[1] YANG H Z, QIAO X G, LIM K S, et al. Optical fiber sensing of salinity and liquid level[J]. IEEE Photonics Technology Letters, 2014, 26(17): 1742-1745.
[2] DíAZ-HERRERA N, ESTEBAN O, NAVARRETE M C, et al. In situ salinity measurements in seawater with a fibre-optic probe[J]. Measurement Science and Technology, 2006, 17(8): 2227.
[3] ZHAO Y, WU Q L, ZHANG Y N. Simultaneous measurement of salinity, temperature and pressure in seawater using optical fiber spr sensor[J]. Measurement, 2019, 148: 106792.
[4] AN G, LIU L, HU P, et al. Probe type tfbg-excited spr fiber sensor for simultaneous measurement of multiple ocean parameters assisted by cfbg[J]. Optics Express, 2023, 31(3): 4229-4237.
[5] ZHAO Y, ZHAO J, ZHAO Q. High sensitivity seawater temperature sensor based on no-core optical fiber[J]. Optical Fiber Technology, 2020, 54: 102115.
[6] CULLUM J, STEVENS D P, JOSHI M M. Importance of ocean salinity for climate and habitability[J]. Proceedings of the National Academy of Sciences, 2016, 113(16): 4278-4283.
[7] GE M, LI Y, HAN Y, et al. High-sensitivity double-parameter sensor based on the fibre-tip fabry–pérot interferometer[J]. Journal of Modern Optics, 2017, 64(6): 596-600.
[8] SU H, ZHANG Y, MA K, et al. High-temperature sensor based on suspended-core microstructured optical fiber[J]. Optics Express, 2019, 27(15): 20156-20164.
[9] CAI L, LIU Y, HU S, et al. Optical fiber temperature sensor based on modal interference in multimode fiber lengthened by a short segment of polydimethylsiloxane[J]. Microwave and Optical Technology Letters, 2019, 61(6): 1656-1660.
[10] QIAN J-K, LV R-Q, WANG S-N, et al. High-sensitivity temperature sensor based on single-mode fiber for temperature-measurement application in the ocean[J]. Optical Engineering, 2018, 57(10): 107101.
[11] XIA F, ZHAO Y, ZHENG H-K, et al. Ultra-sensitive seawater temperature sensor using an fbg-cascaded microfiber mzi operating at dispersion turning point[J]. Optics & Laser Technology, 2020, 132: 106458.
[12] YU Y, BIAN Q, LU Y, et al. High sensitivity all optical fiber conductivity-temperature-depth (ctd) sensing based on an optical microfiber coupler (omc)[J]. Journal of Lightwave Technology, 2019, 37(11): 2739-2747.
[13] ZHOU L, YU Y, CAO L, et al. Fabrication and characterization of seawater temperature sensor with self-calibration based on optical microfiber coupler interferometer[J]. Applied Sciences, 2020, 10(17): 6018.
[14] ZHAI C, LI Y, WANG S, et al. Experimental research on temperature sensing of seawater based on three interferometers incorporated with bow tie fiber[J]. Photonic Sensors, 2023, 13(4): 230413.
[15] ZHANG D, WANG J, WANG Y, et al. A fast response temperature sensor based on fiber bragg grating[J]. Measurement Science and Technology, 2014, 25(7): 075105.
[16] AMEEN O F, YOUNUS M H, AZIZ M S, et al. Graphene diaphragm integrated fbg sensors for simultaneous measurement of water level and temperature[J]. Sensors and Actuators A: Physical, 2016, 252(1): 225-232.
[17] SHAO L-Y, LUO Y, ZHANG Z, et al. Sensitivity-enhanced temperature sensor with cascaded fiber optic sagnac interferometers based on vernier-effect[J]. Optics Communications, 2015, 336: 73-76.
[18] KONG L, ZHANG Y, ZHANG W, et al. Cylinder-type fiber-optic vernier probe based on cascaded fabry-perot interferometers with a controlled fsr ratio[J]. Applied Optics, 2018, 57(18): 5043-5047.
[19] PAN R, LIU M, BIAN Y, et al. High-sensitive temperature sensor with parallel pdms-filled fpis based on dual vernier effect[J]. Optics Communications, 2022, 518: 128284.
[20] LIAO H, PING L U, XIN F U, et al. Sensitivity amplification of fiber-optic in-line mach–zehnder interferometer sensors with modified vernier-effect[J]. Optics Express, 2017, 25(22): 26898-26909.
[21] YANG H, KONG L, LI L, et al. Enhanced-sensitive dual microfiber knot resonators based sensor with vernier effect for simultaneous measurement of refractive index and temperature[J]. Optik, 2022, 250: 168350.
[22] HOU L, ZHAO C, XU B, et al. Highly sensitive pdms-filled fabry–perot interferometer temperature sensor based on the vernier effect[J]. Applied Optics, 2019, 58(18): 4858-4865.
[23] SU H, ZHANG Y, ZHAO Y, et al. Parallel double-fpis temperature sensor based on suspended-core microstructured optical fiber[J]. IEEE Photonics Technology Letters, 2019, 31(24): 1905-1908.
[24] WANG Z, HUANG L, LIU C, et al. Sensitivity-enhanced fiber temperature sensor based on vernier effect and dual in-line mach–zehnder interferometers[J]. IEEE Sensors Journal, 2019, 19(18): 7983-7987.
[25] LIU F, ZHANG Y, MENG F, et al. Complex optical fiber sensor based on the vernier effect for temperature sensing[J]. Optical Fiber Technology, 2021, 61: 10424.
[26] WU K Y, ZUO C, ZHAO S Y, et al. Highly sensitive fiber-optic temperature sensor based on lyot filter cascaded with fabry-perot interferometer[J]. Optical Fiber Technology, 2023, 80: 103451.
[27] ZHAO X, WU X, ZUO C, et al. Sensitivity-enhanced temperature sensor by cascaded configuration of polarization mode interferometer and lyot filter based on vernier effect[J]. Optical Fiber Technology, 2022, 73: 103017.
[28] ZHANG W, WU X, ZUO C, et al. Highly sensitive temperature and strain sensor based on fiber sagnac interferometer with vernier effect[J]. Optics Communications, 2022, 506: 127543.
[29] SHI J, WANG Y, XU D, et al. Temperature sensor based on fiber ring laser with sagnac loop[J]. IEEE Photonics Technology Letters, 2016, 28(7): 794-797.
[30] CAI L, ZHAO Y, LI X-G. A fiber ring cavity laser sensor for refractive index and temperature measurement with core-offset modal interferometer as tunable filter[J]. Sensors and Actuators B: Chemical, 2017, 242: 673-678.
[31] MARTIN-VELA J A, SIERRA-HERNANDEZ J M, GALLEGOS-ARELLANO E, et al. Switchable and tunable multi-wavelength fiber laser based on a core-offset aluminum coated mach-zehnder interferometer[J]. Optics and Laser Technology, 2020, 125: 106039.
[32] MĄDRY M, ALWIS L, BINETTI L, et al. Simultaneous measurement of temperature and relative humidity using a dual-wavelength erbium-doped fiber ring laser sensor[J]. IEEE Sensors Journal, 2019, 19(20): 9215-9220.
[33] ZOU H, MA L, XIONG H, et al. Fiber ring laser sensor based on fabry–perot cavity interferometer for temperature sensing[J]. Laser Physics, 2018, 28(1): 015102.
[34] LIN W, ZHAO F, SHAO L Y, et al. Temperature sensor based on er-doped cascaded-peanut taper structure in-line interferometer in fiber ring laser[J]. IEEE Sensors Journal, 2021, 21(19): 21594-21599.
[35] LIN W, HU J, ZHAO F, et al. Adaptive fiber-ring lasers based on isopropanol filled microfiber coupler for high-sensitivity temperature sensing[J]. Micromachines 2022, 13(10): 1697.
[36] LIN W, LIU Y, SHAO L, et al. A fiber ring laser sensor with a side polished evanescent enhanced fiber for highly sensitive temperature measurement[J]. Micromachines 2021, 12(5): 586.
[37] YANG X, LU Y, LIU B, et al. Fiber ring laser temperature sensor based on liquid-filled photonic crystal fiber[J]. IEEE Sensors Journal, 2017, 17(21): 6948-6952.
[38] LIU H, HU D J J, SUN Q, et al. Specialty optical fibers for advanced sensing applications[J]. Opto-Electronic Science, 2023, 2(2): 220025.
[39] MILLARD R C, SEAVER G. An index of refraction algorithm for seawater over temperature, pressure, salinity, density, and wavelength[J]. Deep Sea Research Part A Oceanographic Research Papers, 1990, 37(12): 1909-1926.
[40] MALARDé D, WU Z Y, GROSSO P, et al. High-resolution and compact refractometer for salinity measurements[J]. Measurement Science and Technology, 2009, 20(1): 015204.
[41] MENG Q, DONG X, NI K, et al. Optical fiber laser salinity sensor based on multimode interference effect[J]. IEEE Sensors Journal, 2014, 14(6): 1813-1816.
[42] KHANIKAR T, PATHAK A K, SINGH V K. Reflectance-based no core fiber sensor with enhanced sensitivity for salinity detection[J]. Optik, 2018, 159: 1-8.
[43] XIE N, ZHANG H, LIU B, et al. In-line microfiber-assisted mach–zehnder interferometer for microfluidic highly sensitive measurement of salinity[J]. IEEE Sensors Journal, 2018, 18(21): 8767-8772.
[44] ASLAM MOLLAH M, YOUSUFALI M, RIFAT BIN ASIF FAYSAL M, et al. Highly sensitive photonic crystal fiber salinity sensor based on sagnac interferometer[J]. Results in Physics, 2020, 16: 103022.
[45] LI Y, WANG J, WANG S. Absolute salinity measurement based on microfiber coaxial mach-zehnder interferometer[J]. Journal of Coastal Research, 2020, 102: 194-201.
[46] LIN Z-T, ZHAO Y, LV R-Q, et al. High-sensitivity salinity sensor based on etched c-type micro-structured fiber sensing structure[J]. Sensors and Actuators A: Physical, 2022, 339: 113518.
[47] LI Z, LI L, ZHANG Y-N, et al. Highly-sensitive fiber-optic f-p salinity sensor based on vernier effect[J]. Optical Fiber Technology, 2022, 74: 103148.
[48] WANG L, GENG Y, LI X, et al. High-resolution optical fiber salinity sensor with self-referenced parallel fabry–perot fiber microcavity[J]. IEEE Sensors Journal, 2023, 23(1): 337-343.
[49] WANG S, WANG J, LI G, et al. Modeling optical microfiber loops for seawater sensing[J]. Applied Optics, 2012, 51(15): 3017-3023.
[50] WANG X, WANG J, WANG S S, et al. Fiber-optic salinity sensing with a panda-microfiber-based multimode interferometer[J]. Journal of Lightwave Technology, 2017, 35(23): 5086-5091.
[51] CHEN H, LUO B-B, WU D, et al. Optical vernier sensor based on cascaded tapered thin-core microfiber for highly sensitive refractive index sensing[J]. Applied Optics, 2022, 61(36): 10727-10734.
[52] LIAO Y, WANG J, WANG S, et al. Simultaneous measurement of seawater temperature and salinity based on microfiber mz interferometer with a knot resonator[J]. Journal of Lightwave Technology, 2016, 34(23): 5378-5384.
[53] ZHANG H, ZHANG J, YANG X, et al. Intensity-modulated fiber-optic salinity sensor by tapered microcavity mach–zehnder interferometer[J]. IEEE Sensors Journal, 2023, 23(19): 22517-22523.
[54] TIAN M, LU P, CHEN L, et al. All-solid d-shaped photonic fiber sensor based on surface plasmon resonance[J]. Optics Communications, 2012, 285(6): 1550-1554.
[55] WEI X, PENG Y, CHEN X, et al. Optimization of tapered optical fiber sensor based on spr for high sensitivity salinity measurement[J]. Optical Fiber Technology, 2023, 78: 103309.
[56] TSENG S-M, CHEN C-L. Side-polished fibers[J]. Applied Optics, 1992, 31(18): 3438-3447.
[57] YANG F, SUKHISHVILI S A, DU H, et al. Marine salinity sensing using long-period fiber gratings enabled by stimuli-responsive polyelectrolyte multilayers[J]. Sensors and Actuators B-Chemical, 2017, 253: 745-751.
[58] YANG F, HLUSHKO R, WU D, et al. Ocean salinity sensing using long-period fiber gratings functionalized with layer-by-layer hydrogels[J]. ACS Omega, 2019, 4(1): 2134-2141.
[59] WU S-H, JIN W, BI W-H, et al. A robust salinity sensor based on encapsulated long-period grating in microfiber[J]. Optoelectronics Letters, 2020, 16(6): 418-422.
[60] NGUYEN L V, VASILIEV M, ALAMEH K. Three-wave fiber fabry–pérot interferometer for simultaneous measurement of temperature and water salinity of seawater[J]. IEEE Photonics Technology Letters 2011, 23(7): 450-452.
[61] LIU T, WANG J, LIAO Y, et al. Splicing point tapered fiber mach-zehnder interferometer for simultaneous measurement of temperature and salinity in seawater[J]. Optics Express, 2019, 27(17): 23905-23918.
[62] YANG C, ZHANG S, SHI D, et al. Simultaneous measurement of salinity and temperature using a sagnac interferometer based on concatenated polarization-maintaining fiber tapers[J]. Applied Optics, 2021, 60(28): 8904-8909.
[63] NGUYEN L V, VASILIEV M, ALAMEH K. Three-wave fiber fabry–pérot interferometer for simultaneous measurement of temperature and water salinity of seawater[J]. IEEE Photonics Technology Letters, 2011, 23(7): 450-452.
[64] FLORES R, JANEIRO R, VIEGAS J. Optical fibre fabry-pérot interferometer based on inline microcavities for salinity and temperature sensing[J]. Scientific Reports, 2019, 9(1): 9556.
[65] WANG S, LIU T, WANG X, et al. Hybrid structure mach-zehnder interferometer based on silica and fluorinated polyimide microfibers for temperature or salinity sensing in seawater[J]. Measurement, 2019, 135: 527-536.
[66] SELOKAR T, GIRALDI M T R. All-fiber sensors for salinity and temperature simultaneous measurement[J]. Optical and Quantum Electronics, 2021, 53(1): 1-17.
[67] AKTER S, AHMED K, EL-NAGGAR S A, et al. Highly sensitive refractive index sensor for temperature and salinity measurement of seawater[J]. Optik, 2020, 216
[68] YAN J, ZHANG A, CHENG Q, et al. High sensitivity open-cavity mach-zehnder interferometer based on no-core fiber for seawater salinity measurement[J]. Optik, 2021, 227: 165954.
[69] YANG X, WANG Z, LIU Y, et al. Spr sensor based on exposed core micro-structured optical fiber for salinity detection with temperature self-compensation[J]. Optical Materials Express, 2021, 11(8)
[70] LIU Y, JING Z, LIU Q, et al. All-silica fiber-optic temperature-depth-salinity sensor based on cascaded efpis and fbg for deep sea exploration[J]. Optics Express, 2021, 29(15): 23953-23966.
[71] WANG J, ZHOU X, MIAO Y, et al. Integrated and compact fiber-optic conductivity-temperature-depth (ctd) sensor for marine detection[J]. Optics and Laser Technology, 2023, 164: 109523-109523.
[72] ZHAO J, ZHAO Y, CAI L. Hybrid fiber-optic sensor for seawater temperature and salinity simultaneous measurements[J]. Journal of Lightwave Technology, 2022, 40(3): 880-886.
[73] ZHAO Y, ZHAO J, PENG Y, et al. Simultaneous measurement of seawater salinity and temperature with composite fiber-optic interferometer[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-8.
[74] LIAO Y, YANG K, SHI X. Theoretical study on simultaneous measurement of seawater temperature and salinity based on dual fiber interferometers combined with nonlinear decoupling algorithm[J]. Measurement, 2023, 211: 112596.
[75] ZHAI C X, LI Y, WANG S S, et al. Study on high sensitivity measurement of seawater temperature based on bow tie fiber[J]. Optical Fiber Technology, 2023, 76: 103252.
[76] LIU S, YIN B, SANG G, et al. Underwater temperature and salinity fiber sensor based on semi-open cavity structure of asymmetric mzi[J]. IEEE Sensors Journal, 2023, 23(16): 18219-18233.
[77] LI P, CHEN Y, HU J, et al. Simultaneous measurement of salinity and temperature of seawater based on u-shaped tapered no-core fiber[J]. Infrared Physics & Technology, 2023, 130: 104617.
[78] ZHANG W, WU M, WANG X, et al. Temperature insensitive salinity sensor with u-shaped structure based on few-mode fiber[J]. Optical Fiber Technology, 2023, 76: 103218.
[79] LIU Y, LIN W, ZHAO F, et al. Dual-parameter fiber sensors for salinity and temperature measurement based on a tapered pmf incorporated with an fbg in sagnac loop[J]. IEEE Photonics journal, 2024, 16(1): 1-7.
[80] YAN Y, GU Z, WANG Y. Design and simulation of a cascaded-coated lpg–fbg sensor structure for simultaneous monitoring of ctd in ocean[J]. Journal of Optics, 2024, 53(1): 169-180.
[81] WU Q-L, ZHAO Y, SI-YU E, et al. Reflex optical fiber probe for simultaneous determination of seawater salinity and temperature by surface plasmon resonance[J]. Instrumentation Science and Technology, 2019, 47(4): 374-388.
[82] SIYU E, ZHANG Y N, HAN B, et al. Two-channel surface plasmon resonance sensor for simultaneous measurement of seawater salinity and temperature[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(9): 7191-7199.
[83] ZHANG S, PENG Y, WEI X, et al. High-sensitivity biconical optical fiber spr salinity sensor with a compact size by fiber grinding technique[J]. Measurement, 2022, 204: 112156.
[84] ZHANG S-Q, ZHAO Y, PENG Y, et al. High-sensitivity optical fiber spr sensor with cascaded biconical fiber and hetero-core structure for simultaneous measurement of seawater salinity and temperature[J]. Optics & Laser Technology, 2024, 170: 110275.
[85] LI H, QIAN X, ZHENG W, et al. Theoretical and experimental characterization of a salinity and temperature sensor employing optical fiber surface plasmon resonance (spr)[J]. Instrumentation Science & Technology, 2020, 48(6): 601-615.
[86] TENG C, LI X, MIN R, et al. Low crosstalk plastic optical fiber based dual-parameter spr sensor with stepped side-polished structure and differentiated au-film thickness[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 73: 1-7.
[87] LUO D, MA J, IBRAHIM Z, et al. Etched fbg coated with polyimide for simultaneous detection the salinity and temperature[J]. Optics Communications, 2017, 392: 218-222.
[88] SUN M-Y, JIANG H-T, SHI B, et al. Development of fbg salinity sensor coated with lamellar polyimide and experimental study on salinity measurement of gravel aquifer[J]. Measurement, 2019, 140: 526-537.
[89] GUO J, SUN M, FANG J, et al. High-sensitivity seawater salinity sensing with cladding etched fiber bragg grating technology[J]. IEEE Sensors Journal, 2023, 23(13): 14182-14192.
[90] FU G, WANG K, LIU C, et al. Study on the sensing characteristics of salinity-temperature-depth based on sns-fbg cascade[J]. Optics Communications, 2024, 552: 130092.
[91] KIM H K, KIM S K, PARK H G, et al. Polarimetric fiber laser sensors[J]. Optics Letters, 1993, 18(4): 317-319.
[92] MAIMAN T H. Stimulated optical radiation in ruby[J]. Nature, 1960, 187(4736): 493-494.
[93] SNITZER E L. Optical maser action of nd + 3 in a barium crown glass[J]. Physical Review Letters, 1961, 7(12): 444-446.
[94] MEARS R J, REEKIE L, POOLE S B, et al. Low-threshold tunable cw and q-switched fibre laser operating at 1.55 μm[J]. Electronics Letters, 1986, 22: 159-160.
[95] FU X, MA S, ZHANG R, et al. Refractive index insensitive triple cladding quartz specialty fiber temperature sensor with d-type microcavity structure[J]. IEEE Sensors Journal, 2021, 21(21): 24098-24105.
[96] FERREIRA M S, COELHO L, SCHUSTER K, et al. Fabry-perot cavity based on a diaphragm-free hollow-core silica tube[J]. Optics Letters, 2011, 36(20): 4029-4031.
[97] LIAO C R, HU T Y, WANG D N. Optical fiber fabry-perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing[J]. Optics Express, 2012, 20(20): 22813-22818.
[98] ZHANG S, ZHAO Z, CHEN N, et al. Temperature characteristics of silicon core optical fiber fabry–perot interferometer[J]. Optics Letters, 2015, 40(7): 1362-1365.
[99] CHIN K K, SUN Y L, FENG G, et al. Fabry-perot diaphragm fiber-optic sensor[J]. Applied Optics, 2007, 46(31): 7614-7619.
[100]ZENGLING R, HE X, RAO Y, et al. Fiber-optic microstructure sensors: A review[J]. Photonic Sensors, 2021, 11(2): 227-261.
[101]HALPAAP D, TIANA-ALSINA J, VILASECA M, et al. Experimental characterization of the speckle pattern at the output of a multimode optical fiber[J]. Optics Express, 2019, 27 20: 27737-27744.
[102]EFENDIOGLU H S. A review of fiber-optic modal modulated sensors: Specklegram and modal power distribution sensing[J]. IEEE Sensors Journal, 2017, 17(7): 2055-2064.
[103]CAI L, WANG M, ZHAO Y. Investigation on refractive index sensing characteristics based on multimode fiber specklegram[J]. Measurement Science and Technology, 2023, 34(1): 015125.
[104]PORAT A, ANDRESEN E R, RIGNEAULT H, et al. Widefield lensless imaging through a fiber bundle via speckle correlations[J]. Optics Express, 2016, 24(15): 16835-16855.
[105]ROELANDT S, MEURET Y, CRAGGS G, et al. Standardized speckle measurement method matched to human speckle perception in laser projection systems[J]. Optics Express, 2012, 20(8): 8770-8783.
[106]FAN X, CHEN H, LIU C, et al. Thermo-optic tuning in an optical fiber ring laser with a nematic liquid crystal film-embedded sagnac interferometer[J]. IEEE Sensors Journal, 2023, 23(15): 16944-16952.
[107]TONG Z, WANG Y, ZHANG W, et al. Optical fiber magnetic field sensor based on multi-mode fiber and core-offset structure[J]. Journal of Modern Optics, 2016, 64(12): 1129-1133.
[108]BANDYOPADHYAY S, SHAO L, SMIETANA M, et al. Employing higher order cladding modes of fiber bragg grating for analysis of refractive index change in volume and at the surface[J]. IEEE Photonics journal, 2020, 12(1): 1-13.
[109]MUMTAZ F, DAI Y, ASHRAF M A. Inter-cross de-modulated refractive index and temperature sensor by an etched multi-core fiber of a mzi structure[J]. Journal of Lightwave Technology, 2020, 38(24): 6948-6953.
[110]WU D, ZHU T, CHIANG K S, et al. All single-mode fiber mach–zehnder interferometer based on two peanut-shape structures[J]. Journal of Lightwave Technology, 2012, 30(5): 805-810.
[111]WU D, ZHU T, LIU M. A high temperature sensor based on a peanut-shape structure michelson interferometer[J]. Optics Communications, 2012, 285(24): 5085-5088.
[112]LI Y, WANG L, CHEN Y, et al. High-performance fiber sensor via mach-zehnder interferometer based on immersing exposed-core microstructure fiber in oriented liquid crystals[J]. Optics Express, 2020, 28(3): 3576-3586.
[113]LIU B N, LUO J X, LIU S, et al. A probe-shaped sensor with fbg and fiber-tip bubble for pressure and temperature sensing[J]. Photonic Sensors, 2021, 11(4): 411-417.
[114]WU H, ZHANG S, ZHANG C. Interference visibility of the wide-field-of-view polarization interference imaging spectrometer (wpiis)[J]. Optics Communications, 2014, 333: 99-104.
[115]YU F, XUE P, ZHAO X, et al. Investigation of an in-line fiber mach–zehnder interferometer based on peanut-shape structure for refractive index sensing[J]. Optics Communications, 2019, 435: 173-177.
[116]LU Y, SHEN C, ZHONG C, et al. Refractive index and temperature sensor based on double-pass m–z interferometer with an fbg[J]. IEEE Photonics Technology Letters, 2014, 26(11): 1124-1127.
[117]DU H, SUN X, HU Y, et al. High sensitive refractive index sensor based on cladding etched photonic crystal fiber mach-zehnder interferometer[J]. Photonic Sensors, 2019, 9(2): 126-134.
[118]ZHAO X, DONG M, ZHANG Y, et al. Simultaneous measurement of strain, temperature and refractive index based on a fiber bragg grating and an in-line mach–zehnder interferometer[J]. Optics Communications, 2019, 435: 61-67.
[119]WANG P F, BRAMBILLA G, DING M, et al. Enhanced refractometer based on periodically tapered small core singlemode fiber[J]. IEEE Sensors Journal, 2013, 13(1): 180-185.
[120]ZHAO Y, CAI L, LI X G. In-fiber mach-zehnder interferometer based on up-taper fiber structure with er3+doped fiber ring laser[J]. Journal of Lightwave Technology, 2016, 34(15): 3475-3481.
[121]LIU W, WU X, ZHANG G, et al. Thin fiber-based mach-zehnder interferometric sensor for measurement of liquid level, refractive index, temperature, and axial strain[J]. Applied Optics, 2020, 59(6): 1786-1792.
[122]HAN X, LIU C, JIANG S, et al. Up-down taper based in-fiber mach-zehnder interferometer for liquid refractive index sensing[J]. Sensors, 2019, 19(24): 5440.
[123]MINATO H, KAKUI Y, NISHIMOTO A, et al. Remote refractive index difference meter for salinity sensor[J]. IEEE Transactions on Instrumentation and Measurement, 1989, 38(2): 608-612.
[124]CONG J, ZHANG X, CHEN K, et al. Fiber optic bragg grating sensor based on hydrogels for measuring salinity[J]. Sensors and Actuators B: Chemical, 2002, 87(3): 487-490.
[125]LU M, ZHOU H, PENG W, et al. Dithiol self-assembled monolayer based electrochemical surface plasmon resonance optical fiber sensor for selective heavy metal ions detection[J]. Journal of Lightwave Technology, 2021, 39(12): 4034-4040.
[126]GHOSH S, DISSANAYAKE K, ASOKAN S, et al. Lead (pb2+) ion sensor development using optical fiber gratings and nanocomposite materials[J]. Sensors and Actuators B: Chemical, 2022, 364: 131818.
[127]HU Y H, JIANG C, ZHOU M, et al. High-sensitivity fiber temperature and refractive index sensing with nonadiabatic fiber taper[J]. Journal of Optical Technology, 2018, 85(4): 233-237.
[128]GOMES A, BARTELT H, FRAZãO O. Optical vernier effect: Recent advances and developments[J]. Laser & Photonics Reviews, 2021, 15(7): 2000588.
[129]ZHANG P, TANG M, GAO F, et al. Cascaded fiber-optic fabry-perot interferometers with vernier effect for highly sensitive measurement of axial strain and magnetic field[J]. Optics Express, 2014, 22(16): 19581-19588.
[130]CHEN Y, ZHAO L, HAO S, et al. Advanced fiber sensors based on the vernier effect[J]. Sensors, 2022, 22(7): 2694.
[131]GOMES A D, FERREIRA M S, BIERLICH J, et al. Optical harmonic vernier effect: A new tool for high performance interferometric fiber sensors[J]. Sensors, 2019, 19(24): 5431.
[132]WU Y, ZHANG Y, WU J, et al. Fiber-optic hybrid-structured fabry–perot interferometer based on large lateral offset splicing for simultaneous measurement of strain and temperature[J]. Journal of Lightwave Technology, 2017, 35(19): 4311-4315.
[133]LI J, ZHANG M, WAN M, et al. Ultrasensitive refractive index sensor based on enhanced vernier effect through cascaded fiber core-offset pairs[J]. Optics Express, 2020, 28(3): 4145-4155.
[134]ZHAO Y, ZHAO J, WANG X-X, et al. Femtosecond laser-inscribed fiber-optic sensor for seawater salinity and temperature measurements[J]. Sensors and Actuators B: Chemical 2022, 353: 131134.
[135]PAN R, YANG W, LI L, et al. A high-sensitive fiber-optic fabry-perot sensor with parallel polymer-air cavities based on vernier effect for simultaneous measurement of pressure and temperature[J]. IEEE Sensors Journal, 2021, 21(19): 21577-21585.
[136]QUAN M, TIAN J, YAO Y. Ultra-high sensitivity fabry-perot interferometer gas refractive index fiber sensor based on photonic crystal fiber and vernier effect[J]. Optics Letters, 2015, 40(21): 4891-4894.
[137]FANG X, ZHANG W, LI J, et al. Signal processing assisted vernier effect in a single interferometer for sensitivity magnification[J]. Optics Express, 2021, 29(8): 11570-11581.
[138]CABRAL T D, FUJIWARA E, WARREN-SMITH S C, et al. Multimode exposed core fiber specklegram sensor[J]. Optics Letters, 2020, 45(12): 3212-3215.
[139]LEAL-JUNIOR A G, FRIZERA A, MARQUES C, et al. Optical fiber specklegram sensors for mechanical measurements: A review[J]. IEEE Sensors Journal, 2020, 20(2): 569-576.
[140]GUAN Y, YANG J, YIN B, et al. Study of the sensitivity limit of vernier effect and a novel tracking method of vernier envelope[J]. IEEE Photonics Technology Letters 2023, 35(2): 77-80.
[141]WANG T, LI Y, TAO J, et al. Deep-learning-assisted fiber bragg grating interrogation by random speckles[J]. Optics Letters, 2021, 46(22): 5711-5714.
[142]ZHANG W, LI H, ZHU L, et al. Dual-parameter optical fiber probe based on a three-beam fabry-perot interferometer[J]. IEEE Sensors Journal, 2021, 21(4): 4635-4643.
[143]HU H. Demodulation of fiber specklegram curvature sensor using deep learning[J]. Photonics, 2023, 10(2): 169-179.
[144]ARíSTIZABAL V H, VéLEZ F J, RUEDA E, et al. Numerical modeling of fiber specklegram sensors by using finite element method (fem)[J]. Optics Express, 2016, 24(24): 27225-27238.
[145]XU K. Silicon electro-optic micro-modulator fabricated in standard cmos technology as components for all silicon monolithic integrated optoelectronic systems[J]. Journal of Micromechanics and Microengineering, 2021, 31(5): 054001.
[146]GUO P, LIU H, ZHOU Z, et al. Spatially modulated fiber speckle for high-sensitivity refractive index sensing[J]. Sensors 2023, 23(15): 6814.
[147]SONG H, SUN F, SUN Y, et al. The optimization of multimode fiber speckle sensor for microvibration[J]. International Journal of Optics, 2023, 2023: 3356849.
[148]CHEN W, FENG F, CHEN D, et al. Precision non-contact displacement sensor based on the near-field characteristics of fiber specklegrams[J]. Sensors and Actuators A: Physical, 2019, 296(1): 1-6.
[149]CHOI H, MUDHANA G, PARK K S, et al. Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index[J]. Optics Express, 2010, 18(1): 141-149.
[150]LEAL-JUNIOR A G, CAMPOS V, DíAZ C, et al. A machine learning approach for simultaneous measurement of magnetic field position and intensity with fiber bragg grating and magnetorheological fluid[J]. Optical Fiber Technology, 2020, 56(4): 102184.
[151]NGUYEN L V, NGUYEN C C, CARNEIRO G, et al. Sensing in the presence of strong noise by deep learning of dynamic multimode fiber interference[J]. Photonics Research, 2021, 9(4): B109-B118.
[152]LI B, LIANG Y, XIE Z, et al. High-performance multi-parameter fiber sensor by grating-enhanced mach–zehnder interference[J]. Optics Letters, 2022, 47(20): 5365-5368.
[153]XU K, HUANG L, ZHANG Z, et al. Light emission from a poly-silicon device with carrier injection engineering[J]. Materials Science and Engineering: B, 2018, 231: 28-31.
[154]DURAIBABU D B, LEEN G, TOAL D, et al. Underwater depth and temperature sensing based on fiber optic technology for marine and fresh water applications[J]. Sensors, 2017, 17(6): 1228.
[155]BUDINSKI V, DONLAGIC D. Fiber-optic sensors for measurements of torsion, twist and rotation: A review[J]. Sensors, 2017, 17(3): 443.
[156]FU J, XU Y, XU M, et al. Highly sensitive humidity sensor based on tapered dual side-hole fiber[J]. Optik, 2022, 261: 169183.
[157]孙崇峰, 李智忠, 胡永明,等. 边孔光纤双折射的分析及其测量[J]. 传感器与微系统, 2006, 25(2): 73-75.
[158]XIE H M, DABKIEWICZ P, ULRICH R, et al. Side-hole fiber for fiber-optic pressure sensing[J]. Optics Letters, 1986, 11(5): 333-335.
[159]李昌锋, 梁小红, 周述文,等. 边孔高双折射光纤的研究与制造[J]. 网络电信, 2010, 12(3): 40-41.
[160]BO W, LIU B, LIU J, et al. Fiber ring laser based on side-polished fiber mzi for enhancing refractive index and torsion measurement[J]. IEEE Sensors Journal, 2022, 22(8): 7779-7784.
[161]RAN Y, LONG J, XU Z, et al. Harmonic optical microfiber bragg grating immunosensor for the accelerative test of cardiac biomarker (ctn-i)[J]. Biosensors and Bioelectronics, 2021, 179: 113081.
[162]GE Q, ZHU J, CUI Y, et al. Fiber optic temperature sensor utilizing thin pmf based sagnac loop[J]. Optics Communications 2022, 502: 127417.
[163]SUN L P, YUAN Z, HUANG T, et al. Ultrasensitive sensing in air based on sagnac interferometer working at group birefringence turning point[J]. Optics Express, 2019, 27(21): 29501-29509.
[164]ZHANG F, YUE Y, HU J. Highly sensitive temperature sensor based on multicore fiber-polarization maintaining fiber loop mirror[J]. IEEE Sensors Journal, 2020, 20(3): 1315-1321.
[165]LIANG H, WANG J, ZHANG L, et al. Review of optical fiber sensors for temperature, salinity, and pressure sensing and measurement in seawater[J]. Sensors (Basel), 2022, 22(14): 5363.
[166]LIN W, SHAO L-Y, VAI M I, et al. In-fiber mach–zehnder interferometer sensor based on er doped fiber peanut structure in fiber ring laser[J]. Journal of Lightwave Technology, 2021, 39(10): 3350-3357.
[167]QIAN Y, ZHAO Y, WU Q-L, et al. Review of salinity measurement technology based on optical fiber sensor[J]. Sensors and Actuators B: Chemical, 2018, 260: 86-105.
[168]LIN WEIHAO, SUN SIMING, HU JIE, et al. Research and application of sensing technology based on fiber ring laser[J]. Semiconductor optoelectronics, 2022, 43(4): 10.
[169]JAUREGUI-VAZQUEZ D, ALVAREZ-CHAVEZ J A, LOZANO-HERNANDEZ T, et al. Fiber laser sensor configurations for refractive index, temperature and strain: A review[J]. Photonics, 2023, 10(5): 495.
[170]GUO T, LIU F, GUAN B-O, et al. Tilted fiber grating mechanical and biochemical sensors[J]. Optics and Laser Technology, 2016, 78: 19-33.
[171]CHEN X, XU J, ZHANG X, et al. Wide range refractive index measurement using a multi-angle tilted fiber bragg grating[J]. IEEE Photon Technol Lett, 2017, 29(9): 719-722.
[172]WONG A C L, CHUNG W H, TAM H-Y, et al. Single tilted bragg reflector fiber laser for simultaneous sensing of refractive index and temperature[J]. Optics Express, 2011, 19(2): 409-414.
[173]GU L, GAO H, HU H. Demonstration of a learning-empowered fiber specklegram sensor based on focused ion beam milling for refractive index sensing[J]. Nanomaterials, 2023, 13(4): 768.
[174]REDDING B, CAO H. Using a multimode fiber as a high-resolution, low-loss spectrometer[J]. Optics Letters, 2012, 37(16): 3384-3386.
[175]ARı F, ŞERBETçI H, NAVRUZ İ. Tapered fiber optic refractive index sensor using speckle pattern imaging[J]. Optical Fiber Technology, 2023, 79: 103366.
[176]YANG X, BANDYOPADHYAY S, SHAO L-Y, et al. Side-polished dbr fiber laser with enhanced sensitivity for axial force and refractive index measurement[J]. IEEE Photonics journal, 2019, 11(3): 1-10.
[177]SHIN J C, KWAK W G, HAN Y G. Temperature-insensitive microfiber mach–zehnder interferometer for absolute strain measurement[J]. Journal of Lightwave Technology, 2016, 34(19): 4579-4583.
[178]LI E. Temperature compensation of multimode-interference-based fiber devices[J]. Optics Letters, 2007, 32(14): 2064-2066.
[179]ZAIN M A, KARIMI-ALAVIJEH H, MOALLEM P, et al. A high-sensitive fiber specklegram refractive index sensor with microfiber adjustable sensing area[J]. IEEE Sensors Journal, 2023, 23(14): 15570-15577.
[180]FUJIWARA E, SILVA L E D, CABRAL T D, et al. Optical fiber specklegram chemical sensor based on a concatenated multimode fiber structure[J]. Journal of Lightwave Technology, 2019, 37(19): 5041-5047.
[181]LIN W, LIU H, YANG C, et al. Fibre-optic salinity sensor based on multimode fibre specklegram analysis[J]. Measurement Science and Technology, 2021, 32(11): 115110.
[182]CAUCHETEUR C, MEGRET P. Demodulation technique for weakly tilted fiber bragg grating refractometer[J]. IEEE Photonics Technology Letters, 2005, 17(12): 2703-2705.
修改评论