): 220025.
[39] MILLARD R C, SEAVER G. An index of refraction algorithm for seawater over temperature, pressure, salinity, density, and wavelength[J]. Deep Sea Research Part A Oceanographic Research Papers, 1990, 37(12): 1909-1926.
[40] MALARDé D, WU Z Y, GROSSO P, et al. High-resolution and compact refractometer for salinity measurements[J]. Measurement Science and Technology, 2009, 20(1): 015204.
[41] MENG Q, DONG X, NI K, et al. Optical fiber laser salinity sensor based on multimode interference effect[J]. IEEE Sensors Journal, 2014, 14(6): 1813-1816.
[42] KHANIKAR T, PATHAK A K, SINGH V K. Reflectance-based no core fiber sensor with enhanced sensitivity for salinity detection[J]. Optik, 2018, 159: 1-8.
[43] XIE N, ZHANG H, LIU B, et al. In-line microfiber-assisted mach–zehnder interferometer for microfluidic highly sensitive measurement of salinity[J]. IEEE Sensors Journal, 2018, 18(21): 8767-8772.
[44] ASLAM MOLLAH M, YOUSUFALI M, RIFAT BIN ASIF FAYSAL M, et al. Highly sensitive photonic crystal fiber salinity sensor based on sagnac interferometer[J]. Results in Physics, 2020, 16: 103022.
[45] LI Y, WANG J, WANG S. Absolute salinity measurement based on microfiber coaxial mach-zehnder interferometer[J]. Journal of Coastal Research, 2020, 102: 194-201.
[46] LIN Z-T, ZHAO Y, LV R-Q, et al. High-sensitivity salinity sensor based on etched c-type micro-structured fiber sensing structure[J]. Sensors and Actuators A: Physical, 2022, 339: 113518.
[47] LI Z, LI L, ZHANG Y-N, et al. Highly-sensitive fiber-optic f-p salinity sensor based on vernier effect[J]. Optical Fiber Technology, 2022, 74: 103148.
[48] WANG L, GENG Y, LI X, et al. High-resolution optical fiber salinity sensor with self-referenced parallel fabry–perot fiber microcavity[J]. IEEE Sensors Journal, 2023, 23(1): 337-343.
[49] WANG S, WANG J, LI G, et al. Modeling optical microfiber loops for seawater sensing[J]. Applied Optics, 2012, 51(15): 3017-3023.
[50] WANG X, WANG J, WANG S S, et al. Fiber-optic salinity sensing with a panda-microfiber-based multimode interferometer[J]. Journal of Lightwave Technology, 2017, 35(23): 5086-5091.
[51] CHEN H, LUO B-B, WU D, et al. Optical vernier sensor based on cascaded tapered thin-core microfiber for highly sensitive refractive index sensing[J]. Applied Optics, 2022, 61(36): 10727-10734.
[52] LIAO Y, WANG J, WANG S, et al. Simultaneous measurement of seawater temperature and salinity based on microfiber mz interferometer with a knot resonator[J]. Journal of Lightwave Technology, 2016, 34(23): 5378-5384.
[53] ZHANG H, ZHANG J, YANG X, et al. Intensity-modulated fiber-optic salinity sensor by tapered microcavity mach–zehnder interferometer[J]. IEEE Sensors Journal, 2023, 23(19): 22517-22523.
[54] TIAN M, LU P, CHEN L, et al. All-solid d-shaped photonic fiber sensor based on surface plasmon resonance[J]. Optics Communications, 2012, 285(6): 1550-1554.
[55] WEI X, PENG Y, CHEN X, et al. Optimization of tapered optical fiber sensor based on spr for high sensitivity salinity measurement[J]. Optical Fiber Technology, 2023, 78: 103309.
[56] TSENG S-M, CHEN C-L. Side-polished fibers[J]. Applied Optics, 1992, 31(18): 3438-3447.
[57] YANG F, SUKHISHVILI S A, DU H, et al. Marine salinity sensing using long-period fiber gratings enabled by stimuli-responsive polyelectrolyte multilayers[J]. Sensors and Actuators B-Chemical, 2017, 253: 745-751.
[58] YANG F, HLUSHKO R, WU D, et al. Ocean salinity sensing using long-period fiber gratings functionalized with layer-by-layer hydrogels[J]. ACS Omega, 2019, 4(1): 2134-2141.
[59] WU S-H, JIN W, BI W-H, et al. A robust salinity sensor based on encapsulated long-period grating in microfiber[J]. Optoelectronics Letters, 2020, 16(6): 418-422.
[60] NGUYEN L V, VASILIEV M, ALAMEH K. Three-wave fiber fabry–pérot interferometer for simultaneous measurement of temperature and water salinity of seawater[J]. IEEE Photonics Technology Letters 2011, 23(7): 450-452.
[61] LIU T, WANG J, LIAO Y, et al. Splicing point tapered fiber mach-zehnder interferometer for simultaneous measurement of temperature and salinity in seawater[J]. Optics Express, 2019, 27(17): 23905-23918.
[62] YANG C, ZHANG S, SHI D, et al. Simultaneous measurement of salinity and temperature using a sagnac interferometer based on concatenated polarization-maintaining fiber tapers[J]. Applied Optics, 2021, 60(28): 8904-8909.
[63] NGUYEN L V, VASILIEV M, ALAMEH K. Three-wave fiber fabry–pérot interferometer for simultaneous measurement of temperature and water salinity of seawater[J]. IEEE Photonics Technology Letters, 2011, 23(7): 450-452.
[64] FLORES R, JANEIRO R, VIEGAS J. Optical fibre fabry-pérot interferometer based on inline microcavities for salinity and temperature sensing[J]. Scientific Reports, 2019, 9(1): 9556.
[65] WANG S, LIU T, WANG X, et al. Hybrid structure mach-zehnder interferometer based on silica and fluorinated polyimide microfibers for temperature or salinity sensing in seawater[J]. Measurement, 2019, 135: 527-536.
[66] SELOKAR T, GIRALDI M T R. All-fiber sensors for salinity and temperature simultaneous measurement[J]. Optical and Quantum Electronics, 2021, 53(1): 1-17.
[67] AKTER S, AHMED K, EL-NAGGAR S A, et al. Highly sensitive refractive index sensor for temperature and salinity measurement of seawater[J]. Optik, 2020, 216
[68] YAN J, ZHANG A, CHENG Q, et al. High sensitivity open-cavity mach-zehnder interferometer based on no-core fiber for seawater salinity measurement[J]. Optik, 2021, 227: 165954.
[69] YANG X, WANG Z, LIU Y, et al. Spr sensor based on exposed core micro-structured optical fiber for salinity detection with temperature self-compensation[J]. Optical Materials Express, 2021, 11(8)
[70] LIU Y, JING Z, LIU Q, et al. All-silica fiber-optic temperature-depth-salinity sensor based on cascaded efpis and fbg for deep sea exploration[J]. Optics Express, 2021, 29(15): 23953-23966.
[71] WANG J, ZHOU X, MIAO Y, et al. Integrated and compact fiber-optic conductivity-temperature-depth (ctd) sensor for marine detection[J]. Optics and Laser Technology, 2023, 164: 109523-109523.
[72] ZHAO J, ZHAO Y, CAI L. Hybrid fiber-optic sensor for seawater temperature and salinity simultaneous measurements[J]. Journal of Lightwave Technology, 2022, 40(3): 880-886.
[73] ZHAO Y, ZHAO J, PENG Y, et al. Simultaneous measurement of seawater salinity and temperature with composite fiber-optic interferometer[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-8.
[74] LIAO Y, YANG K, SHI X. Theoretical study on simultaneous measurement of seawater temperature and salinity based on dual fiber interferometers combined with nonlinear decoupling algorithm[J]. Measurement, 2023, 211: 112596.
[75] ZHAI C X, LI Y, WANG S S, et al. Study on high sensitivity measurement of seawater temperature based on bow tie fiber[J]. Optical Fiber Technology, 2023, 76: 103252.
[76] LIU S, YIN B, SANG G, et al. Underwater temperature and salinity fiber sensor based on semi-open cavity structure of asymmetric mzi[J]. IEEE Sensors Journal, 2023, 23(16): 18219-18233.
[77] LI P, CHEN Y, HU J, et al. Simultaneous measurement of salinity and temperature of seawater based on u-shaped tapered no-core fiber[J]. Infrared Physics & Technology, 2023, 130: 104617.
[78] ZHANG W, WU M, WANG X, et al. Temperature insensitive salinity sensor with u-shaped structure based on few-mode fiber[J]. Optical Fiber Technology, 2023, 76: 103218.
[79] LIU Y, LIN W, ZHAO F, et al. Dual-parameter fiber sensors for salinity and temperature measurement based on a tapered pmf incorporated with an fbg in sagnac loop[J]. IEEE Photonics journal, 2024, 16(1): 1-7.
[80] YAN Y, GU Z, WANG Y. Design and simulation of a cascaded-coated lpg–fbg sensor structure for simultaneous monitoring of ctd in ocean[J]. Journal of Optics, 2024, 53(1): 169-180.
[81] WU Q-L, ZHAO Y, SI-YU E, et al. Reflex optical fiber probe for simultaneous determination of seawater salinity and temperature by surface plasmon resonance[J]. Instrumentation Science and Technology, 2019, 47(4): 374-388.
[82] SIYU E, ZHANG Y N, HAN B, et al. Two-channel surface plasmon resonance sensor for simultaneous measurement of seawater salinity and temperature[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(9): 7191-7199.
[83] ZHANG S, PENG Y, WEI X, et al. High-sensitivity biconical optical fiber spr salinity sensor with a compact size by fiber grinding technique[J]. Measurement, 2022, 204: 112156.
[84] ZHANG S-Q, ZHAO Y, PENG Y, et al. High-sensitivity optical fiber spr sensor with cascaded biconical fiber and hetero-core structure for simultaneous measurement of seawater salinity and temperature[J]. Optics & Laser Technology, 2024, 170: 110275.
[85] LI H, QIAN X, ZHENG W, et al. Theoretical and experimental characterization of a salinity and temperature sensor employing optical fiber surface plasmon resonance (spr)[J]. Instrumentation Science & Technology, 2020, 48(6): 601-615.
[86] TENG C, LI X, MIN R, et al. Low crosstalk plastic optical fiber based dual-parameter spr sensor with stepped side-polished structure and differentiated au-film thickness[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 73: 1-7.
[87] LUO D, MA J, IBRAHIM Z, et al. Etched fbg coated with polyimide for simultaneous detection the salinity and temperature[J]. Optics Communications, 2017, 392: 218-222.
[88] SUN M-Y, JIANG H-T, SHI B, et al. Development of fbg salinity sensor coated with lamellar polyimide and experimental study on salinity measurement of gravel aquifer[J]. Measurement, 2019, 140: 526-537.
[89] GUO J, SUN M, FANG J, et al. High-sensitivity seawater salinity sensing with cladding etched fiber bragg grating technology[J]. IEEE Sensors Journal, 2023, 23(13): 14182-14192.
[90] FU G, WANG K, LIU C, et al. Study on the sensing characteristics of salinity-temperature-depth based on sns-fbg cascade[J]. Optics Communications, 2024, 552: 130092.
[91] KIM H K, KIM S K, PARK H G, et al. Polarimetric fiber laser sensors[J]. Optics Letters, 1993, 18(4): 317-319.
[92] MAIMAN T H. Stimulated optical radiation in ruby[J]. Nature, 1960, 187(4736): 493-494.
[93] SNITZER E L. Optical maser action of nd + 3 in a barium crown glass[J]. Physical Review Letters, 1961, 7(12): 444-446.
[94] MEARS R J, REEKIE L, POOLE S B, et al. Low-threshold tunable cw and q-switched fibre laser operating at 1.55 μm[J]. Electronics Letters, 1986, 22: 159-160.
[95] FU X, MA S, ZHANG R, et al. Refractive index insensitive triple cladding quartz specialty fiber temperature sensor with d-type microcavity structure[J]. IEEE Sensors Journal, 2021, 21(21): 24098-24105.
[96] FERREIRA M S, COELHO L, SCHUSTER K, et al. Fabry-perot cavity based on a diaphragm-free hollow-core silica tube[J]. Optics Letters, 2011, 36(20): 4029-4031.
[97] LIAO C R, HU T Y, WANG D N. Optical fiber fabry-perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing[J]. Optics Express, 2012, 20(20): 22813-22818.
[98] ZHANG S, ZHAO Z, CHEN N, et al. Temperature characteristics of silicon core optical fiber fabry–perot interferometer[J]. Optics Letters, 2015, 40(7): 1362-1365.
[99] CHIN K K, SUN Y L, FENG G, et al. Fabry-perot diaphragm fiber-optic sensor[J]. Applied Optics, 2007, 46(31): 7614-7619.
[100]ZENGLING R, HE X, RAO Y, et al. Fiber-optic microstructure sensors: A review[J]. Photonic Sensors, 2021, 11(2): 227-261.
[101]HALPAAP D, TIANA-ALSINA J, VILASECA M, et al. Experimental characterization of the speckle pattern at the output of a multimode optical fiber[J]. Optics Express, 2019, 27 20: 27737-27744.
[102]EFENDIOGLU H S. A review of fiber-optic modal modulated sensors: Specklegram and modal power distribution sensing[J]. IEEE Sensors Journal, 2017, 17(7): 2055-2064.
[103]CAI L, WANG M, ZHAO Y. Investigation on refractive index sensing characteristics based on multimode fiber specklegram[J]. Measurement Science and Technology, 2023, 34(1): 015125.
[104]PORAT A, ANDRESEN E R, RIGNEAULT H, et al. Widefield lensless imaging through a fiber bundle via speckle correlations[J]. Optics Express, 2016, 24(15): 16835-16855.
[105]ROELANDT S, MEURET Y, CRAGGS G, et al. Standardized speckle measurement method matched to human speckle perception in laser projection systems[J]. Optics Express, 2012, 20(8): 8770-8783.
[106]FAN X, CHEN H, LIU C, et al. Thermo-optic tuning in an optical fiber ring laser with a nematic liquid crystal film-embedded sagnac interferometer[J]. IEEE Sensors Journal, 2023, 23(15): 16944-16952.
[107]TONG Z, WANG Y, ZHANG W, et al. Optical fiber magnetic field sensor based on multi-mode fiber and core-offset structure[J]. Journal of Modern Optics, 2016, 64(12): 1129-1133.
[108]BANDYOPADHYAY S, SHAO L, SMIETANA M, et al. Employing higher order cladding modes of fiber bragg grating for analysis of refractive index change in volume and at the surface[J]. IEEE Photonics journal, 2020, 12(1): 1-13.
[109]MUMTAZ F, DAI Y, ASHRAF M A. Inter-cross de-modulated refractive index and temperature sensor by an etched multi-core fiber of a mzi structure[J]. Journal of Lightwave Technology, 2020, 38(24): 6948-6953.
[110]WU D, ZHU T, CHIANG K S, et al. All single-mode fiber mach–zehnder interferometer based on two peanut-shape structures[J]. Journal of Lightwave Technology, 2012, 30(5): 805-810.
[111]WU D, ZHU T, LIU M. A high temperature sensor based on a peanut-shape structure michelson interferometer[J]. Optics Communications, 2012, 285(24): 5085-5088.
[112]LI Y, WANG L, CHEN Y, et al. High-performance fiber sensor via mach-zehnder interferometer based on immersing exposed-core microstructure fiber in oriented liquid crystals[J]. Optics Express, 2020, 28(3): 3576-3586.
[113]LIU B N, LUO J X, LIU S, et al. A probe-shaped sensor with fbg and fiber-tip bubble for pressure and temperature sensing[J]. Photonic Sensors, 2021, 11(4): 411-417.
[114]WU H, ZHANG S, ZHANG C. Interference visibility of the wide-field-of-view polarization interference imaging spectrometer (wpiis)[J]. Optics Communications, 2014, 333: 99-104.
[115]YU F, XUE P, ZHAO X, et al. Investigation of an in-line fiber mach–zehnder interferometer based on peanut-shape structure for refractive index sensing[J]. Optics Communications, 2019, 435: 173-177.
[116]LU Y, SHEN C, ZHONG C, et al. Refractive index and temperature sensor based on double-pass m–z interferometer with an fbg[J]. IEEE Photonics Technology Letters, 2014, 26(11): 1124-1127.
[117]DU H, SUN X, HU Y, et al. High sensitive refractive index sensor based on cladding etched photonic crystal fiber mach-zehnder interferometer[J]. Photonic Sensors, 2019, 9(2): 126-134.
[118]ZHAO X, DONG M, ZHANG Y, et al. Simultaneous measurement of strain, temperature and refractive index based on a fiber bragg grating and an in-line mach–zehnder interferometer[J]. Optics Communications, 2019, 435: 61-67.
[119]WANG P F, BRAMBILLA G, DING M, et al. Enhanced refractometer based on periodically tapered small core singlemode fiber[J]. IEEE Sensors Journal, 2013, 13(1): 180-185.
[120]ZHAO Y, CAI L, LI X G. In-fiber mach-zehnder interferometer based on up-taper fiber structure with er3+doped fiber ring laser[J]. Journal of Lightwave Technology, 2016, 34(15): 3475-3481.
[121]LIU W, WU X, ZHANG G, et al. Thin fiber-based mach-zehnder interferometric sensor for measurement of liquid level, refractive index, temperature, and axial strain[J]. Applied Optics, 2020, 59(6): 1786-1792.
[122]HAN X, LIU C, JIANG S, et al. Up-down taper based in-fiber mach-zehnder interferometer for liquid refractive index sensing[J]. Sensors, 2019, 19(24): 5440.
[123]MINATO H, KAKUI Y, NISHIMOTO A, et al. Remote refractive index difference meter for salinity sensor[J]. IEEE Transactions on Instrumentation and Measurement, 1989, 38(2): 608-612.
[124]CONG J, ZHANG X, CHEN K, et al. Fiber optic bragg grating sensor based on hydrogels for measuring salinity[J]. Sensors and Actuators B: Chemical, 2002, 87(3): 487-490.
[125]LU M, ZHOU H, PENG W, et al. Dithiol self-assembled monolayer based electrochemical surface plasmon resonance optical fiber sensor for selective heavy metal ions detection[J]. Journal of Lightwave Technology, 2021, 39(12): 4034-4040.
[126]GHOSH S, DISSANAYAKE K, ASOKAN S, et al. Lead (pb2+) ion sensor development using optical fiber gratings and nanocomposite materials[J]. Sensors and Actuators B: Chemical, 2022, 364: 131818.
[127]HU Y H, JIANG C, ZHOU M, et al. High-sensitivity fiber temperature and refractive index sensing with nonadiabatic fiber taper[J]. Journal of Optical Technology, 2018, 85(4): 233-237.
[128]GOMES A, BARTELT H, FRAZãO O. Optical vernier effect: Recent advances and developments[J]. Laser & Photonics Reviews, 2021, 15(7): 2000588.
[129]ZHANG P, TANG M, GAO F, et al. Cascaded fiber-optic fabry-perot interferometers with vernier effect for highly sensitive measurement of axial strain and magnetic field[J]. Optics Express, 2014, 22(16): 19581-19588.
[130]CHEN Y, ZHAO L, HAO S, et al. Advanced fiber sensors based on the vernier effect[J]. Sensors, 2022, 22(7): 2694.
[131]GOMES A D, FERREIRA M S, BIERLICH J, et al. Optical harmonic vernier effect: A new tool for high performance interferometric fiber sensors[J]. Sensors, 2019, 19(24): 5431.
[132]WU Y, ZHANG Y, WU J, et al. Fiber-optic hybrid-structured fabry–perot interferometer based on large lateral offset splicing for simultaneous measurement of strain and temperature[J]. Journal of Lightwave Technology, 2017, 35(19): 4311-4315.
[133]LI J, ZHANG M, WAN M, et al. Ultrasensitive refractive index sensor based on enhanced vernier effect through cascaded fiber core-offset pairs[J]. Optics Express, 2020, 28(3): 4145-4155.
[134]ZHAO Y, ZHAO J, WANG X-X, et al. Femtosecond laser-inscribed fiber-optic sensor for seawater salinity and temperature measurements[J]. Sensors and Actuators B: Chemical 2022, 353: 131134.
[135]PAN R, YANG W, LI L, et al. A high-sensitive fiber-optic fabry-perot sensor with parallel polymer-air cavities based on vernier effect for simultaneous measurement of pressure and temperature[J]. IEEE Sensors Journal, 2021, 21(19): 21577-21585.
[136]QUAN M, TIAN J, YAO Y. Ultra-high sensitivity fabry-perot interferometer gas refractive index fiber sensor based on photonic crystal fiber and vernier effect[J]. Optics Letters, 2015, 40(21): 4891-4894.
[137]FANG X, ZHANG W, LI J, et al. Signal processing assisted vernier effect in a single interferometer for sensitivity magnification[J]. Optics Express, 2021, 29(8): 11570-11581.
[138]CABRAL T D, FUJIWARA E, WARREN-SMITH S C, et al. Multimode exposed core fiber specklegram sensor[J]. Optics Letters, 2020, 45(12): 3212-3215.
[139]LEAL-JUNIOR A G, FRIZERA A, MARQUES C, et al. Optical fiber specklegram sensors for mechanical measurements: A review[J]. IEEE Sensors Journal, 2020, 20(2): 569-576.
[140]GUAN Y, YANG J, YIN B, et al. Study of the sensitivity limit of vernier effect and a novel tracking method of vernier envelope[J]. IEEE Photonics Technology Letters 2023, 35(2): 77-80.
[141]WANG T, LI Y, TAO J, et al. Deep-learning-assisted fiber bragg grating interrogation by random speckles[J]. Optics Letters, 2021, 46(22): 5711-5714.
[142]ZHANG W, LI H, ZHU L, et al. Dual-parameter optical fiber probe based on a three-beam fabry-perot interferometer[J]. IEEE Sensors Journal, 2021, 21(4): 4635-4643.
[143]HU H. Demodulation of fiber specklegram curvature sensor using deep learning[J]. Photonics, 2023, 10(2): 169-179.
[144]ARíSTIZABAL V H, VéLEZ F J, RUEDA E, et al. Numerical modeling of fiber specklegram sensors by using finite element method (fem)[J]. Optics Express, 2016, 24(24): 27225-27238.
[145]XU K. Silicon electro-optic micro-modulator fabricated in standard cmos technology as components for all silicon monolithic integrated optoelectronic systems[J]. Journal of Micromechanics and Microengineering, 2021, 31(5): 054001.
[146]GUO P, LIU H, ZHOU Z, et al. Spatially modulated fiber speckle for high-sensitivity refractive index sensing[J]. Sensors 2023, 23(15): 6814.
[147]SONG H, SUN F, SUN Y, et al. The optimization of multimode fiber speckle sensor for microvibration[J]. International Journal of Optics, 2023, 2023: 3356849.
[148]CHEN W, FENG F, CHEN D, et al. Precision non-contact displacement sensor based on the near-field characteristics of fiber specklegrams[J]. Sensors and Actuators A: Physical, 2019, 296(1): 1-6.
[149]CHOI H, MUDHANA G, PARK K S, et al. Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index[J]. Optics Express, 2010, 18(1): 141-149.
[150]LEAL-JUNIOR A G, CAMPOS V, DíAZ C, et al. A machine learning approach for simultaneous measurement of magnetic field position and intensity with fiber bragg grating and magnetorheological fluid[J]. Optical Fiber Technology, 2020, 56(4): 102184.
[151]NGUYEN L V, NGUYEN C C, CARNEIRO G, et al. Sensing in the presence of strong noise by deep learning of dynamic multimode fiber interference[J]. Photonics Research, 2021, 9(4): B109-B118.
[152]LI B, LIANG Y, XIE Z, et al. High-performance multi-parameter fiber sensor by grating-enhanced mach–zehnder interference[J]. Optics Letters, 2022, 47(20): 5365-5368.
[153]XU K, HUANG L, ZHANG Z, et al. Light emission from a poly-silicon device with carrier injection engineering[J]. Materials Science and Engineering: B, 2018, 231: 28-31.
[154]DURAIBABU D B, LEEN G, TOAL D, et al. Underwater depth and temperature sensing based on fiber optic technology for marine and fresh water applications[J]. Sensors, 2017, 17(6): 1228.
[155]BUDINSKI V, DONLAGIC D. Fiber-optic sensors for measurements of torsion, twist and rotation: A review[J]. Sensors, 2017, 17(3): 443.
[156]FU J, XU Y, XU M, et al. Highly sensitive humidity sensor based on tapered dual side-hole fiber[J]. Optik, 2022, 261: 169183.
[157]孙崇峰, 李智忠, 胡永明,等. 边孔光纤双折射的分析及其测量[J]. 传感器与微系统, 2006, 25(2): 73-75.
[158]XIE H M, DABKIEWICZ P, ULRICH R, et al. Side-hole fiber for fiber-optic pressure sensing[J]. Optics Letters, 1986, 11(5): 333-335.
[159]李昌锋, 梁小红, 周述文,等. 边孔高双折射光纤的研究与制造[J]. 网络电信, 2010, 12(3): 40-41.
[160]BO W, LIU B, LIU J, et al. Fiber ring laser based on side-polished fiber mzi for enhancing refractive index and torsion measurement[J]. IEEE Sensors Journal, 2022, 22(8): 7779-7784.
[161]RAN Y, LONG J, XU Z, et al. Harmonic optical microfiber bragg grating immunosensor for the accelerative test of cardiac biomarker (ctn-i)[J]. Biosensors and Bioelectronics, 2021, 179: 113081.
[162]GE Q, ZHU J, CUI Y, et al. Fiber optic temperature sensor utilizing thin pmf based sagnac loop[J]. Optics Communications 2022, 502: 127417.
[163]SUN L P, YUAN Z, HUANG T, et al. Ultrasensitive sensing in air based on sagnac interferometer working at group birefringence turning point[J]. Optics Express, 2019, 27(21): 29501-29509.
[164]ZHANG F, YUE Y, HU J. Highly sensitive temperature sensor based on multicore fiber-polarization maintaining fiber loop mirror[J]. IEEE Sensors Journal, 2020, 20(3): 1315-1321.
[165]LIANG H, WANG J, ZHANG L, et al. Review of optical fiber sensors for temperature, salinity, and pressure sensing and measurement in seawater[J]. Sensors (Basel), 2022, 22(14): 5363.
[166]LIN W, SHAO L-Y, VAI M I, et al. In-fiber mach–zehnder interferometer sensor based on er doped fiber peanut structure in fiber ring laser[J]. Journal of Lightwave Technology, 2021, 39(10): 3350-3357.
[167]QIAN Y, ZHAO Y, WU Q-L, et al. Review of salinity measurement technology based on optical fiber sensor[J]. Sensors and Actuators B: Chemical, 2018, 260: 86-105.
[168]LIN WEIHAO, SUN SIMING, HU JIE, et al. Research and application of sensing technology based on fiber ring laser[J]. Semiconductor optoelectronics, 2022, 43(4): 10.
[169]JAUREGUI-VAZQUEZ D, ALVAREZ-CHAVEZ J A, LOZANO-HERNANDEZ T, et al. Fiber laser sensor configurations for refractive index, temperature and strain: A review[J]. Photonics, 2023, 10(5): 495.
[170]GUO T, LIU F, GUAN B-O, et al. Tilted fiber grating mechanical and biochemical sensors[J]. Optics and Laser Technology, 2016, 78: 19-33.
[171]CHEN X, XU J, ZHANG X, et al. Wide range refractive index measurement using a multi-angle tilted fiber bragg grating[J]. IEEE Photon Technol Lett, 2017, 29(9): 719-722.
[172]WONG A C L, CHUNG W H, TAM H-Y, et al. Single tilted bragg reflector fiber laser for simultaneous sensing of refractive index and temperature[J]. Optics Express, 2011, 19(2): 409-414.
[173]GU L, GAO H, HU H. Demonstration of a learning-empowered fiber specklegram sensor based on focused ion beam milling for refractive index sensing[J]. Nanomaterials, 2023, 13(4): 768.
[174]REDDING B, CAO H. Using a multimode fiber as a high-resolution, low-loss spectrometer[J]. Optics Letters, 2012, 37(16): 3384-3386.
[175]ARı F, ŞERBETçI H, NAVRUZ İ. Tapered fiber optic refractive index sensor using speckle pattern imaging[J]. Optical Fiber Technology, 2023, 79: 103366.
[176]YANG X, BANDYOPADHYAY S, SHAO L-Y, et al. Side-polished dbr fiber laser with enhanced sensitivity for axial force and refractive index measurement[J]. IEEE Photonics journal, 2019, 11(3): 1-10.
[177]SHIN J C, KWAK W G, HAN Y G. Temperature-insensitive microfiber mach–zehnder interferometer for absolute strain measurement[J]. Journal of Lightwave Technology, 2016, 34(19): 4579-4583.
[178]LI E. Temperature compensation of multimode-interference-based fiber devices[J]. Optics Letters, 2007, 32(14): 2064-2066.
[179]ZAIN M A, KARIMI-ALAVIJEH H, MOALLEM P, et al. A high-sensitive fiber specklegram refractive index sensor with microfiber adjustable sensing area[J]. IEEE Sensors Journal, 2023, 23(14): 15570-15577.
[180]FUJIWARA E, SILVA L E D, CABRAL T D, et al. Optical fiber specklegram chemical sensor based on a concatenated multimode fiber structure[J]. Journal of Lightwave Technology, 2019, 37(19): 5041-5047.
[181]LIN W, LIU H, YANG C, et al. Fibre-optic salinity sensor based on multimode fibre specklegram analysis[J]. Measurement Science and Technology, 2021, 32(11): 115110.
[182]CAUCHETEUR C, MEGRET P. Demodulation technique for weakly tilted fiber bragg grating refractometer[J]. IEEE Photonics Technology Letters, 2005, 17(12): 2703-2705.

所在学位评定分委会
物理学
国内图书分类号
O439
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765903
专题南方科技大学
工学院_电子与电气工程系
推荐引用方式
GB/T 7714
赵方. 基于光纤激光的海洋传感技术研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12031197-赵方-电子与电气工程系(11173KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[赵方]的文章
百度学术
百度学术中相似的文章
[赵方]的文章
必应学术
必应学术中相似的文章
[赵方]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。