[1] XIAOJUN F. A Variable-Loop Sagnac Interferometer for Distributed Impact Sensing[J]. Journal of Lightwave Technology, 1996, 14(10): 2250-2254.
[2] SPAMMER S J, SWART P L, CHTCHERBAKOV A A. Merged Sagnac-Michelson Interferometer for Distributed Disturbance Detection[J]. Journal of Lightwave Technology, 1997, 15(6): 972-976.
[3] CHTCHERBAKOV A A, SWART P L, SPAMMER S J. Mach–Zehnder and Modified Sagnac-Distributed Fiber-Optic Impact Sensor[J]. Applied Optics, 1998, 37(16): 3432-3437.
[4] RUSSELL S J, BRADY K R C, DAKIN J P. Real-Time Location of Multiple Time-Varying Strain Disturbances, Acting over a 40-Km Fiber Section, Using a Novel Dual-Sagnac Interferometer[J]. Journal of Lightwave Technology, 2001, 19(2): 205-213.
[5] KIZLIK B. Fibre Optic Distributed Sensor in Mach-Zehnder Interferometer Configuration[C]. Modern Problems of Radio Engineering, Telecommunications and Computer Science, 2002: 128-130.
[6] KONDRAT M, SZUSTAKOWSKI M, PAŁKA N, et al. A Sagnac-Michelson Fibre Optic Interferometer: Signal Processing for Disturbance Localization[J]. Opto-Electronics Review, 2007, 15(3): 127-132.
[7] SUN Q, LIU D, WANG J, LIU H. Distributed Fiber-Optic Vibration Sensor Using a Ring Mach-Zehnder Interferometer[J]. Optics Communications, 2008, 281(6): 1538-1544.
[8] HONG X, WU J, ZUO C, et al. Dual Michelson Interferometers for Distributed Vibration Detection[J]. Applied Optics, 2011, 50(22): 4333-4338.
[9] CHEN Q, LIU T, LIU K, et al. An Improved Positioning Algorithm with High Precision for Dual Mach–Zehnder Interferometry Disturbance Sensing System[J]. Journal of Lightwave Technology, 2015, 33(10): 1954-1960.
[10] UKIL A, BRAENDLE H, KRIPPNER P. Distributed Temperature Sensing: Review of Technology and Applications[J]. IEEE Sensors Journal, 2012, 12(5): 885-892.
[11] KURASHIMA T, HORIGUCHI T, IZUMITA H, et al. Brillouin Optical-Fiber Time Domain Reflectometry[J]. IEICE Transactions on Communications, 1993, 76(4): 382-390.
[12] SOTO M A, RAMíREZ J A, THéVENAZ L. Intensifying the Response of Distributed Optical Fibre Sensors Using 2d and 3d Image Restoration[J]. Nature Communications, 2016, 7(1): 10870.
[13] BAO X Y, CHEN L. Recent Progress in Distributed Fiber Optic Sensors[J]. Sensors, 2012, 12(7): 8601-8639.
[14] LIM CHEN NING I, SAVA P. High-Resolution Multi-Component Distributed Acoustic Sensing[J]. Geophysical Prospecting, 2018, 66(6): 1111-1122.
[15] NING I L C, SAVA P. Multicomponent Distributed Acoustic Sensing: Concept and Theory[J]. Geophysics, 2018, 83(2): 1-8.
[16] AJO-FRANKLIN J B, DOU S, LINDSEY N J, et al. Distributed Acoustic Sensing Using Dark Fiber for near-Surface Characterization and Broadband Seismic Event Detection[J]. Scientific Reports, 2019, 9(1): 1328.
[17] LINDSEY N J, DAWE T C, AJO-FRANKLIN J B. Illuminating Seafloor Faults and Ocean Dynamics with Dark Fiber Distributed Acoustic Sensing[J]. Science, 2019, 366(6469): 1103.
[18] WILLIAMS E F, FERNANDEZ-RUIZ M R, MAGALHAES R, et al. Distributed Sensing of Microseisms and Teleseisms with Submarine Dark Fibers[J]. Nature Communications, 2019, 10(1): 5778.
[19] ROHWETTER P, EISERMANN R, KREBBER K. Distributed Acoustic Sensing: Towards Partial Discharge Monitoring[C]. 24th International Conference on Optical Fibre Sensors (OFS), 2015, 9634: 125-128.
[20] CHE Q, WEN H, LI X, et al. Partial Discharge Recognition Based on Optical Fiber Distributed Acoustic Sensing and a Convolutional Neural Network[J]. IEEE Access, 2019, 7: 101758-101764.
[21] PAN W, ZHAO K, XIE C, et al. Distributed Online Monitoring Method and Application of Cable Partial Discharge Based on Φ-OTDR[J]. IEEE Access, 2019, 7: 144444-144450.
[22] CHEN Z, ZHANG L, LIU H, et al. 3d Printing Technique-Improved Phase-Sensitive OTDR for Breakdown Discharge Detection of Gas-Insulated Switchgear[J]. Sensors, 2020, 20: 1045.
[23] WANG Z, ZHENG H, LI L, et al. Practical Multi-Class Event Classification Approach for Distributed Vibration Sensing Using Deep Dual Path Network[J]. Optics Express, 2019, 27(17): 23682-23692.
[24] JIA H, LOU S, LIANG S, SHENG X. Event Identification by F-Elm Model for Φ-OTDR Fiber-Optic Distributed Disturbance Sensor[J]. IEEE Sensors Journal, 2020, 20(3): 1297-1305.
[25] LI Z, ZHANG J, WANG M, et al. An Anti-Noise Φ-OTDR Based Distributed Acoustic Sensing System for High-Speed Railway Intrusion Detection[J]. Laser Physics, 2020, 30(8): 085103.
[26] LI Z, ZHANG J, WANG M, et al. Fiber Distributed Acoustic Sensing Using Convolutional Long Short-Term Memory Network: A Field Test on High-Speed Railway Intrusion Detection[J]. Optics Express, 2020, 28(3): 2925-2938.
[27] XIN L, LI Z, GUI X, et al. Surface Intrusion Event Identification for Subway Tunnels Using Ultra-Weak Fbg Array Based Fiber Sensing[J]. Optics Express, 2020, 28(5): 6794-6805.
[28] PENG F, DUAN N, RAO Y, LI J. Real-Time Position and Speed Monitoring of Trains Using Phase-Sensitive OTDR[J]. IEEE Photonics Technology Letters, 2014, 26(20): 2055-2057.
[29] PAPP A, WIESMEYR C, LITZENBERGER M, et al. A Real-Time Algorithm for Train Position Monitoring Using Optical Time-Domain Reflectometry[C]. IEEE International Conference on Intelligent Rail Transportation (ICIRT), 2016: 89-93.
[30] HUANG M-F, SALEMI M, CHEN Y, et al. First Field Trial of Distributed Fiber Optical Sensing and High-Speed Communication over an Operational Telecom Network[J]. Journal of Lightwave Technology, 2020, 38(1): 75-81.
[31] KOWARIK S, HUSSELS M T, CHRUSCICKI S, et al. Fiber Optic Train Monitoring with Distributed Acoustic Sensing: Conventional and Neural Network Data Analysis[J]. Sensors, 2020, 20(2): 450.
[32] WIESMEYR C, LITZENBERGER M, WASER M, et al. Real-Time Train Tracking from Distributed Acoustic Sensing Data[J]. Applied Sciences-Basel, 2020, 10(2): 448.
[33] SHAO L, LIU S, BANDYOPADHYAY S, et al. Data-Driven Distributed Optical Vibration Sensors: A Review[J]. IEEE Sensors Journal, 2020, 20(12): 6224-6239.
[34] RAMAN C V, KRISHNAN K S. A New Type of Secondary Radiation[J]. Nature, 1928, 121(3048): 501-502.
[35] BOLOGNINI G, HARTOG A. Raman-Based Fibre Sensors: Trends and Applications[J]. Optical Fiber Technology, 2013, 19(6): 678-688.
[36] DAKIN J, PRATT D, BIBBY G, ROSS J. Distributed Optical Fibre Raman Temperature Sensor Using a Semiconductor Light Source and Detector[J]. Electronics Letters, 1985, 13(21): 569-570.
[37] HARTOG A, LEACH A, GOLD M. Distributed Temperature Sensing in Solid-Core Fibres[J]. Electronics Letters, 1985, 23(21): 1061-1062.
[38] JONGHAN P, BOLOGNINI G, DUCKEY L, et al. Raman-Based Distributed Temperature Sensor with Simplex Coding and Link Optimization[J]. IEEE Photonics Technology Letters, 2006, 18(17): 1879-1881.
[39] HWANG D, YOON D-J, KWON I-B, et al. Novel Auto-Correction Method in a Fiber-Optic Distributed-Temperature Sensor Using Reflected Anti-Stokes Raman Scattering[J]. Optics Express, 2010, 18(10): 9747-9754.
[40] TANNER M G, DYER S D, BAEK B, et al. High-Resolution Single-Mode Fiber-Optic Distributed Raman Sensor for Absolute Temperature Measurement Using Superconducting Nanowire Single-Photon Detectorsa)[J]. Applied Physics Letters, 2011, 99(20): 201110.
[41] DYER S D, TANNER M G, BAEK B, et al. Analysis of a Distributed Fiber-Optic Temperature Sensor Using Single-Photon Detectors[J]. Optics Express, 2012, 20(4): 3456-3466.
[42] BRILLOUIN L. Diffusion De La Lumière Et Des Rayons X Par Un Corps Transparent Homogène[C]. Annales de physique, 1922, 9(17): 88-122.
[43] IPPEN E, STOLEN R. Stimulated Brillouin Scattering in Optical Fibers[J]. Applied Physics Letters, 1972, 21(11): 539-541.
[44] CULVERHOUSE D, FARAHI F, PANNELL C, JACKSON D. Potential of Stimulated Brillouin Scattering as Sensing Mechanism for Distributed Temperature Sensors[J]. Electronics Letters, 1989, 14(25): 913-915.
[45] HORIGUCHI T, KURASHIMA T, TATEDA M. Tensile Strain Dependence of Brillouin Frequency Shift in Silica Optical Fibers[J]. IEEE Photonics Technology Letters, 1989, 1(5): 107-108.
[46] GARUS D, KREBBER K, SCHLIEP F, GOGOLLA T. Distributed Sensing Technique Based on Brillouin Optical-Fiber Frequency-Domain Analysis[J]. Optics Letters, 1996, 21(17): 1402-1404.
[47] BERNINI R, MINARDO A, ZENI L. Distributed Sensing at Centimeter-Scale Spatial Resolution by BOFDA: Measurements and Signal Processing[J]. IEEE Photonics Journal, 2012, 4(1): 48-56.
[48] MINARDO A, BERNINI R, RUIZ-LOMBERA R, et al. Proposal of Brillouin Optical Frequency-Domain Reflectometry (BOFDR)[J]. Optics Express, 2016, 24(26): 29994-30001.
[49] MIZUNO Y, ZOU W, HE Z, HOTATE K. Proposal of Brillouin Optical Correlation-Domain Reflectometry (BOCDR)[J]. Optics Express, 2008, 16(16): 12148-12153.
[50] COHEN R, LONDON Y, ANTMAN Y, ZADOK A. Brillouin Optical Correlation Domain Analysis with 4 Millimeter Resolution Based on Amplified Spontaneous Emission[J]. Optics Express, 2014, 22(10): 12070-12078.
[51] LONDON Y, ANTMAN Y, PRETER E, et al. Brillouin Optical Correlation Domain Analysis Addressing 440 000 Resolution Points[J]. Journal of Lightwave Technology, 2016, 34(19): 4421-4429.
[52] 张旭苹, 张益昕, 王亮, 等. 分布式光纤传感技术研究和应用的现状及未来[J]. 光学学报, 2024, 44(01): 11-73.
[53] STRUTT J W. Xv. On the Light from the Sky, Its Polarization and Colour[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1871, 41(271): 107-120.
[54] STRUTT J W. Lviii. On the Scattering of Light by Small Particles[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1871, 41(275): 447-454.
[55] RAYLEIGH L. X. On the Electromagnetic Theory of Light[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1881, 12(73): 81-101.
[56] RAYLEIGH L. Xxxiv. On the Transmission of Light through an Atmosphere Containing Small Particles in Suspension, and on the Origin of the Blue of the Sky[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1899, 47(287): 375-384.
[57] CHRISTIANSEN P L, SORENSEN M P, SCOTT A. Nonlinear Science at the Dawn of the 21st Century[M]. Springer Science & Business Media, 2000: 195-209.
[58] BARNOSKI M, JENSEN S. Fiber Waveguides: A Novel Technique for Investigating Attenuation Characteristics[J]. Applied Optics, 1976, 15(9): 2112-2115.
[59] BARNOSKI M K, ROURKE M D, JENSEN S M, MELVILLE R T. Optical Time Domain Reflectometer[J]. Applied Optics, 1977, 16(9): 2375-2379.
[60] AOYAMA K, NAKAGAWA K, ITOH T. Optical Time Domain Reflectometry in a Single-Mode Fiber[J]. IEEE Journal of Quantum Electronics, 1981, 17(6): 862-868.
[61] HARTOG A. A Distributed Temperature Sensor Based on Liquid-Core Optical Fibers[J]. Journal of Lightwave Technology, 1983, 1(3): 498-509.
[62] NAZARATHY M, NEWTON S A, GIFFARD R P, et al. Real-Time Long Range Complementary Correlation Optical Time Domain Reflectometer[J]. Journal of Lightwave Technology, 1989, 7(1): 24-38.
[63] JONES M D. Using Simplex Codes to Improve OTDR Sensitivity[J]. IEEE Photonics Technology Letters, 1993, 5(7): 822-824.
[64] BLANCHARD P, DUBARD J, DUCOS L, THAUVIN R. Simulation Method of Reflectance Measurement Error Using the OTDR[J]. IEEE Photonics Technology Letters, 1998, 10(5): 705-706.
[65] EICKHOFF W, ULRICH R. Optical Frequency Domain Reflectometry in Single‐Mode Fiber[J]. Applied Physics Letters, 1981, 39(9): 693-695.
[66] HUA P, DING Z, LIU K, et al. Distributed Optical Fiber Biosensor Based on Optical Frequency Domain Reflectometry[J]. Biosensors and Bioelectronics, 2023, 228: 115184.
[67] MONET F, SEFATI S, LORRE P, et al. High-Resolution Optical Fiber Shape Sensing of Continuum Robots: A Comparative Study[C]. 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020: 8877-8883.
[68] ROGERS A. Polarisation Optical Time Domain Reflectometry[J]. Electronics Letters, 1980, 13(16): 489-490.
[69] ROGERS A J. Polarization-Optical Time Domain Reflectometry: A Technique for the Measurement of Field Distributions[J]. Applied Optics, 1981, 20(6): 1060-1074.
[70] ZHANG Z, BAO X. Distributed Optical Fiber Vibration Sensor Based on Spectrum Analysis of Polarization-OTDR System[J]. Optics Express, 2008, 16(14): 10240-10247.
[71] LINZE N, TIHON P, VERLINDEN O, et al. Development of a Multi-Point Polarization-Based Vibration Sensor[J]. Optics Express, 2013, 21(5): 5606-5624.
[72] WU H, LIU J, LU L, et al. Multi-Point Disturbance Detection and High-Precision Positioning of Polarization-Sensitive Optical Time-Domain Reflectometry[J]. Journal of Lightwave Technology, 2016, 34(23): 5371-5377.
[73] WANG X, WANG C, TANG M, et al. Multiplexed Polarization OTDR System with High Dop and Ability of Multi-Event Detection[J]. Applied Optics, 2017, 56(13): 3709-3713.
[74] PENG F, WANG Z-N, RAO Y-J, JIA X-H. 106km Fully-Distributed Fiber-Optic Fence Based on P-OTDR with 2nd-Order Raman Amplification[C]. Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, 2013: JW2A.22.
[75] WANG X, YAN Z, WANG F, et al. SNR Enhanced Distributed Vibration Fiber Sensing System Employing Polarization OTDR and Ultraweak Fbgs[J]. IEEE Photonics Journal, 2015, 7(1): 1-11.
[76] CAO C, WANG F, PAN Y, et al. Suppression of Signal Fading with Multi-Wavelength Laser in Polarization OTDR[J]. IEEE Photonics Technology Letters, 2017, 29(21): 1824-1827.
[77] TAYLOR H F, LEE C E. Apparatus and Method for Fiber Optic Intrusion Sensing: U.S., 5194847[P]. 1993-3-16.
[78] CHOI K N, JUAREZ J C, TAYLOR H F. Distributed Fiber Optic Pressure/Seismic Sensor for Low-Cost Monitoring of Long Perimeters[C]. Unattended Ground Sensor Technologies and Applications V, 2003, 5090: 134-141.
[79] JUAREZ J C, MAIER E W, CHOI K N, TAYLOR H F. Distributed Fiber-Optic Intrusion Sensor System[J]. Journal of Lightwave Technology, 2005, 23(6): 2081.
[80] JUAREZ J C, TAYLOR H F. Polarization Discrimination in a Phase-Sensitive Optical Time-Domain Reflectometer Intrusion-Sensor System[J]. Optics Letters, 2005, 30(24): 3284-3286.
[81] LU Y L, ZHU T, CHEN L A, BAO X Y. Distributed Vibration Sensor Based on Coherent Detection of Phase-OTDR[J]. Journal of Lightwave Technology, 2010, 28(22): 3243-3249.
[82] PAN Z Q, LIANG K Z, YE Q, et al. Phase-Sensitive OTDR System Based on Digital Coherent Detection[C]. Asia Communications and Photonics Conference and Exhibition (ACP), 2011: 1-6.
[83] CHOI K N, TAYLOR H F. Spectrally Stable Er-Fiber Laser for Application in Phase-Sensitive Optical Time-Domain Reflectometry[J]. IEEE Photonics Technology Letters, 2003, 15(3): 386-388.
[84] PENG F, WU H, JIA X-H, et al. Ultra-Long High-Sensitivity Φ-OTDR for High Spatial Resolution Intrusion Detection of Pipelines[J]. Optics Express, 2014, 22(11): 13804-13810.
[85] RAO Y-J, LUO J, RAN Z-L, et al. Long-Distance Fiber-Optic Φ-OTDR Intrusion Sensing System[C]. 20th International Conference on Optical Fibre Sensors, 2009, 7503: 250-253.
[86] MARTINS H F, MARTIN-LOPEZ S, FILOGRANO M L, et al. Comparison of the Use of First and Second-Order Raman Amplification to Assist a Phase-Sensitive Optical Time Domain Reflectometer in Distributed Vibration Sensing over 125 Km[C]. 23rd International Conference on Optical Fibre Sensors, 2014, 9157: 933-936.
[87] WANG Z N, LI J, FAN M Q, et al. Phase-Sensitive Optical Time-Domain Reflectometry with Brillouin Amplification[J]. Optics Letters, 2014, 39(15): 4313-4316.
[88] WANG Z N, ZENG J J, LI J, et al. Ultra-Long Phase-Sensitive OTDR with Hybrid Distributed Amplification[J]. Optics Letters, 2014, 39(20): 5866-5869.
[89] TIAN X Z, DANG R, TAN D J, et al. 123 Km Φ-OTDR-OTDR System Based on Bidirectional Erbium-Doped Fiber Amplifier[C]. International Symposium on Optical Communication and Optical Fiber Sensors/ International Symposium on Optical Memories for Big Data Storage, 2016, 10158: 191-194.
[90] SHA Z, FENG H, SHI Y, et al. Phase-Sensitive OTDR with 75-Km Single-End Sensing Distance Based on Rp-Edf Amplification[J]. IEEE Photonics Technology Letters, 2017, 29(16): 1308-1311.
[91] SONG M, ZHU W, XIA Q, et al. 151-Km Single-End Phase-Sensitive Optical Time-Domain Reflectometer Assisted by Optical Repeater[J]. Optical Engineering, 2018, 57(2): 027104-027104.
[92] FAN C, LI H, ZHANG K, et al. 300 Km Ultralong Fiber Optic DAS System Based on Optimally Designed Bidirectional Edfa Relays[J]. Photonics Research, 2023, 11(6): 968-977.
[93] SHI Y, FENG H, ZENG Z. A Long Distance Phase-Sensitive Optical Time Domain Reflectometer with Simple Structure and High Locating Accuracy[J]. Sensors, 2015, 15(9): 21957-21970.
[94] UYAR F, ONAT T, UNAL C, et al. 94.8 Km-Range Direct Detection Fiber Optic Distributed Acoustic Sensor[C]. Conference on Lasers and Electro-Optics (CLEO), 2019: 1-2.
[95] ZUO W, ZHOU H, HONG X, QIAO Y. Phase-Sensitive Optical Time-Domain Reflectometry with Improved Signal-to-Noise Ratio and Quantization Noise Tolerance Using Power-Tunable Local Oscillator[J]. Optical Engineering, 2023, 62(6): 066106.
[96] PAN Z, LIANG K, ZHOU J, et al. Interference-Fading-Free Phase-Demodulated OTDR System[C]. 22nd International Conference on Optical Fiber Sensors (OFS), 2012, 8421: 418-421.
[97] WANG X, LU B, WANG Z, et al. Interference-Fading- Free Φ-OTDR Based on Differential Phase Shift Pulsing Technology[J]. IEEE Photonics Technology Letters, 2019, 31(1): 39-42.
[98] ZHANG J, ZHENG H, ZHU T, et al. Long Range Fading Free Phase-Sensitive Reflectometry Based on Multi-Tone Nlfm Pulse[C]. 26th International Conference on Optical Fiber Sensors, 2018: TuC3.
[99] ZABIHI M, CHEN Y, ZHOU T, et al. Continuous Fading Suppression Method for Φ-OTDR Systems Using Optimum Tracking over Multiple Probe Frequencies[J]. Journal of Lightwave Technology, 2019, 37(14): 3602-3610.
[100] WU Y, WANG Z, XIONG J, et al. Interference Fading Elimination with Single Rectangular Pulse in Φ-OTDR[J]. Journal of Lightwave Technology, 2019, 37(13): 3381-3387.
[101] WU Y, WANG Z, XIONG J, et al. Bipolar-Coding Φ-OTDR with Interference Fading Elimination and Frequency Drift Compensation[J]. Journal of Lightwave Technology, 2020, 38(21): 6121-6128.
[102] ALEKSEEV A E, VDOVENKO V S, GORSHKOV B G, et al. Fading Reduction in a Phase Optical Time-Domain Reflectometer with Multimode Sensitive Fiber[J]. Laser Physics, 2016, 26(9): 095101.
[103] ZHANG X, SUN Z, SHAN Y, et al. A High Performance Distributed Optical Fiber Sensor Based on Φ-OTDR for Dynamic Strain Measurement[J]. IEEE Photonics Journal, 2017, 9(3): 1-12.
[104] PANG F, HE M, LIU H, et al. A Fading-Discrimination Method for Distributed Vibration Sensor Using Coherent Detection of Φ-OTDR[J]. IEEE Photonics Technology Letters, 2016, 28(23): 2752-2755.
[105] QIN Z G, ZHU T, CHEN L, BAO X Y. High Sensitivity Distributed Vibration Sensor Based on Polarization-Maintaining Configurations of Phase-OTDR[J]. IEEE Photonics Technology Letters, 2011, 23(15): 1091-1093.
[106] REN M, LU P, CHEN L, BAO X. Theoretical and Experimental Analysis of Φ-OTDR Based on Polarization Diversity Detection[J]. IEEE Photonics Technology Letters, 2016, 28(6): 697-700.
[107] WANG F, LIU Y, WEI T, et al. Polarization Fading Elimination for Ultra-Weak Fbg Array-Based Φ-OTDR Using a Composite Double Probe Pulse Approach[J]. Optics Express, 2019, 27(15): 20468-20478.
[108] ZHU F, ZHANG X, XIA L, et al. Active Compensation Method for Light Source Frequency Drifting in Φ-OTDR Sensing System[J]. IEEE Photonics Technology Letters, 2015, 27(24): 2523-2526.
[109] ALEKSEEV A E, TEZADOV Y A, POTAPOV V T. Intensity Noise Limit in a Phase-Sensitive Optical Time-Domain Reflectometer with a Semiconductor Laser Source[J]. Laser Physics, 2017, 27(5): 055101.
[110] LI J, ZHANG Z, GAN J, et al. Influence of Laser Linewidth on Phase-OTDR System Based on Heterodyne Detection[J]. Journal of Lightwave Technology, 2019, 37(11): 2641-2647.
[111] 梁可桢, 潘政清, 周俊, 等. 一种基于相位敏感光时域反射计的多参量振动传感器[J]. 中国激光, 2012, 39(8): 805004.
[112] TU G, ZHANG X, ZHANG Y, et al. The Development of an Φ-OTDR System for Quantitative Vibration Measurement[J]. IEEE Photonics Technology Letters, 2015, 27(12): 1349-1352.
[113] YANG G, FAN X, WANG S, et al. Long-Range Distributed Vibration Sensing Based on Phase Extraction from Phase-Sensitive OTDR[J]. IEEE Photonics Journal, 2016, 8(3): 1-12.
[114] YUAN Q, WANG F, LIU T, et al. Compensating for Influence of Laser-Frequency-Drift in Phase-Sensitive OTDR with Twice Differential Method[J]. Optics Express, 2019, 27(3): 3664-3671.
[115] YUAN Q, WANG F, LIU T, et al. Using an Auxiliary Mach-Zehnder Interferometer to Compensate for the Influence of Laser-Frequency-Drift in Φ-OTDR[J]. IEEE Photonics Journal, 2019, 11(1): 1-9.
[116] ZHU T, XIAO X, HE Q, DIAO D. Enhancement of SNR and Spatial Resolution in Φ-OTDR System by Using Two-Dimensional Edge Detection Method[J]. Journal of Lightwave Technology, 2013, 31(17): 2851-2856.
[117] LI Q, ZHANG C, LI L, ZHONG X. Localization Mechanisms and Location Methods of the Disturbance Sensor Based on Phase-Sensitive OTDR[J]. Optik, 2014, 125(9): 2099-2103.
[118] HE H, SHAO L, LI H, et al. SNR Enhancement in Phase-Sensitive OTDR with Adaptive 2-D Bilateral Filtering Algorithm[J]. IEEE Photonics Journal, 2017, 9(3): 1-10.
[119] OLCER I, ONCU A. Adaptive Temporal Matched Filtering for Noise Suppression in Fiber Optic Distributed Acoustic Sensing[J]. Sensors, 2017, 17(6): 1288.
[120] QIN Z, CHEN H, CHANG J. Detection Performance Improvement of Distributed Vibration Sensor Based on Curvelet Denoising Method[J]. Sensors, 2017, 17(6): 1380.
[121] WU H, QIAN Y, ZHANG W, TANG C. Feature Extraction and Identification in Distributed Optical-Fiber Vibration Sensing System for Oil Pipeline Safety Monitoring[J]. Photonic Sensors, 2017, 7(4): 305-310.
[122] ZHANG X, CAO L, SHAN Y, et al. Performance Optimization for a Phase-Sensitive Optical Time-Domain Reflectometry Based on Multiscale Matched Filtering[J]. Optical Engineering, 2019, 58(5): 056114-056114.
[123] QU S, CHANG J, CONG Z, et al. Data Compression and SNR Enhancement with Compressive Sensing Method in Phase-Sensitive OTDR[J]. Optics Communications, 2019, 433: 97-103.
[124] ZHU T, HE Q, XIAO X, BAO X. Modulated Pulses Based Distributed Vibration Sensing with High Frequency Response and Spatial Resolution[J]. Optics Express, 2013, 21(3): 2953-2963.
[125] HE Q, ZHU T, XIAO X, et al. All Fiber Distributed Vibration Sensing Using Modulated Time-Difference Pulses[J]. IEEE Photonics Technology Letters, 2013, 25(20): 1955-1957.
[126] LIANG S, SHENG X, LOU S, et al. Combination of Phase-Sensitive OTDR and Michelson Interferometer for Nuisance Alarm Rate Reducing and Event Identification[J]. IEEE Photonics Journal, 2016, 8(2): 1-12.
[127] MA P, SUN Z, LIU K, et al. Distributed Fiber Optic Vibration Sensing with Wide Dynamic Range, High Frequency Response, and Multi-Points Accurate Location[J]. Optics and Laser Technology, 2020, 124: 105966.
[128] HE Q, ZHU T, ZHOU J, et al. Frequency Response Enhancement by Periodical Nonuniform Sampling in Distributed Sensing[J]. IEEE Photonics Technology Letters, 2015, 27(20): 2158-2161.
[129] ZHANG Y, XIA L, CAO C, et al. A Hybrid Single-End-Access Mzi and Φ-OTDR Vibration Sensing System with High Frequency Response[J]. Optics Communications, 2017, 382: 176-181.
[130] SHAN Y, DONG J, ZENG J, et al. A Broadband Distributed Vibration Sensing System Assisted by a Distributed Feedback Interferometer[J]. IEEE Photonics Journal, 2018, 10(1): 1-10.
[131] MA P, LIU K, SUN Z, et al. Distributed Single Fiber Optic Vibration Sensing with High Frequency Response and Multi-Points Accurate Location[J]. Optics and Lasers in Engineering, 2020, 129: 106060.
[132] SUN Z, LIU K, JIANG J, et al. Distributed Vibration Sensing with High Frequency Response by Using Wdm Based Integrated Scheme[J]. Journal of Physics D-Applied Physics, 2020, 53(15): 155106.
[133] YANG G, FAN X, LIU Q, HE Z. Frequency Response Enhancement of Direct-Detection Phase-Sensitive OTDR by Using Frequency Division Multiplexing[J]. Journal of Lightwave Technology, 2018, 36(4): 1197-1203.
[134] WU M, FAN X, ZHANG X, et al. Frequency Response Enhancement of Phase-Sensitive OTDR for Interrogating Weak Reflector Array by Using Ofdm and Vernier Effect[J]. Journal of Lightwave Technology, 2020, 38(17): 4874-4882.
[135] WU H T, ZHANG J D, SUN X F, et al. Frequency Response Enhancement for Long-Range Φ-OTDR System by Additive Random Sampling and Non-Linear Frequency Modulation[C]. 17th International Conference on Optical Communications and Networks (ICOCN), 2018, 11048: 890-895.
[136] DENG Y, LIU Q, HE Z. Distributed Fiber-Optic Acoustic Sensor for Sparse-Wideband Vibration Sensing with Time Delay Sampling[J]. IEEE Sensors Journal, 2021, 21(12): 13290-13295.
[137] HE Q, LIU R, TAN C, et al. The Detection of Non-Gaussian Vibrations with Improved Spatial Resolution and Signal-to-Noise Ratio in Distributed Sensing[J]. ArXiv, 2019, 1901: 05846.
[138] MASOUDI A, NEWSON T P. High Spatial Resolution Distributed Optical Fiber Dynamic Strain Sensor with Enhanced Frequency and Strain Resolution[J]. Optics Letters, 2017, 42(2): 290-293.
[139] FENG S, XU T, HUANG J, et al. Sub-Meter Spatial Resolution Phase-Sensitive Optical Time-Domain Reflectometry System Using Double Interferometers[J]. Applied Sciences-Basel, 2018, 8(10): 1899.
[140] LU B, PAN Z, WANG Z, et al. High Spatial Resolution Phase-Sensitive Optical Time Domain Reflectometer with a Frequency-Swept Pulse[J]. Optics Letters, 2017, 42(3): 391-394.
[141] LU B, WANG Z Y, ZHENG H R, et al. Pulse Compression Phase Sensitive Optical Time Domain Reflectometer with Sub-Meter Resolution[C]. 25th International Conference on Optical Fibre Sensors (OFS), 2017, 10323: 1-4.
[142] LU B, ZHENG H, WANG Z, et al. High Spatial Resolution Φ-OTDR with Long Sensing Distance[C]. 26th International Conference on Optical Fiber Sensors, 2018: ThE25.
[143] MARCON L, SOTO M A, SORIANO-AMAT M, et al. Boosting the Spatial Resolution in Chirped Pulse Φ-OTDR Using Sub-Band Processing[C]. 7th European Workshop on Optical Fibre Sensors (EWOFS), 2019, 11199: 295-298.
[144] UGALDE A, BECERRIL C, VILLASENOR A, et al. Noise Levels and Signals Observed on Submarine Fibers in the Canary Islands Using DAS[J]. Seismological Research Letters, 2022, 93(1): 351-363.
[145] PASTOR-GRAELLS J, MARTINS H F, GARCIA-RUIZ A, et al. Single-Shot Distributed Temperature and Strain Tracking Using Direct Detection Phase-Sensitive OTDR with Chirped Pulses[J]. Optics Express, 2016, 24(12): 13121-13133.
[146] SHAN Y Y, JI W B, WANG Q, et al. Performance Optimization for Phase-Sensitive OTDR Sensing System Based on Multi-Spatial Resolution Analysis[J]. Sensors, 2019, 19(1): 83.
[147] HE H, YAN L, QIAN H, et al. Enhanced Range of the Dynamic Strain Measurement in Phase-Sensitive OTDR with Tunable Sensitivity[J]. Optics Express, 2020, 28(1): 226-237.
[148] WU H, ZHOU B, ZHU K, et al. Pattern Recognition in Distributed Fiber-Optic Acoustic Sensor Using an Intensity and Phase Stacked Convolutional Neural Network with Data Augmentation[J]. Optics Express, 2021, 29(3): 3269-3283.
[149] FERNANDEZ-RUIZ M R, MARTINS H F, WILLIAMS E F, et al. Seismic Monitoring with Distributed Acoustic Sensing from the near-Surface to the Deep Oceans[J]. Journal of Lightwave Technology, 2022, 40(5): 1453-1463.
[150] WU H, LIU J, XU J, et al. A Comparative Study for Massive Data Compression in Long-Distance Distributed Optical Fiber Sensing Systems[C]. 5th Asia Pacific Optical Sensors Conference, 2015, 9655: 508-511.
[151] DONG B, POPESCU A, TRIBALDOS V R, et al. Real-Time and Post-Hoc Compression for Data from Distributed Acoustic Sensing[J]. Computers & Geosciences, 2022, 166: 105181.
[152] HULST H C, VAN DE HULST H C. Light Scattering by Small Particles[M]. Courier Corporation, 1981: 85-100.
[153] MASOUDI A, NEWSON T P. Contributed Review: Distributed Optical Fibre Dynamic Strain Sensing[J]. Review of Scientific Instruments, 2016, 87(1): 011501.
[154] WOJCIK A K. Signal Statistics of Phase Dependent Optical Time Domain Reflectometry[D]. Texas A&M University, 2007.
[155] 何海军. 基于Φ-OTDR的分布式光纤振动传感技术研究[D]. 西南交通大学, 2021.
[156] 张旭苹, 丁哲文, 洪瑞, 等. 相位敏感光时域反射分布式光纤传感技术[J]. 光学学报, 2021, 41(01): 100-114.
[157] IZUMITA H, KOYAMADA Y, FURUKAWA S, SANKAWA I. Stochastic Amplitude Fluctuation in Coherent OTDR and a New Technique for Its Reduction by Stimulating Synchronous Optical Frequency Hopping[J]. Journal of Lightwave Technology, 1997, 15(2): 267-278.
[158] 周俊, 潘政清, 叶青, 等. 基于多频率综合鉴别Φ-OTDR系统中干涉衰落假信号的相位解调技术[J]. 中国激光, 2013, 40(09): 119-124.
[159] 钱恒. 基于Φ-OTDR的分布式光纤传感动态应变解调技术研究[D]. 西南交通大学, 2024.
[160] WANG Z, ZHANG L, WANG S, et al. Coherent Φ-OTDR Based on I/Q Demodulation and Homodyne Detection[J]. Optics Express, 2016, 24(2): 853-858.
[161] HE X, XIE S, LIU F, et al. Multi-Event Waveform-Retrieved Distributed Optical Fiber Acoustic Sensor Using Dual-Pulse Heterodyne Phase-Sensitive OTDR[J]. Optics Letters, 2017, 42(3): 442-445.
[162] LIU S, SHAO L, YU F, et al. Quantitative Demodulation of Distributed Low-Frequency Vibration Based on Phase-Shifted Dual-Pulse Phase-Sensitive OTDR with Direct Detection[J]. Optics Express, 2022, 30(6): 10096-10109.
[163] LIU S, SHAO L, YU F-H, et al. Accelerating the Phase Demodulation Process for Heterodyne Φ-OTDR Using Spatial Phase Shifting[J]. Optics Letters, 2023, 48(4): 1048-1051.
[164] ORSUTI D, MARCON G, TUROLLA A, et al. DAS over Multimode Fibers with Reduced Fading by Coherent Averaging of Spatial Modes[J]. IEEE Photonics Technology Letters, 2023, 35(16): 866-869.
[165] LIOKUMOVICH L B, USHAKOV N A, KOTOV O I, et al. Fundamentals of Optical Fiber Sensing Schemes Based on Coherent Optical Time Domain Reflectometry: Signal Model under Static Fiber Conditions[J]. Journal of Lightwave Technology, 2015, 33(17): 3660-3671.
[166] CHEN Y, SAVVAIDIS A, FOMEL S, et al. Denoising of Distributed Acoustic Sensing Seismic Data Using an Integrated Framework[J]. Seismological Research Letters, 2022, 94(1): 457-472.
[167] VIENS L, PERTON M, SPICA Z J, et al. Understanding Surface Wave Modal Content for High-Resolution Imaging of Submarine Sediments with Distributed Acoustic Sensing[J]. Geophysical Journal International, 2022, 232(3): 1668-1683.
[168] CHEN Y, ZONG J, LIU C, et al. Offshore Subsurface Characterization Enabled by Fiber-Optic Distributed Acoustic Sensing (DAS): An East China Sea 3D VSP Survey Example[J]. Frontiers in Earth Science, 2023, 11: 1033456.
[169] LIEHR S, MUANENDA Y S, MüNZENBERGER S, KREBBER K. Relative Change Measurement of Physical Quantities Using Dual-Wavelength Coherent OTDR[J]. Optics Express, 2017, 25(2): 720-729.
[170] PENG Z Q, WEN H Q, JIAN J N, et al. Identifications and Classifications of Human Locomotion Using Rayleigh-Enhanced Distributed Fiber Acoustic Sensors with Deep Neural Networks[J]. Scientific Reports, 2020, 10(1): 21014.
[171] CHEN D, LIU Q, HE Z. Phase-Detection Distributed Fiber-Optic Vibration Sensor without Fading-Noise Based on Time-Gated Digital Ofdr[J]. Optics Express, 2017, 25(7): 8315-8325.
[172] HE H, SHAO L-Y, LI Z, et al. Self-Mixing Demodulation for Coherent Phase-Sensitive OTDR System[J]. Sensors, 2016, 16(5): 681.
[173] YE Z, ZHANG S, WAN A, et al. The Impact of Quantization Bits on Coherent Detection DAS[J]. Journal of Lightwave Technology, 2024: 1-8.
[174] MASOUDI A, BELAL M, NEWSON T P. A Distributed Optical Fibre Dynamic Strain Sensor Based on Phase-OTDR[J]. Measurement Science and Technology, 2013, 24(8): 085204.
[175] WAKISAKA Y, IIDA D, KOSHIKIYA Y, HONDA N. Sampling Rate Enhancement and Fading Suppression of Φ-OTDR with Frequency Division Multiplex Technique[J]. Journal of Lightwave Technology, 2022, 40(3): 822-836.
[176] JIANG F, LI H, ZHANG Z, et al. Undersampling for Fiber Distributed Acoustic Sensing Based on Coherent Phase-OTDR[J]. Optics Letters, 2019, 44(4): 911-914.
[177] HE H, YAN L, QIAN H, et al. Suppression of the Interference Fading in Phase-Sensitive OTDR with Phase-Shift Transform[J]. Journal of Lightwave Technology, 2021, 39(1): 295-302.
[178] LI H, FAN C, SHI Z, et al. Spatio-Temporal Joint Oversampling-Downsampling Technique for Ultra-High Resolution Fiber Optic Distributed Acoustic Sensing[J]. Optics Express, 2022, 30(16): 29639-29654.
[179] IP E, HUANG Y K, HUANG M F, et al. DAS over 1,007-Km Hybrid Link with 10-Tb/s DP-16QAM Co-Propagation Using Frequency-Diverse Chirped Pulses[J]. Journal of Lightwave Technology, 2023, 41(4): 1077-1086.
[180] ZHOU F, CAO Z, GE Q, et al. A Real-Time Phase Processing System for Phase Sensitive Optical Time Domain Reflectometer[J]. Review of Scientific Instruments, 2023, 94(1): 014710.
[181] ZHOU J, PAN Z, YE Q, et al. Characteristics and Explanations of Interference Fading of a Φ-OTDR with a Multi-Frequency Source[J]. Journal of Lightwave Technology, 2013, 31(17): 2947-2954.
[182] LI H, LIU T, FAN C, et al. Fading Suppression for Distributed Acoustic Sensing Assisted with Dual-Laser System and Differential-Vector-Sum Algorithm[J]. IEEE Sensors Journal, 2022, 22(10): 9417-9425.
[183] ZHANG J, WU H, ZHENG H, et al. 80 Km Fading Free Phase-Sensitive Reflectometry Based on Multi-Carrier Nlfm Pulse without Distributed Amplification[J]. Journal of Lightwave Technology, 2019, 37(18): 4748-4754.
[184] WAKISAKA Y, IIDA D, OSHIDA H, HONDA N. Fading Suppression of Φ-OTDR with the New Signal Processing Methodology of Complex Vectors across Time and Frequency Domains[J]. Journal of Lightwave Technology, 2021, 39(13): 4279-4293.
[185] QIAN H, LUO B, HE H, et al. Fading-Free Φ-OTDR Evaluation Based on the Statistical Analysis of Phase Hopping[J]. Applied Optics, 2022, 61(23): 6729-6735.
[186] LIN S T, WANG Z N, XIONG J, et al. Rayleigh Fading Suppression in One-Dimensional Optical Scatters[J]. IEEE Access, 2019, 7: 17125-17132.
[187] LU X, KREBBER K. Characterizing Detection Noise in Phase-Sensitive Optical Time Domain Reflectometry[J]. Optics Express, 2021, 29(12): 18791-18806.
[188] SORIANO-AMAT M, MARTINS H F, DURAN V, et al. Quadratic Phase Coding for SNR Improvement in Time-Expanded Phase-Sensitive OTDR[J]. Optics Letters, 2021, 46(17): 4406-4409.
修改评论