中文版 | English
题名

Φ-OTDR瑞利背向散射信号压缩存储与衰落噪声抑制技术研究

其他题名
Φ-OTDR RAYLEIGH BACKSCATTERING SIGNAL: COMPRESSED STORAGE AND FADING SUPPRESSION TECHNIQUES
姓名
姓名拼音
YU Feihong
学号
11930480
学位类型
博士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
邵理阳
导师单位
电子与电气工程系
论文答辩日期
2024-04-30
论文提交日期
2024-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

随着智能化时代的推进,传感器技术作为连接现实物理世界与数字世界桥梁,其重要性日益凸显。分布式光纤传感技术是光纤传感领域的重要分支,它利用普通光纤作为传感介质,实现全链路的连续有效监测。其中,基于瑞利散射的相位敏感光时域反射仪(Φ-OTDR)备受瞩目。该技术利用瑞利散射现象,实现高灵敏度的振动测量和声波信号采集。Φ-OTDR具有散射功率大、响应速度快、定位精度高等优势。结合传感光纤低损耗、轻量化、耐腐蚀以及电绝缘等优点,它特别适用于地质勘探、能源线缆监测、设施安全防护等领域。

Φ-OTDR系统在部署后长期运行时,面临着如何高效存储所产生的海量数据的挑战。与此同时,随着以大语言模型为代表的人工智能技术的迅猛发展,将这些技术应用到Φ-OTDR中以增强其对扰动的监测、识别及预警能力,正逐渐成为研究领域的一个显著趋势。然而,传统Φ-OTDR仅存储解调相位信号,特征单一,限制了模式识别等技术的应用。Φ-OTDR瑞利背向散射(RBS)信号可以提供丰富的传感信息。然而,原始RBS信号数据量庞大,直接存储并不现实。本论文以获取高压缩比、无传感盲区的RBS信号为目标进行了深入研究,并取得以下创新性成果:

(1)探究了RBS信号精度对Φ-OTDR系统性能的影响,并提出单比特Φ-OTDR系统的概念。实验发现低精度RBS信号在通过滤波器后可以恢复时域波形,并且当数据精度超过一定阈值时,RBS信号精度的进一步提升为系统性能带来的收益将急剧减少。这一发现为Φ-OTDR系统数据采集设备采样精度的选择提供了指导。特别地,单比特RBS信号的扰动信噪比(SNR)可达58.03 dB,应变分辨率为0.64 nε,该结果为单比特Φ-OTDR系统的应用奠定了基础。

(2)针对Φ-OTDR系统RBS信号数据量庞大问题,提出基于超低精度与降采样的RBS信号时域波形压缩存储技术。通过降采样减少单位时间内需存储的样本数量,再结合超低精度技术压缩每个样本所需存储空间,从两个维度同时降低数据量。相比于存储原始RBS信号,该方法压缩比高达80,对应98.75%的节省空间率。在多扰动实验中,压缩数据解调结果能准确定位所有振动源;在单扰动场景下,压缩数据解调扰动SNR虽然比原始数据低9.82 dB,但仍高达56.13 dB,表现出良好性能。

(3)针对RBS信号时域波形压缩存储技术会影响系统SNR的问题,提出基于编码提取频谱的数据存储技术。通过分析RBS信号提取频谱的统计特性,发现其取值概率为非均匀分布。引入哈夫曼算法对量化提取频谱进行编码压缩,获得19.61的压缩比,对应节省空间率94.88%。不同于时域波形压缩存储技术,编码提取频谱解调得到的扰动SNR仅比原始RBS信号结果低0.3 dB,这表明该方法对系统SNR几乎没有影响。

(4)相干衰落噪声是Φ-OTDR中一个不可避免的问题。上述时域波形和频谱数据的压缩存储技术均属于有损压缩,可能使衰落噪声变得难以抑制,进而产生传感盲区。针对该问题,提出4种集成衰落抑制算法。该算法利用频域分集、相位分集以及空间域同步合成技术,在不同域产生多组子信号后进行同步并合成,从而有效抑制合成信号中的衰落噪声。集成衰落抑制算法在常规数据、单比特降采样数据以及编码提取频谱数据中均进行了验证,实验结果显示,该算法成功消除了实验数据中的衰落噪声,从而有效地解决了传感盲区的问题。

本文针对高压缩比、无传感盲区RBS信号的研究,为深度结合人工智能技术的Φ-OTDR系统在地质勘探、能源线缆监测等领域的实用化和智能化发展提供了一种可能的解决方案与技术思路。

其他摘要

With the advancement of the intelligent era, sensing technology, as a bridge connecting the physical world with the digital world, has become increasingly significant. Distributed optical fiber sensing technology is an essential branch of optical fiber sensing, utilizing optical fibers as sensing media to achieve continuous and effective monitoring across the entire link. Notably, phase-sensitive optical time-domain reflectometry (Φ-OTDR) based on Rayleigh backscattering (RBS) light has garnered considerable attention. This technology exploits the Rayleigh scattering phenomenon to enable highly sensitive vibration measurements and acoustic signal acquisition. Φ-OTDR boasts advantages including high scattering power, rapid response, and precise positioning. Combined with the advantages of low loss, light weight, corrosion resistance and electrical insulation of sensing fiber, it is particularly well-suited for applications in geological exploration, energy cable monitoring, facility safety protection, and other related fields.

The challenge of storing vast amounts of sensing data poses a significant hurdle for the long-term monitoring Φ-OTDR. Meanwhile, the rapid development of artificial intelligence (AI) technologies and their application in Φ-OTDR to enhance its capabilities in disturbance monitoring, identification, and early warning have emerged as a prominent trend. However, conventional Φ-OTDR systems typically store demodulated phase traces with limited features, restricting the application of techniques like pattern recognition. Original RBS signal can provide rich sensing information. Nonetheless, the original RBS signal data volume is substantial, making direct storage impractical. This thesis delves into the acquisition of RBS signals with high compression ratio and no sensing dead zones, yielding the following innovative outcomes:

(1) We explore how the resolution of RBS signal impacts the system signal-to-noise ratio (SNR) and introduce the concept of a single-bit Φ-OTDR system. Through experiments, we discover that low-resolution RBS signal can regain its time-domain waveform after filtering. This revelation provides valuable guidance for selecting the data acquisition equipment in Φ-OTDR. Remarkably, the vibration SNR demodulated from single-bit RBS signal can achieve 58.03 dB, with a strain resolution of 0.64 nε. These results demonstrate the feasibility of the single-bit Φ-OTDR.

(2) To tackle the challenge of managing vast amounts of RBS signal data in Φ-OTDR system, we propose a time-domain waveform compressed storage solution that combines ultra-low resolution and undersampling techniques. This approach reduces the number of samples stored per second through undersampling, and further compresses the storage space required for each sample using ultra-low resolution technique. Compared to storing raw data, the proposed method boasts a compression ratio of up to 80, equating to a space saving ratio of 98.75%. In multi-vibration experiment, the demodulated results of compressed data can accurately locate all vibration sources. In single-vibration experiment, the vibration SNR of compressed data, while 9.82 dB lower than that of the original signal, still maintains a high value of 56.13 dB.

(3) A compression solution for RBS signal based on encoding the extracted spectrum data is also proposed. By analyzing the statistical properties of the extracted spectrum data from RBS signals, a non-uniform distribution in their value probabilities is observed. Based on this, the Huffman algorithm is introduced to encode the quantized spectrum data. A compression ratio of 19.61 is achieved in the experiment, corresponding to a space saving ratio of 94.88%. Unlike the time-domain waveform compression technique, the vibration SNR obtained from the encoded spectrum data is only 0.3 dB lower than that of the original signal, indicating that this method has almost no impact on the system SNR.

(4) Interference fading is an unavoidable issue in Φ-OTDR. The storage techniques mentioned above are both lossy compression methods, potentially complicating the suppression of fading noise. To address this issue, an integrated fading suppression algorithm set is proposed. The integrated algorithms combine frequency domain diversity, phase diversity, and synthesizing in spatial domain technique to eliminate the fading noise. Through experiments on conventional data, single-bit undersampled data, and encoded spectrum data, the performance of the integrated fading suppression algorithms are verified.

Overall, our research on RBS signal with high compression ratio and no sensing dead zones contributes to further promoting the practical and intelligent development of Φ-OTDR systems.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2024-06
参考文献列表

[1] XIAOJUN F. A Variable-Loop Sagnac Interferometer for Distributed Impact Sensing[J]. Journal of Lightwave Technology, 1996, 14(10): 2250-2254.
[2] SPAMMER S J, SWART P L, CHTCHERBAKOV A A. Merged Sagnac-Michelson Interferometer for Distributed Disturbance Detection[J]. Journal of Lightwave Technology, 1997, 15(6): 972-976.
[3] CHTCHERBAKOV A A, SWART P L, SPAMMER S J. Mach–Zehnder and Modified Sagnac-Distributed Fiber-Optic Impact Sensor[J]. Applied Optics, 1998, 37(16): 3432-3437.
[4] RUSSELL S J, BRADY K R C, DAKIN J P. Real-Time Location of Multiple Time-Varying Strain Disturbances, Acting over a 40-Km Fiber Section, Using a Novel Dual-Sagnac Interferometer[J]. Journal of Lightwave Technology, 2001, 19(2): 205-213.
[5] KIZLIK B. Fibre Optic Distributed Sensor in Mach-Zehnder Interferometer Configuration[C]. Modern Problems of Radio Engineering, Telecommunications and Computer Science, 2002: 128-130.
[6] KONDRAT M, SZUSTAKOWSKI M, PAŁKA N, et al. A Sagnac-Michelson Fibre Optic Interferometer: Signal Processing for Disturbance Localization[J]. Opto-Electronics Review, 2007, 15(3): 127-132.
[7] SUN Q, LIU D, WANG J, LIU H. Distributed Fiber-Optic Vibration Sensor Using a Ring Mach-Zehnder Interferometer[J]. Optics Communications, 2008, 281(6): 1538-1544.
[8] HONG X, WU J, ZUO C, et al. Dual Michelson Interferometers for Distributed Vibration Detection[J]. Applied Optics, 2011, 50(22): 4333-4338.
[9] CHEN Q, LIU T, LIU K, et al. An Improved Positioning Algorithm with High Precision for Dual Mach–Zehnder Interferometry Disturbance Sensing System[J]. Journal of Lightwave Technology, 2015, 33(10): 1954-1960.
[10] UKIL A, BRAENDLE H, KRIPPNER P. Distributed Temperature Sensing: Review of Technology and Applications[J]. IEEE Sensors Journal, 2012, 12(5): 885-892.
[11] KURASHIMA T, HORIGUCHI T, IZUMITA H, et al. Brillouin Optical-Fiber Time Domain Reflectometry[J]. IEICE Transactions on Communications, 1993, 76(4): 382-390.
[12] SOTO M A, RAMíREZ J A, THéVENAZ L. Intensifying the Response of Distributed Optical Fibre Sensors Using 2d and 3d Image Restoration[J]. Nature Communications, 2016, 7(1): 10870.
[13] BAO X Y, CHEN L. Recent Progress in Distributed Fiber Optic Sensors[J]. Sensors, 2012, 12(7): 8601-8639.
[14] LIM CHEN NING I, SAVA P. High-Resolution Multi-Component Distributed Acoustic Sensing[J]. Geophysical Prospecting, 2018, 66(6): 1111-1122.
[15] NING I L C, SAVA P. Multicomponent Distributed Acoustic Sensing: Concept and Theory[J]. Geophysics, 2018, 83(2): 1-8.
[16] AJO-FRANKLIN J B, DOU S, LINDSEY N J, et al. Distributed Acoustic Sensing Using Dark Fiber for near-Surface Characterization and Broadband Seismic Event Detection[J]. Scientific Reports, 2019, 9(1): 1328.
[17] LINDSEY N J, DAWE T C, AJO-FRANKLIN J B. Illuminating Seafloor Faults and Ocean Dynamics with Dark Fiber Distributed Acoustic Sensing[J]. Science, 2019, 366(6469): 1103.
[18] WILLIAMS E F, FERNANDEZ-RUIZ M R, MAGALHAES R, et al. Distributed Sensing of Microseisms and Teleseisms with Submarine Dark Fibers[J]. Nature Communications, 2019, 10(1): 5778.
[19] ROHWETTER P, EISERMANN R, KREBBER K. Distributed Acoustic Sensing: Towards Partial Discharge Monitoring[C]. 24th International Conference on Optical Fibre Sensors (OFS), 2015, 9634: 125-128.
[20] CHE Q, WEN H, LI X, et al. Partial Discharge Recognition Based on Optical Fiber Distributed Acoustic Sensing and a Convolutional Neural Network[J]. IEEE Access, 2019, 7: 101758-101764.
[21] PAN W, ZHAO K, XIE C, et al. Distributed Online Monitoring Method and Application of Cable Partial Discharge Based on Φ-OTDR[J]. IEEE Access, 2019, 7: 144444-144450.
[22] CHEN Z, ZHANG L, LIU H, et al. 3d Printing Technique-Improved Phase-Sensitive OTDR for Breakdown Discharge Detection of Gas-Insulated Switchgear[J]. Sensors, 2020, 20: 1045.
[23] WANG Z, ZHENG H, LI L, et al. Practical Multi-Class Event Classification Approach for Distributed Vibration Sensing Using Deep Dual Path Network[J]. Optics Express, 2019, 27(17): 23682-23692.
[24] JIA H, LOU S, LIANG S, SHENG X. Event Identification by F-Elm Model for Φ-OTDR Fiber-Optic Distributed Disturbance Sensor[J]. IEEE Sensors Journal, 2020, 20(3): 1297-1305.
[25] LI Z, ZHANG J, WANG M, et al. An Anti-Noise Φ-OTDR Based Distributed Acoustic Sensing System for High-Speed Railway Intrusion Detection[J]. Laser Physics, 2020, 30(8): 085103.
[26] LI Z, ZHANG J, WANG M, et al. Fiber Distributed Acoustic Sensing Using Convolutional Long Short-Term Memory Network: A Field Test on High-Speed Railway Intrusion Detection[J]. Optics Express, 2020, 28(3): 2925-2938.
[27] XIN L, LI Z, GUI X, et al. Surface Intrusion Event Identification for Subway Tunnels Using Ultra-Weak Fbg Array Based Fiber Sensing[J]. Optics Express, 2020, 28(5): 6794-6805.
[28] PENG F, DUAN N, RAO Y, LI J. Real-Time Position and Speed Monitoring of Trains Using Phase-Sensitive OTDR[J]. IEEE Photonics Technology Letters, 2014, 26(20): 2055-2057.
[29] PAPP A, WIESMEYR C, LITZENBERGER M, et al. A Real-Time Algorithm for Train Position Monitoring Using Optical Time-Domain Reflectometry[C]. IEEE International Conference on Intelligent Rail Transportation (ICIRT), 2016: 89-93.
[30] HUANG M-F, SALEMI M, CHEN Y, et al. First Field Trial of Distributed Fiber Optical Sensing and High-Speed Communication over an Operational Telecom Network[J]. Journal of Lightwave Technology, 2020, 38(1): 75-81.
[31] KOWARIK S, HUSSELS M T, CHRUSCICKI S, et al. Fiber Optic Train Monitoring with Distributed Acoustic Sensing: Conventional and Neural Network Data Analysis[J]. Sensors, 2020, 20(2): 450.
[32] WIESMEYR C, LITZENBERGER M, WASER M, et al. Real-Time Train Tracking from Distributed Acoustic Sensing Data[J]. Applied Sciences-Basel, 2020, 10(2): 448.
[33] SHAO L, LIU S, BANDYOPADHYAY S, et al. Data-Driven Distributed Optical Vibration Sensors: A Review[J]. IEEE Sensors Journal, 2020, 20(12): 6224-6239.
[34] RAMAN C V, KRISHNAN K S. A New Type of Secondary Radiation[J]. Nature, 1928, 121(3048): 501-502.
[35] BOLOGNINI G, HARTOG A. Raman-Based Fibre Sensors: Trends and Applications[J]. Optical Fiber Technology, 2013, 19(6): 678-688.
[36] DAKIN J, PRATT D, BIBBY G, ROSS J. Distributed Optical Fibre Raman Temperature Sensor Using a Semiconductor Light Source and Detector[J]. Electronics Letters, 1985, 13(21): 569-570.
[37] HARTOG A, LEACH A, GOLD M. Distributed Temperature Sensing in Solid-Core Fibres[J]. Electronics Letters, 1985, 23(21): 1061-1062.
[38] JONGHAN P, BOLOGNINI G, DUCKEY L, et al. Raman-Based Distributed Temperature Sensor with Simplex Coding and Link Optimization[J]. IEEE Photonics Technology Letters, 2006, 18(17): 1879-1881.
[39] HWANG D, YOON D-J, KWON I-B, et al. Novel Auto-Correction Method in a Fiber-Optic Distributed-Temperature Sensor Using Reflected Anti-Stokes Raman Scattering[J]. Optics Express, 2010, 18(10): 9747-9754.
[40] TANNER M G, DYER S D, BAEK B, et al. High-Resolution Single-Mode Fiber-Optic Distributed Raman Sensor for Absolute Temperature Measurement Using Superconducting Nanowire Single-Photon Detectorsa)[J]. Applied Physics Letters, 2011, 99(20): 201110.
[41] DYER S D, TANNER M G, BAEK B, et al. Analysis of a Distributed Fiber-Optic Temperature Sensor Using Single-Photon Detectors[J]. Optics Express, 2012, 20(4): 3456-3466.
[42] BRILLOUIN L. Diffusion De La Lumière Et Des Rayons X Par Un Corps Transparent Homogène[C]. Annales de physique, 1922, 9(17): 88-122.
[43] IPPEN E, STOLEN R. Stimulated Brillouin Scattering in Optical Fibers[J]. Applied Physics Letters, 1972, 21(11): 539-541.
[44] CULVERHOUSE D, FARAHI F, PANNELL C, JACKSON D. Potential of Stimulated Brillouin Scattering as Sensing Mechanism for Distributed Temperature Sensors[J]. Electronics Letters, 1989, 14(25): 913-915.
[45] HORIGUCHI T, KURASHIMA T, TATEDA M. Tensile Strain Dependence of Brillouin Frequency Shift in Silica Optical Fibers[J]. IEEE Photonics Technology Letters, 1989, 1(5): 107-108.
[46] GARUS D, KREBBER K, SCHLIEP F, GOGOLLA T. Distributed Sensing Technique Based on Brillouin Optical-Fiber Frequency-Domain Analysis[J]. Optics Letters, 1996, 21(17): 1402-1404.
[47] BERNINI R, MINARDO A, ZENI L. Distributed Sensing at Centimeter-Scale Spatial Resolution by BOFDA: Measurements and Signal Processing[J]. IEEE Photonics Journal, 2012, 4(1): 48-56.
[48] MINARDO A, BERNINI R, RUIZ-LOMBERA R, et al. Proposal of Brillouin Optical Frequency-Domain Reflectometry (BOFDR)[J]. Optics Express, 2016, 24(26): 29994-30001.
[49] MIZUNO Y, ZOU W, HE Z, HOTATE K. Proposal of Brillouin Optical Correlation-Domain Reflectometry (BOCDR)[J]. Optics Express, 2008, 16(16): 12148-12153.
[50] COHEN R, LONDON Y, ANTMAN Y, ZADOK A. Brillouin Optical Correlation Domain Analysis with 4 Millimeter Resolution Based on Amplified Spontaneous Emission[J]. Optics Express, 2014, 22(10): 12070-12078.
[51] LONDON Y, ANTMAN Y, PRETER E, et al. Brillouin Optical Correlation Domain Analysis Addressing 440 000 Resolution Points[J]. Journal of Lightwave Technology, 2016, 34(19): 4421-4429.
[52] 张旭苹, 张益昕, 王亮, 等. 分布式光纤传感技术研究和应用的现状及未来[J]. 光学学报, 2024, 44(01): 11-73.
[53] STRUTT J W. Xv. On the Light from the Sky, Its Polarization and Colour[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1871, 41(271): 107-120.
[54] STRUTT J W. Lviii. On the Scattering of Light by Small Particles[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1871, 41(275): 447-454.
[55] RAYLEIGH L. X. On the Electromagnetic Theory of Light[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1881, 12(73): 81-101.
[56] RAYLEIGH L. Xxxiv. On the Transmission of Light through an Atmosphere Containing Small Particles in Suspension, and on the Origin of the Blue of the Sky[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1899, 47(287): 375-384.
[57] CHRISTIANSEN P L, SORENSEN M P, SCOTT A. Nonlinear Science at the Dawn of the 21st Century[M]. Springer Science & Business Media, 2000: 195-209.
[58] BARNOSKI M, JENSEN S. Fiber Waveguides: A Novel Technique for Investigating Attenuation Characteristics[J]. Applied Optics, 1976, 15(9): 2112-2115.
[59] BARNOSKI M K, ROURKE M D, JENSEN S M, MELVILLE R T. Optical Time Domain Reflectometer[J]. Applied Optics, 1977, 16(9): 2375-2379.
[60] AOYAMA K, NAKAGAWA K, ITOH T. Optical Time Domain Reflectometry in a Single-Mode Fiber[J]. IEEE Journal of Quantum Electronics, 1981, 17(6): 862-868.
[61] HARTOG A. A Distributed Temperature Sensor Based on Liquid-Core Optical Fibers[J]. Journal of Lightwave Technology, 1983, 1(3): 498-509.
[62] NAZARATHY M, NEWTON S A, GIFFARD R P, et al. Real-Time Long Range Complementary Correlation Optical Time Domain Reflectometer[J]. Journal of Lightwave Technology, 1989, 7(1): 24-38.
[63] JONES M D. Using Simplex Codes to Improve OTDR Sensitivity[J]. IEEE Photonics Technology Letters, 1993, 5(7): 822-824.
[64] BLANCHARD P, DUBARD J, DUCOS L, THAUVIN R. Simulation Method of Reflectance Measurement Error Using the OTDR[J]. IEEE Photonics Technology Letters, 1998, 10(5): 705-706.
[65] EICKHOFF W, ULRICH R. Optical Frequency Domain Reflectometry in Single‐Mode Fiber[J]. Applied Physics Letters, 1981, 39(9): 693-695.
[66] HUA P, DING Z, LIU K, et al. Distributed Optical Fiber Biosensor Based on Optical Frequency Domain Reflectometry[J]. Biosensors and Bioelectronics, 2023, 228: 115184.
[67] MONET F, SEFATI S, LORRE P, et al. High-Resolution Optical Fiber Shape Sensing of Continuum Robots: A Comparative Study[C]. 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020: 8877-8883.
[68] ROGERS A. Polarisation Optical Time Domain Reflectometry[J]. Electronics Letters, 1980, 13(16): 489-490.
[69] ROGERS A J. Polarization-Optical Time Domain Reflectometry: A Technique for the Measurement of Field Distributions[J]. Applied Optics, 1981, 20(6): 1060-1074.
[70] ZHANG Z, BAO X. Distributed Optical Fiber Vibration Sensor Based on Spectrum Analysis of Polarization-OTDR System[J]. Optics Express, 2008, 16(14): 10240-10247.
[71] LINZE N, TIHON P, VERLINDEN O, et al. Development of a Multi-Point Polarization-Based Vibration Sensor[J]. Optics Express, 2013, 21(5): 5606-5624.
[72] WU H, LIU J, LU L, et al. Multi-Point Disturbance Detection and High-Precision Positioning of Polarization-Sensitive Optical Time-Domain Reflectometry[J]. Journal of Lightwave Technology, 2016, 34(23): 5371-5377.
[73] WANG X, WANG C, TANG M, et al. Multiplexed Polarization OTDR System with High Dop and Ability of Multi-Event Detection[J]. Applied Optics, 2017, 56(13): 3709-3713.
[74] PENG F, WANG Z-N, RAO Y-J, JIA X-H. 106km Fully-Distributed Fiber-Optic Fence Based on P-OTDR with 2nd-Order Raman Amplification[C]. Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, 2013: JW2A.22.
[75] WANG X, YAN Z, WANG F, et al. SNR Enhanced Distributed Vibration Fiber Sensing System Employing Polarization OTDR and Ultraweak Fbgs[J]. IEEE Photonics Journal, 2015, 7(1): 1-11.
[76] CAO C, WANG F, PAN Y, et al. Suppression of Signal Fading with Multi-Wavelength Laser in Polarization OTDR[J]. IEEE Photonics Technology Letters, 2017, 29(21): 1824-1827.
[77] TAYLOR H F, LEE C E. Apparatus and Method for Fiber Optic Intrusion Sensing: U.S., 5194847[P]. 1993-3-16.
[78] CHOI K N, JUAREZ J C, TAYLOR H F. Distributed Fiber Optic Pressure/Seismic Sensor for Low-Cost Monitoring of Long Perimeters[C]. Unattended Ground Sensor Technologies and Applications V, 2003, 5090: 134-141.
[79] JUAREZ J C, MAIER E W, CHOI K N, TAYLOR H F. Distributed Fiber-Optic Intrusion Sensor System[J]. Journal of Lightwave Technology, 2005, 23(6): 2081.
[80] JUAREZ J C, TAYLOR H F. Polarization Discrimination in a Phase-Sensitive Optical Time-Domain Reflectometer Intrusion-Sensor System[J]. Optics Letters, 2005, 30(24): 3284-3286.
[81] LU Y L, ZHU T, CHEN L A, BAO X Y. Distributed Vibration Sensor Based on Coherent Detection of Phase-OTDR[J]. Journal of Lightwave Technology, 2010, 28(22): 3243-3249.
[82] PAN Z Q, LIANG K Z, YE Q, et al. Phase-Sensitive OTDR System Based on Digital Coherent Detection[C]. Asia Communications and Photonics Conference and Exhibition (ACP), 2011: 1-6.
[83] CHOI K N, TAYLOR H F. Spectrally Stable Er-Fiber Laser for Application in Phase-Sensitive Optical Time-Domain Reflectometry[J]. IEEE Photonics Technology Letters, 2003, 15(3): 386-388.
[84] PENG F, WU H, JIA X-H, et al. Ultra-Long High-Sensitivity Φ-OTDR for High Spatial Resolution Intrusion Detection of Pipelines[J]. Optics Express, 2014, 22(11): 13804-13810.
[85] RAO Y-J, LUO J, RAN Z-L, et al. Long-Distance Fiber-Optic Φ-OTDR Intrusion Sensing System[C]. 20th International Conference on Optical Fibre Sensors, 2009, 7503: 250-253.
[86] MARTINS H F, MARTIN-LOPEZ S, FILOGRANO M L, et al. Comparison of the Use of First and Second-Order Raman Amplification to Assist a Phase-Sensitive Optical Time Domain Reflectometer in Distributed Vibration Sensing over 125 Km[C]. 23rd International Conference on Optical Fibre Sensors, 2014, 9157: 933-936.
[87] WANG Z N, LI J, FAN M Q, et al. Phase-Sensitive Optical Time-Domain Reflectometry with Brillouin Amplification[J]. Optics Letters, 2014, 39(15): 4313-4316.
[88] WANG Z N, ZENG J J, LI J, et al. Ultra-Long Phase-Sensitive OTDR with Hybrid Distributed Amplification[J]. Optics Letters, 2014, 39(20): 5866-5869.
[89] TIAN X Z, DANG R, TAN D J, et al. 123 Km Φ-OTDR-OTDR System Based on Bidirectional Erbium-Doped Fiber Amplifier[C]. International Symposium on Optical Communication and Optical Fiber Sensors/ International Symposium on Optical Memories for Big Data Storage, 2016, 10158: 191-194.
[90] SHA Z, FENG H, SHI Y, et al. Phase-Sensitive OTDR with 75-Km Single-End Sensing Distance Based on Rp-Edf Amplification[J]. IEEE Photonics Technology Letters, 2017, 29(16): 1308-1311.
[91] SONG M, ZHU W, XIA Q, et al. 151-Km Single-End Phase-Sensitive Optical Time-Domain Reflectometer Assisted by Optical Repeater[J]. Optical Engineering, 2018, 57(2): 027104-027104.
[92] FAN C, LI H, ZHANG K, et al. 300 Km Ultralong Fiber Optic DAS System Based on Optimally Designed Bidirectional Edfa Relays[J]. Photonics Research, 2023, 11(6): 968-977.
[93] SHI Y, FENG H, ZENG Z. A Long Distance Phase-Sensitive Optical Time Domain Reflectometer with Simple Structure and High Locating Accuracy[J]. Sensors, 2015, 15(9): 21957-21970.
[94] UYAR F, ONAT T, UNAL C, et al. 94.8 Km-Range Direct Detection Fiber Optic Distributed Acoustic Sensor[C]. Conference on Lasers and Electro-Optics (CLEO), 2019: 1-2.
[95] ZUO W, ZHOU H, HONG X, QIAO Y. Phase-Sensitive Optical Time-Domain Reflectometry with Improved Signal-to-Noise Ratio and Quantization Noise Tolerance Using Power-Tunable Local Oscillator[J]. Optical Engineering, 2023, 62(6): 066106.
[96] PAN Z, LIANG K, ZHOU J, et al. Interference-Fading-Free Phase-Demodulated OTDR System[C]. 22nd International Conference on Optical Fiber Sensors (OFS), 2012, 8421: 418-421.
[97] WANG X, LU B, WANG Z, et al. Interference-Fading- Free Φ-OTDR Based on Differential Phase Shift Pulsing Technology[J]. IEEE Photonics Technology Letters, 2019, 31(1): 39-42.
[98] ZHANG J, ZHENG H, ZHU T, et al. Long Range Fading Free Phase-Sensitive Reflectometry Based on Multi-Tone Nlfm Pulse[C]. 26th International Conference on Optical Fiber Sensors, 2018: TuC3.
[99] ZABIHI M, CHEN Y, ZHOU T, et al. Continuous Fading Suppression Method for Φ-OTDR Systems Using Optimum Tracking over Multiple Probe Frequencies[J]. Journal of Lightwave Technology, 2019, 37(14): 3602-3610.
[100] WU Y, WANG Z, XIONG J, et al. Interference Fading Elimination with Single Rectangular Pulse in Φ-OTDR[J]. Journal of Lightwave Technology, 2019, 37(13): 3381-3387.
[101] WU Y, WANG Z, XIONG J, et al. Bipolar-Coding Φ-OTDR with Interference Fading Elimination and Frequency Drift Compensation[J]. Journal of Lightwave Technology, 2020, 38(21): 6121-6128.
[102] ALEKSEEV A E, VDOVENKO V S, GORSHKOV B G, et al. Fading Reduction in a Phase Optical Time-Domain Reflectometer with Multimode Sensitive Fiber[J]. Laser Physics, 2016, 26(9): 095101.
[103] ZHANG X, SUN Z, SHAN Y, et al. A High Performance Distributed Optical Fiber Sensor Based on Φ-OTDR for Dynamic Strain Measurement[J]. IEEE Photonics Journal, 2017, 9(3): 1-12.
[104] PANG F, HE M, LIU H, et al. A Fading-Discrimination Method for Distributed Vibration Sensor Using Coherent Detection of Φ-OTDR[J]. IEEE Photonics Technology Letters, 2016, 28(23): 2752-2755.
[105] QIN Z G, ZHU T, CHEN L, BAO X Y. High Sensitivity Distributed Vibration Sensor Based on Polarization-Maintaining Configurations of Phase-OTDR[J]. IEEE Photonics Technology Letters, 2011, 23(15): 1091-1093.
[106] REN M, LU P, CHEN L, BAO X. Theoretical and Experimental Analysis of Φ-OTDR Based on Polarization Diversity Detection[J]. IEEE Photonics Technology Letters, 2016, 28(6): 697-700.
[107] WANG F, LIU Y, WEI T, et al. Polarization Fading Elimination for Ultra-Weak Fbg Array-Based Φ-OTDR Using a Composite Double Probe Pulse Approach[J]. Optics Express, 2019, 27(15): 20468-20478.
[108] ZHU F, ZHANG X, XIA L, et al. Active Compensation Method for Light Source Frequency Drifting in Φ-OTDR Sensing System[J]. IEEE Photonics Technology Letters, 2015, 27(24): 2523-2526.
[109] ALEKSEEV A E, TEZADOV Y A, POTAPOV V T. Intensity Noise Limit in a Phase-Sensitive Optical Time-Domain Reflectometer with a Semiconductor Laser Source[J]. Laser Physics, 2017, 27(5): 055101.
[110] LI J, ZHANG Z, GAN J, et al. Influence of Laser Linewidth on Phase-OTDR System Based on Heterodyne Detection[J]. Journal of Lightwave Technology, 2019, 37(11): 2641-2647.
[111] 梁可桢, 潘政清, 周俊, 等. 一种基于相位敏感光时域反射计的多参量振动传感器[J]. 中国激光, 2012, 39(8): 805004.
[112] TU G, ZHANG X, ZHANG Y, et al. The Development of an Φ-OTDR System for Quantitative Vibration Measurement[J]. IEEE Photonics Technology Letters, 2015, 27(12): 1349-1352.
[113] YANG G, FAN X, WANG S, et al. Long-Range Distributed Vibration Sensing Based on Phase Extraction from Phase-Sensitive OTDR[J]. IEEE Photonics Journal, 2016, 8(3): 1-12.
[114] YUAN Q, WANG F, LIU T, et al. Compensating for Influence of Laser-Frequency-Drift in Phase-Sensitive OTDR with Twice Differential Method[J]. Optics Express, 2019, 27(3): 3664-3671.
[115] YUAN Q, WANG F, LIU T, et al. Using an Auxiliary Mach-Zehnder Interferometer to Compensate for the Influence of Laser-Frequency-Drift in Φ-OTDR[J]. IEEE Photonics Journal, 2019, 11(1): 1-9.
[116] ZHU T, XIAO X, HE Q, DIAO D. Enhancement of SNR and Spatial Resolution in Φ-OTDR System by Using Two-Dimensional Edge Detection Method[J]. Journal of Lightwave Technology, 2013, 31(17): 2851-2856.
[117] LI Q, ZHANG C, LI L, ZHONG X. Localization Mechanisms and Location Methods of the Disturbance Sensor Based on Phase-Sensitive OTDR[J]. Optik, 2014, 125(9): 2099-2103.
[118] HE H, SHAO L, LI H, et al. SNR Enhancement in Phase-Sensitive OTDR with Adaptive 2-D Bilateral Filtering Algorithm[J]. IEEE Photonics Journal, 2017, 9(3): 1-10.
[119] OLCER I, ONCU A. Adaptive Temporal Matched Filtering for Noise Suppression in Fiber Optic Distributed Acoustic Sensing[J]. Sensors, 2017, 17(6): 1288.
[120] QIN Z, CHEN H, CHANG J. Detection Performance Improvement of Distributed Vibration Sensor Based on Curvelet Denoising Method[J]. Sensors, 2017, 17(6): 1380.
[121] WU H, QIAN Y, ZHANG W, TANG C. Feature Extraction and Identification in Distributed Optical-Fiber Vibration Sensing System for Oil Pipeline Safety Monitoring[J]. Photonic Sensors, 2017, 7(4): 305-310.
[122] ZHANG X, CAO L, SHAN Y, et al. Performance Optimization for a Phase-Sensitive Optical Time-Domain Reflectometry Based on Multiscale Matched Filtering[J]. Optical Engineering, 2019, 58(5): 056114-056114.
[123] QU S, CHANG J, CONG Z, et al. Data Compression and SNR Enhancement with Compressive Sensing Method in Phase-Sensitive OTDR[J]. Optics Communications, 2019, 433: 97-103.
[124] ZHU T, HE Q, XIAO X, BAO X. Modulated Pulses Based Distributed Vibration Sensing with High Frequency Response and Spatial Resolution[J]. Optics Express, 2013, 21(3): 2953-2963.
[125] HE Q, ZHU T, XIAO X, et al. All Fiber Distributed Vibration Sensing Using Modulated Time-Difference Pulses[J]. IEEE Photonics Technology Letters, 2013, 25(20): 1955-1957.
[126] LIANG S, SHENG X, LOU S, et al. Combination of Phase-Sensitive OTDR and Michelson Interferometer for Nuisance Alarm Rate Reducing and Event Identification[J]. IEEE Photonics Journal, 2016, 8(2): 1-12.
[127] MA P, SUN Z, LIU K, et al. Distributed Fiber Optic Vibration Sensing with Wide Dynamic Range, High Frequency Response, and Multi-Points Accurate Location[J]. Optics and Laser Technology, 2020, 124: 105966.
[128] HE Q, ZHU T, ZHOU J, et al. Frequency Response Enhancement by Periodical Nonuniform Sampling in Distributed Sensing[J]. IEEE Photonics Technology Letters, 2015, 27(20): 2158-2161.
[129] ZHANG Y, XIA L, CAO C, et al. A Hybrid Single-End-Access Mzi and Φ-OTDR Vibration Sensing System with High Frequency Response[J]. Optics Communications, 2017, 382: 176-181.
[130] SHAN Y, DONG J, ZENG J, et al. A Broadband Distributed Vibration Sensing System Assisted by a Distributed Feedback Interferometer[J]. IEEE Photonics Journal, 2018, 10(1): 1-10.
[131] MA P, LIU K, SUN Z, et al. Distributed Single Fiber Optic Vibration Sensing with High Frequency Response and Multi-Points Accurate Location[J]. Optics and Lasers in Engineering, 2020, 129: 106060.
[132] SUN Z, LIU K, JIANG J, et al. Distributed Vibration Sensing with High Frequency Response by Using Wdm Based Integrated Scheme[J]. Journal of Physics D-Applied Physics, 2020, 53(15): 155106.
[133] YANG G, FAN X, LIU Q, HE Z. Frequency Response Enhancement of Direct-Detection Phase-Sensitive OTDR by Using Frequency Division Multiplexing[J]. Journal of Lightwave Technology, 2018, 36(4): 1197-1203.
[134] WU M, FAN X, ZHANG X, et al. Frequency Response Enhancement of Phase-Sensitive OTDR for Interrogating Weak Reflector Array by Using Ofdm and Vernier Effect[J]. Journal of Lightwave Technology, 2020, 38(17): 4874-4882.
[135] WU H T, ZHANG J D, SUN X F, et al. Frequency Response Enhancement for Long-Range Φ-OTDR System by Additive Random Sampling and Non-Linear Frequency Modulation[C]. 17th International Conference on Optical Communications and Networks (ICOCN), 2018, 11048: 890-895.
[136] DENG Y, LIU Q, HE Z. Distributed Fiber-Optic Acoustic Sensor for Sparse-Wideband Vibration Sensing with Time Delay Sampling[J]. IEEE Sensors Journal, 2021, 21(12): 13290-13295.
[137] HE Q, LIU R, TAN C, et al. The Detection of Non-Gaussian Vibrations with Improved Spatial Resolution and Signal-to-Noise Ratio in Distributed Sensing[J]. ArXiv, 2019, 1901: 05846.
[138] MASOUDI A, NEWSON T P. High Spatial Resolution Distributed Optical Fiber Dynamic Strain Sensor with Enhanced Frequency and Strain Resolution[J]. Optics Letters, 2017, 42(2): 290-293.
[139] FENG S, XU T, HUANG J, et al. Sub-Meter Spatial Resolution Phase-Sensitive Optical Time-Domain Reflectometry System Using Double Interferometers[J]. Applied Sciences-Basel, 2018, 8(10): 1899.
[140] LU B, PAN Z, WANG Z, et al. High Spatial Resolution Phase-Sensitive Optical Time Domain Reflectometer with a Frequency-Swept Pulse[J]. Optics Letters, 2017, 42(3): 391-394.
[141] LU B, WANG Z Y, ZHENG H R, et al. Pulse Compression Phase Sensitive Optical Time Domain Reflectometer with Sub-Meter Resolution[C]. 25th International Conference on Optical Fibre Sensors (OFS), 2017, 10323: 1-4.
[142] LU B, ZHENG H, WANG Z, et al. High Spatial Resolution Φ-OTDR with Long Sensing Distance[C]. 26th International Conference on Optical Fiber Sensors, 2018: ThE25.
[143] MARCON L, SOTO M A, SORIANO-AMAT M, et al. Boosting the Spatial Resolution in Chirped Pulse Φ-OTDR Using Sub-Band Processing[C]. 7th European Workshop on Optical Fibre Sensors (EWOFS), 2019, 11199: 295-298.
[144] UGALDE A, BECERRIL C, VILLASENOR A, et al. Noise Levels and Signals Observed on Submarine Fibers in the Canary Islands Using DAS[J]. Seismological Research Letters, 2022, 93(1): 351-363.
[145] PASTOR-GRAELLS J, MARTINS H F, GARCIA-RUIZ A, et al. Single-Shot Distributed Temperature and Strain Tracking Using Direct Detection Phase-Sensitive OTDR with Chirped Pulses[J]. Optics Express, 2016, 24(12): 13121-13133.
[146] SHAN Y Y, JI W B, WANG Q, et al. Performance Optimization for Phase-Sensitive OTDR Sensing System Based on Multi-Spatial Resolution Analysis[J]. Sensors, 2019, 19(1): 83.
[147] HE H, YAN L, QIAN H, et al. Enhanced Range of the Dynamic Strain Measurement in Phase-Sensitive OTDR with Tunable Sensitivity[J]. Optics Express, 2020, 28(1): 226-237.
[148] WU H, ZHOU B, ZHU K, et al. Pattern Recognition in Distributed Fiber-Optic Acoustic Sensor Using an Intensity and Phase Stacked Convolutional Neural Network with Data Augmentation[J]. Optics Express, 2021, 29(3): 3269-3283.
[149] FERNANDEZ-RUIZ M R, MARTINS H F, WILLIAMS E F, et al. Seismic Monitoring with Distributed Acoustic Sensing from the near-Surface to the Deep Oceans[J]. Journal of Lightwave Technology, 2022, 40(5): 1453-1463.
[150] WU H, LIU J, XU J, et al. A Comparative Study for Massive Data Compression in Long-Distance Distributed Optical Fiber Sensing Systems[C]. 5th Asia Pacific Optical Sensors Conference, 2015, 9655: 508-511.
[151] DONG B, POPESCU A, TRIBALDOS V R, et al. Real-Time and Post-Hoc Compression for Data from Distributed Acoustic Sensing[J]. Computers & Geosciences, 2022, 166: 105181.
[152] HULST H C, VAN DE HULST H C. Light Scattering by Small Particles[M]. Courier Corporation, 1981: 85-100.
[153] MASOUDI A, NEWSON T P. Contributed Review: Distributed Optical Fibre Dynamic Strain Sensing[J]. Review of Scientific Instruments, 2016, 87(1): 011501.
[154] WOJCIK A K. Signal Statistics of Phase Dependent Optical Time Domain Reflectometry[D]. Texas A&M University, 2007.
[155] 何海军. 基于Φ-OTDR的分布式光纤振动传感技术研究[D]. 西南交通大学, 2021.
[156] 张旭苹, 丁哲文, 洪瑞, 等. 相位敏感光时域反射分布式光纤传感技术[J]. 光学学报, 2021, 41(01): 100-114.
[157] IZUMITA H, KOYAMADA Y, FURUKAWA S, SANKAWA I. Stochastic Amplitude Fluctuation in Coherent OTDR and a New Technique for Its Reduction by Stimulating Synchronous Optical Frequency Hopping[J]. Journal of Lightwave Technology, 1997, 15(2): 267-278.
[158] 周俊, 潘政清, 叶青, 等. 基于多频率综合鉴别Φ-OTDR系统中干涉衰落假信号的相位解调技术[J]. 中国激光, 2013, 40(09): 119-124.
[159] 钱恒. 基于Φ-OTDR的分布式光纤传感动态应变解调技术研究[D]. 西南交通大学, 2024.
[160] WANG Z, ZHANG L, WANG S, et al. Coherent Φ-OTDR Based on I/Q Demodulation and Homodyne Detection[J]. Optics Express, 2016, 24(2): 853-858.
[161] HE X, XIE S, LIU F, et al. Multi-Event Waveform-Retrieved Distributed Optical Fiber Acoustic Sensor Using Dual-Pulse Heterodyne Phase-Sensitive OTDR[J]. Optics Letters, 2017, 42(3): 442-445.
[162] LIU S, SHAO L, YU F, et al. Quantitative Demodulation of Distributed Low-Frequency Vibration Based on Phase-Shifted Dual-Pulse Phase-Sensitive OTDR with Direct Detection[J]. Optics Express, 2022, 30(6): 10096-10109.
[163] LIU S, SHAO L, YU F-H, et al. Accelerating the Phase Demodulation Process for Heterodyne Φ-OTDR Using Spatial Phase Shifting[J]. Optics Letters, 2023, 48(4): 1048-1051.
[164] ORSUTI D, MARCON G, TUROLLA A, et al. DAS over Multimode Fibers with Reduced Fading by Coherent Averaging of Spatial Modes[J]. IEEE Photonics Technology Letters, 2023, 35(16): 866-869.
[165] LIOKUMOVICH L B, USHAKOV N A, KOTOV O I, et al. Fundamentals of Optical Fiber Sensing Schemes Based on Coherent Optical Time Domain Reflectometry: Signal Model under Static Fiber Conditions[J]. Journal of Lightwave Technology, 2015, 33(17): 3660-3671.
[166] CHEN Y, SAVVAIDIS A, FOMEL S, et al. Denoising of Distributed Acoustic Sensing Seismic Data Using an Integrated Framework[J]. Seismological Research Letters, 2022, 94(1): 457-472.
[167] VIENS L, PERTON M, SPICA Z J, et al. Understanding Surface Wave Modal Content for High-Resolution Imaging of Submarine Sediments with Distributed Acoustic Sensing[J]. Geophysical Journal International, 2022, 232(3): 1668-1683.
[168] CHEN Y, ZONG J, LIU C, et al. Offshore Subsurface Characterization Enabled by Fiber-Optic Distributed Acoustic Sensing (DAS): An East China Sea 3D VSP Survey Example[J]. Frontiers in Earth Science, 2023, 11: 1033456.
[169] LIEHR S, MUANENDA Y S, MüNZENBERGER S, KREBBER K. Relative Change Measurement of Physical Quantities Using Dual-Wavelength Coherent OTDR[J]. Optics Express, 2017, 25(2): 720-729.
[170] PENG Z Q, WEN H Q, JIAN J N, et al. Identifications and Classifications of Human Locomotion Using Rayleigh-Enhanced Distributed Fiber Acoustic Sensors with Deep Neural Networks[J]. Scientific Reports, 2020, 10(1): 21014.
[171] CHEN D, LIU Q, HE Z. Phase-Detection Distributed Fiber-Optic Vibration Sensor without Fading-Noise Based on Time-Gated Digital Ofdr[J]. Optics Express, 2017, 25(7): 8315-8325.
[172] HE H, SHAO L-Y, LI Z, et al. Self-Mixing Demodulation for Coherent Phase-Sensitive OTDR System[J]. Sensors, 2016, 16(5): 681.
[173] YE Z, ZHANG S, WAN A, et al. The Impact of Quantization Bits on Coherent Detection DAS[J]. Journal of Lightwave Technology, 2024: 1-8.
[174] MASOUDI A, BELAL M, NEWSON T P. A Distributed Optical Fibre Dynamic Strain Sensor Based on Phase-OTDR[J]. Measurement Science and Technology, 2013, 24(8): 085204.
[175] WAKISAKA Y, IIDA D, KOSHIKIYA Y, HONDA N. Sampling Rate Enhancement and Fading Suppression of Φ-OTDR with Frequency Division Multiplex Technique[J]. Journal of Lightwave Technology, 2022, 40(3): 822-836.
[176] JIANG F, LI H, ZHANG Z, et al. Undersampling for Fiber Distributed Acoustic Sensing Based on Coherent Phase-OTDR[J]. Optics Letters, 2019, 44(4): 911-914.
[177] HE H, YAN L, QIAN H, et al. Suppression of the Interference Fading in Phase-Sensitive OTDR with Phase-Shift Transform[J]. Journal of Lightwave Technology, 2021, 39(1): 295-302.
[178] LI H, FAN C, SHI Z, et al. Spatio-Temporal Joint Oversampling-Downsampling Technique for Ultra-High Resolution Fiber Optic Distributed Acoustic Sensing[J]. Optics Express, 2022, 30(16): 29639-29654.
[179] IP E, HUANG Y K, HUANG M F, et al. DAS over 1,007-Km Hybrid Link with 10-Tb/s DP-16QAM Co-Propagation Using Frequency-Diverse Chirped Pulses[J]. Journal of Lightwave Technology, 2023, 41(4): 1077-1086.
[180] ZHOU F, CAO Z, GE Q, et al. A Real-Time Phase Processing System for Phase Sensitive Optical Time Domain Reflectometer[J]. Review of Scientific Instruments, 2023, 94(1): 014710.
[181] ZHOU J, PAN Z, YE Q, et al. Characteristics and Explanations of Interference Fading of a Φ-OTDR with a Multi-Frequency Source[J]. Journal of Lightwave Technology, 2013, 31(17): 2947-2954.
[182] LI H, LIU T, FAN C, et al. Fading Suppression for Distributed Acoustic Sensing Assisted with Dual-Laser System and Differential-Vector-Sum Algorithm[J]. IEEE Sensors Journal, 2022, 22(10): 9417-9425.
[183] ZHANG J, WU H, ZHENG H, et al. 80 Km Fading Free Phase-Sensitive Reflectometry Based on Multi-Carrier Nlfm Pulse without Distributed Amplification[J]. Journal of Lightwave Technology, 2019, 37(18): 4748-4754.
[184] WAKISAKA Y, IIDA D, OSHIDA H, HONDA N. Fading Suppression of Φ-OTDR with the New Signal Processing Methodology of Complex Vectors across Time and Frequency Domains[J]. Journal of Lightwave Technology, 2021, 39(13): 4279-4293.
[185] QIAN H, LUO B, HE H, et al. Fading-Free Φ-OTDR Evaluation Based on the Statistical Analysis of Phase Hopping[J]. Applied Optics, 2022, 61(23): 6729-6735.
[186] LIN S T, WANG Z N, XIONG J, et al. Rayleigh Fading Suppression in One-Dimensional Optical Scatters[J]. IEEE Access, 2019, 7: 17125-17132.
[187] LU X, KREBBER K. Characterizing Detection Noise in Phase-Sensitive Optical Time Domain Reflectometry[J]. Optics Express, 2021, 29(12): 18791-18806.
[188] SORIANO-AMAT M, MARTINS H F, DURAN V, et al. Quadratic Phase Coding for SNR Improvement in Time-Expanded Phase-Sensitive OTDR[J]. Optics Letters, 2021, 46(17): 4406-4409.

所在学位评定分委会
物理学
国内图书分类号
TP212
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765908
专题南方科技大学
工学院_电子与电气工程系
推荐引用方式
GB/T 7714
余飞宏. Φ-OTDR瑞利背向散射信号压缩存储与衰落噪声抑制技术研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930480-余飞宏-电子与电气工程(20839KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[余飞宏]的文章
百度学术
百度学术中相似的文章
[余飞宏]的文章
必应学术
必应学术中相似的文章
[余飞宏]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。