[1] GUYTON A C, HALL J E. Guyton and Hall textbook of medical physiology[M]. Elsevier, 2011.
[2] OTTESEN J T, OLUFSEN M S, LARSEN J K. Applied mathematical models in human physiology[M]. Society for Industrial and Applied Mathematics, 2004.
[3] 柳兆荣. 心血管流体力学[M]. 复旦大学出版社, 1986.
[4] 胡 盛 寿 ,高 润 霖 ,刘 力 生 等 . 《 中 国 心 血 管 病 报 告 2018 》 概 要 [J]. 中 国 循 环 杂 志,2019,34(03):209-220.
[5] 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告 2019 概要[J]. 中 华老年病研究电子杂志, 2020, 7(4):4-15.
[6] HARDING S, SILVA M J, MOLAODI O R, et al. Longitudinal study of cardiometabolic risk from early adolescence to early adulthood in an ethnically diverse cohort[J]. BMJ open, 2016, 6(12): e013221.
[7] TORO E F. Brain venous haemodynamics, neurological diseases and mathematical modelling. A review[J]. Applied Mathematics and Computation, 2016, 272: 542-579.
[8] HUMPHREY J D. Vascular adaptation and mechanical homeostasis at tissue, cellular, and sub-cellular levels[J]. Cell biochemistry and biophysics, 2008, 50: 53-78.
[9] DAS S, AIBA T, ROSENBERG M, et al. Pathological role of serum-and glucocorticoid-regulated kinase 1 in adverse ventricular remodeling[J]. Circulation, 2012, 126(18): 2208-2219.
[10] National Research Council, Division on Engineering, Physical Sciences, et al. The mathematical sciences in 2025[M]. National Academies Press, 2013.
[11] SMITH R C. Uncertainty quantification: theory, implementation, and applications[M]. Siam, 2013.
[12] DRAPER D. Assessment and propagation of model uncertainty[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 1995, 57(1): 45-70.
[13] BEVEN K, BINLEY A. The future of distributed models: model calibration and uncertainty prediction[J]. Hydrological processes, 1992, 6(3): 279-298.
[14] YAO W, CHEN X, LUO W, et al. Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles[J]. Progress in Aerospace Sciences, 2011, 47(6): 450-479.
[15] 汤涛, 周涛. 不确定性量化的高精度数值方法和理论[J]. 中国科学: 数学, 2015, 45(7): 891-928.
[16] FISHMAN G S. Monte Carlo: concepts, algorithms, and applications[M]. Springer Science & Business Media, 2013.
[17] XIU D, KARNIADAKIS G E. The Wiener--Askey polynomial chaos for stochastic differential equations[J]. SIAM journal on scientific computing, 2002, 24(2): 619- 644.
[18] XIU D, HESTHAVEN J S. High-order collocation methods for differential equations with random inputs[J]. SIAM Journal on Scientific Computing, 2005, 27(3): 1118- 1139.
[19] EULER L. Principia pro motu sanguinis per arterias determinando[J]. Opera postuma, 1862: 814-823.
[20] SAGAWA K, LIE R K, SCHAEFER J. Translation of Otto frank's paper" Die Grundform des arteriellen Pulses" zeitschrift für biologie 37: 483-526 (1899)[J]. Journal of molecular and cellular cardiology, 1990, 22(3): 253-254.
[21] FLEETER C M, GERACI G, SCHIAVAZZI D E, et al. Multilevel and multifidelity uncertainty quantification for cardiovascular hemodynamics[J]. Computer methods in applied mechanics and engineering, 2020, 365: 113030.
[22] COPE F W. An elastic reservoir theory of the human systemic arterial system using current data on aortic elasticity[J]. The bulletin of mathematical biophysics, 1960, 22: 19-40.
[23] MCLEOD J. Physbe... a physiological simulation benchmark experiment[J]. Simulation, 1966, 7(6): 324-329.
[24] WOMERSLEY J R. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known[J]. The Journal of physiology, 1955, 127(3): 553.
[25] GREEN N E, CHEN S Y J, MESSENGER J C, et al. Three-dimensional vascular angiography[J]. Current problems in cardiology, 2004, 29(3): 104-142.
[26] LEWIS M A. Multislice CT: opportunities and challenges[J]. The British journal of radiology, 2001, 74(885): 779-781.
[27] GRAVES M J. Magnetic resonance angiography[J]. The British Journal of Radiology, 1997, 70(829): 6-28.
[28] FENSTER A, DOWNEY D B, CARDINAL H N. Three-dimensional ultrasound imaging[J]. Physics in medicine & biology, 2001, 46(5): R67.
[29] FRAUENFELDER T, LOTFEY M, BOEHM T, et al. Computational fluid dynamics: hemodynamic changes in abdominal aortic aneurysm after stent-graft implantation[J]. Cardiovascular and interventional radiology, 2006, 29: 613-623.
[30] KUNG E, BARETTA A, BAKER C, et al. Predictive modeling of the virtual Hemi- Fontan operation for second stage single ventricle palliation: two patient-specific cases[J]. Journal of biomechanics, 2013, 46(2): 423-429.
[31] YANG W, MARSDEN A L, OGAWA M T, et al. Right ventricular stroke work correlates with outcomes in pediatric pulmonary arterial hypertension[J]. Pulmonary circulation, 2018, 8(3): 2045894018780534.
[32] YANG W, DONG M, Rabinovitch M, et al. Evolution of hemodynamic forces in the pulmonary tree with progressively worsening pulmonary arterial hypertension in pediatric patients[J]. Biomechanics and modeling in mechanobiology, 2019, 18(3): 779-796.
[33] RAMACHANDRA A B, KAHN A M, MARSDEN A L. Patient-specific simulations reveal significant differences in mechanical stimuli in venous and arterial coronary grafts[J]. Journal of cardiovascular translational research, 2016, 9(4): 279-290.
[34] LONG C C, MARSDEN A L, BAZILEVS Y. Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk[J]. Computational Mechanics, 2014, 54: 921-932.
[35] GUNDERT T J, MARSDEN A L, YANG W, et al. Identification of hemodynamically optimal coronary stent designs based on vessel caliber[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(7): 1992-2002.
[36] MIGLIAVACCA F, PETRINI L, COLOMBO M, et al. Mechanical behavior of coronary stents investigated through the finite element method[J]. Journal of biomechanics, 2002, 35(6): 803-811.
[37] LAMBERT J W. Fluid flow in a nonrigid tube[M]. Purdue University, 1956.
[38] LAMBERT J W. On the nonlinearities of fluid flow in nonrigid tubes[J]. Journal of the Franklin Institute, 1958, 266(2): 83-102.
[39] HUGHES T J R. A study of the one-dimensional theory of arterial pulse propagation[M]. Structural Engineering Laboratory, University of California, 1974.
[40] HUGHES T J R, LUBLINER J. On the one-dimensional theory of blood flow in the larger vessels[J]. Mathematical Biosciences, 1973, 18(1-2): 161-170.
[41] OLUFSEN M S. Structured tree outflow condition for blood flow in larger systemic arteries[J]. American journal of physiology-Heart and circulatory physiology, 1999, 276(1): H257-H268.
[42] WAN J, STEELE B, SPICER S A, et al. A one-dimensional finite element method for simulation-based medical planning for cardiovascular disease[J]. Computer Methods in Biomechanics & Biomedical Engineering, 2002, 5(3): 195-206.
[43] CHEN P, QUARTERONI A, ROZZA G. Simulation‐based uncertainty quantification of human arterial network hemodynamics[J]. International journal for numerical methods in biomedical engineering, 2013, 29(6): 698-721.
[44] BLANCO P J, BULANT C A, MÜLLER L O, et al. Comparison of 1D and 3D models for the estimation of fractional flow reserve[J]. Scientific reports, 2018, 8(1): 17275.
[45] HUMPHREY J D, RAJAGOPAL K R. A constrained mixture model for growth and remodeling of soft tissues[J]. Mathematical models and methods in applied sciences, 2002, 12(03): 407-430.
[46] GLEASON R L, TABER L A, HUMPHREY J D. A 2-D model of flow-induced alterations in the geometry, structure, and properties of carotid arteries[J]. J. Biomech. Eng., 2004, 126(3): 371-381.
[47] ALFORD P W, HUMPHREY J D, TABER L A. Growth and remodeling in a thick- walled artery model: effects of spatial variations in wall constituents[J]. Biomechanics and modeling in mechanobiology, 2008, 7: 245-262.
[48] LAUBRIE J D, MOUSAVI J S, AVRIL S. A new finite‐element shell model for arterial growth and remodeling after stent implantation[J]. International journal for numerical methods in biomedical engineering, 2020, 36(1): e3282.
[49] GACEK E, MAHUTGA R R, BAROCAS V H. Hybrid discrete-continuum multiscale model of tissue growth and remodeling[J]. Acta Biomaterialia, 2023, 163: 7-24.
[50] LOH W L. On Latin hypercube sampling[J]. The annals of statistics, 1996, 24(5): 2058-2080.
[51] STEIN M. Large sample properties of simulations using Latin hypercube sampling[J]. Technometrics, 1987, 29(2): 143-151.
[52] NIEDERREITER H. Random number generation and quasi-Monte Carlo methods[M]. Society for Industrial and Applied Mathematics, 1992.
[53] Monte Carlo and quasi-Monte Carlo methods 1996: proceedings of a conference at the University of Salzburg, Austria, July 9-12, 1996[M]. Springer Science & Business Media, 1998.
[54] GILES M B. Multilevel monte carlo methods[J]. Acta numerica, 2015, 24: 259-328.
[55] NG L W T, WILLCOX K E. Multifidelity approaches for optimization under uncertainty[J]. International Journal for numerical methods in Engineering, 2014, 100(10): 746-772.
[56] GERACI G, ELDRED M S, Iaccarino G. A multifidelity multilevel Monte Carlo method for uncertainty propagation in aerospace applications[C]//19th AIAA non- deterministic approaches conference. 2017: 1951.
[57] GERSTNER T, GRIEBEL M. Dimension–adaptive tensor–product quadrature[J]. Computing, 2003, 71: 65-87.
[58] MA X, ZABARAS N. An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations[J]. Journal of Computational Physics, 2009, 228(8): 3084-3113.
[59] AGARWAL N, ALURU N R. A domain adaptive stochastic collocation approach for analysis of MEMS under uncertainties[J]. Journal of Computational Physics, 2009, 228(20): 7662-7688.
[60] SCHIAVAZZI D E, DOOSTAN A, IACCARINO G. Sparse multiresolution regression for uncertainty propagation[J]. International Journal for Uncertainty Quantification, 2014, 4(4).
[61] WAN X, KARNIADAKIS G E. Multi-element generalized polynomial chaos for arbitrary probability measures[J]. SIAM Journal on Scientific Computing, 2006, 28(3): 901-928.
[62] WAN X, KARNIADAKIS G E. An adaptive multi-element generalized polynomial chaos method for stochastic differential equations[J]. Journal of Computational Physics, 2005, 209(2): 617-642.
[63] SEO J, SCHIAVAZZI D E, KAHN A M, et al. The effects of clinically‐derived parametric data uncertainty in patient‐specific coronary simulations with deformable walls[J]. International journal for numerical methods in biomedical engineering, 2020, 36(8): e3351.
[64] BERTAGLIA G, CALEFFI V, PARESCHI L, et al. Uncertainty quantification of viscoelastic parameters in arterial hemodynamics with the a-FSI blood flow model[J]. Journal of Computational Physics, 2021, 430: 110102.
[65] YAN J, CAI S, CAI X, et al. Uncertainty quantification of microcirculatory characteristic parameters for recognition of cardiovascular diseases[J]. Computer Methods and Programs in Biomedicine, 2023, 240: 107674.
[66] BOCCADIFUOCO A, MARIOTTI A, Celi S, et al. Impact of uncertainties in outflow boundary conditions on the predictions of hemodynamic simulations of ascending thoracic aortic aneurysms[J]. Computers & Fluids, 2018, 165: 96-115.
[67] ANTONUCCIO M N, MARIOTTI A, FANNI B M, et al. Effects of uncertainty of outlet boundary conditions in a patient-specific case of aortic coarctation[J]. Annals of biomedical engineering, 2021, 49(12): 3494-3507.
[68] BRÜNING J, HELLMEIER F, YEVTUSHENKO P, et al. Uncertainty quantification for non-invasive assessment of pressure drop across a coarctation of the aorta using CFD[J]. Cardiovascular engineering and technology, 2018, 9: 582-596.
[69] FOSSAN F E, STURDY J, MÜLLER L O, et al. Uncertainty quantification and sensitivity analysis for computational FFR estimation in stable coronary artery disease[J]. Cardiovascular engineering and technology, 2018, 9: 597-622.
[70] KU D N. Blood flow in arteries[J]. Annual review of fluid mechanics, 1997, 29(1): 399-434.
[71] LOTH F, FISCHER P F, BASSIOUNY H S. Blood flow in end-to-side anastomoses[J]. Annu. Rev. Fluid Mech., 2008, 40: 367-393.
[72] SANKARAN S, HUMPHREY J D, MARSDEN A L. An efficient framework for optimization and parameter sensitivity analysis in arterial growth and remodeling computations[J]. Computer methods in applied mechanics and engineering, 2013, 256: 200-210.
[73] TRUESDELL C, NOLL W, TRUESDELL C, et al. The non-linear field theories of mechanics[M]. Springer Berlin Heidelberg, 2004.
[74] RAJAGOPAL K R, TAO L. Mechanics of mixtures[M]. World scientific, 1995.
[75] BAEK S, RAJAGOPAL K R, HUMPHREY J D. A theoretical model of enlarging intracranial fusiform aneurysms[J]. Journal of biomechanical engineering, 2006, 128(1): 142-149.
[76] VALENTIN A, HUMPHREY J D. Evaluation of fundamental hypotheses underlying constrained mixture models of arterial growth and remodelling[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 367(1902): 3585-3606.
[77] VALENTIN A, CARDAMONE L, BAEK S, et al. Complementary vasoactivity and matrix remodelling in arterial adaptations to altered flow and pressure[J]. Journal of The Royal Society Interface, 2009, 6(32): 293-306.
[78] RIZVI M A D, MYERS P R. Nitric oxide modulates basal and endothelin-induced coronary artery vascular smooth muscle cell proliferation and collagen levels[J]. Journal of molecular and cellular cardiology, 1997, 29(7): 1779-1789.
[79] RIZVI M A D, KATWA L, SPADONE D P, et al. The effects of endothelin-1 on collagen type I and type III synthesis in cultured porcine coronary artery vascular smooth muscle cells[J]. Journal of molecular and cellular cardiology, 1996, 28(2): 243-252.
[80] PRICE J M, DAVIS D L, KNAUSS E B. Length-dependent sensitivity in vascular smooth muscle[J]. American Journal of Physiology-Heart and Circulatory Physiology, 1981, 241(4): H557-H563.
[81] RACHEV A, HAYASHI K. Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in arteries[J]. Annals of biomedical engineering, 1999, 27: 459-468.
[82] BAEK S, VALENTÍN A, HUMPHREY J D. Biochemomechanics of cerebral vasospasm and its resolution: II. Constitutive relations and model simulations[J]. Annals of biomedical engineering, 2007, 35: 1498-1509.
[83] UEMATSU M, OHARA Y, NAVAS J P, et al. Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress[J]. American Journal of Physiology-Cell Physiology, 1995, 269(6): C1371-C1378.
[84] MALEK A, IZUMO S. Physiological fluid shear stress causes downregulation of endothelin-1 mRNA in bovine aortic endothelium[J]. American Journal of Physiology-Cell Physiology, 1992, 263(2): C389-C396.
[85] LANGILLE B L. Arterial remodeling: relation to hemodynamics[J]. Canadian journal of physiology and pharmacology, 1996, 74(7): 834-841.
[86] STENMARK K R, MECHAM R P. Cellular and molecular mechanisms of pulmonary vascular remodeling[J]. Annual review of physiology, 1997, 59(1): 89-144.
[87] RODRIGUEZ E K, HOGER A, MCCULLOCH A D. Stress-dependent finite growth in soft elastic tissues[J]. Journal of biomechanics, 1994, 27(4): 455-467.
[88] BAZILEVS Y, CALO V M, COTTRELL J A, et al. Variational multiscale residual- based turbulence modeling for large eddy simulation of incompressible flows[J]. Computer methods in applied mechanics and engineering, 2007, 197(1-4): 173-201.
[89] FRANCA L P, FREY S L. Stabilized finite element methods: II. The incompressible Navier-Stokes equations[J]. Computer Methods in Applied Mechanics and Engineering, 1992, 99(2-3): 209-233.
[90] FIGUEROA C A. A coupled-momentum method to model blood flow and vessel deformation in human arteries: applications in disease research and simulation-based medical planning[M]. Stanford university, 2006.
[91] BAZILEVS Y, GOHEAN J R, HUGHES T J R, et al. Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(45-46): 3534-3550.
[92] JANSEN K E, WHITING C H, HULBERT G M. A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method[J]. Computer methods in applied mechanics and engineering, 2000, 190(3-4): 305-319.
[93] CHUNG J, HULBERT G M. A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method[J]. 1993.
[94] MOGHADAM M E, VIGNON-CLEMENTEL I E, FIGLIOLA R, et al. A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations[J]. Journal of Computational Physics, 2013, 244: 63-79.
[95] LAN I S, LIU J, YANG W, et al. A reduced unified continuum formulation for vascular fluid–structure interaction[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 394: 114852.
[96] LIU J, YANG W, LAN I S, et al. Fluid-structure interaction modeling of blood flow in the pulmonary arteries using the unified continuum and variational multiscale formulation[J]. Mechanics research communications, 2020, 107: 103556.
[97] UPDEGROVE A, WILSON N M, MERKOW J, et al. SimVascular: an open source pipeline for cardiovascular simulation[J]. Annals of biomedical engineering, 2017, 45: 525-541.
[98] LOÈVE M. Elementary probability theory[M]. Springer New York, 1977.
[99] BABUSKA I, TEMPONE R, ZOURARIS G E. Galerkin finite element approximations of stochastic elliptic partial differential equations[J]. SIAM Journal on Numerical Analysis, 2004, 42(2): 800-825.
[100] WIENER N. The homogeneous chaos[J]. American Journal of Mathematics, 1938, 60(4): 897-936.
[101] XIU D, KARNIADAKIS G E. The Wiener--Askey polynomial chaos for stochastic differential equations[J]. SIAM journal on scientific computing, 2002, 24(2): 619- 644.
[102] 王鹏, 修东滨. 不确定性量化导论[M]. 科学出版社, 2019.
[103] SMOLYAK S A. Quadrature and interpolation formulas for tensor products of certain classes of functions[C]//Doklady Akademii Nauk. Russian Academy of Sciences, 1963, 148(5): 1042-1045.
[104] BUNGARTZ H J, GRIEBEL M. Sparse grids[J]. Acta numerica, 2004, 13: 147-269.
[105] GAO F, GUO Z, SAKAMOTO M, et al. Fluid-structure interaction within a layered aortic arch model[J]. Journal of biological physics, 2006, 32: 435-454.
[1] GUYTON A C, HALL J E. Guyton and Hall textbook of medical physiology[M]. Elsevier, 2011.
[2] OTTESEN J T, OLUFSEN M S, LARSEN J K. Applied mathematical models in human physiology[M]. Society for Industrial and Applied Mathematics, 2004.
[3] 柳兆荣. 心血管流体力学[M]. 复旦大学出版社, 1986.
[4] 胡 盛 寿 ,高 润 霖 ,刘 力 生 等 . 《 中 国 心 血 管 病 报 告 2018 》 概 要 [J]. 中 国 循 环 杂 志,2019,34(03):209-220.
[5] 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告 2019 概要[J]. 中 华老年病研究电子杂志, 2020, 7(4):4-15.
[6] HARDING S, SILVA M J, MOLAODI O R, et al. Longitudinal study of cardiometabolic risk from early adolescence to early adulthood in an ethnically diverse cohort[J]. BMJ open, 2016, 6(12): e013221.
[7] TORO E F. Brain venous haemodynamics, neurological diseases and mathematical modelling. A review[J]. Applied Mathematics and Computation, 2016, 272: 542-579.
[8] HUMPHREY J D. Vascular adaptation and mechanical homeostasis at tissue, cellular, and sub-cellular levels[J]. Cell biochemistry and biophysics, 2008, 50: 53-78.
[9] DAS S, AIBA T, ROSENBERG M, et al. Pathological role of serum-and glucocorticoid-regulated kinase 1 in adverse ventricular remodeling[J]. Circulation, 2012, 126(18): 2208-2219.
[10] National Research Council, Division on Engineering, Physical Sciences, et al. The mathematical sciences in 2025[M]. National Academies Press, 2013.
[11] SMITH R C. Uncertainty quantification: theory, implementation, and applications[M]. Siam, 2013.
[12] DRAPER D. Assessment and propagation of model uncertainty[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 1995, 57(1): 45-70.
[13] BEVEN K, BINLEY A. The future of distributed models: model calibration and uncertainty prediction[J]. Hydrological processes, 1992, 6(3): 279-298.
[14] YAO W, CHEN X, LUO W, et al. Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles[J]. Progress in Aerospace Sciences, 2011, 47(6): 450-479.
[15] 汤涛, 周涛. 不确定性量化的高精度数值方法和理论[J]. 中国科学: 数学, 2015, 45(7): 891-928.
[16] FISHMAN G S. Monte Carlo: concepts, algorithms, and applications[M]. Springer Science & Business Media, 2013.
[17] XIU D, KARNIADAKIS G E. The Wiener--Askey polynomial chaos for stochastic differential equations[J]. SIAM journal on scientific computing, 2002, 24(2): 619- 644.
[18] XIU D, HESTHAVEN J S. High-order collocation methods for differential equations with random inputs[J]. SIAM Journal on Scientific Computing, 2005, 27(3): 1118- 1139.
[19] EULER L. Principia pro motu sanguinis per arterias determinando[J]. Opera postuma, 1862: 814-823.
[20] SAGAWA K, LIE R K, SCHAEFER J. Translation of Otto frank's paper" Die Grundform des arteriellen Pulses" zeitschrift für biologie 37: 483-526 (1899)[J]. Journal of molecular and cellular cardiology, 1990, 22(3): 253-254.
[21] FLEETER C M, GERACI G, SCHIAVAZZI D E, et al. Multilevel and multifidelity uncertainty quantification for cardiovascular hemodynamics[J]. Computer methods in applied mechanics and engineering, 2020, 365: 113030.
[22] COPE F W. An elastic reservoir theory of the human systemic arterial system using current data on aortic elasticity[J]. The bulletin of mathematical biophysics, 1960, 22: 19-40.
[23] MCLEOD J. Physbe... a physiological simulation benchmark experiment[J]. Simulation, 1966, 7(6): 324-329.
[24] WOMERSLEY J R. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known[J]. The Journal of physiology, 1955, 127(3): 553.
[25] GREEN N E, CHEN S Y J, MESSENGER J C, et al. Three-dimensional vascular angiography[J]. Current problems in cardiology, 2004, 29(3): 104-142.
[26] LEWIS M A. Multislice CT: opportunities and challenges[J]. The British journal of radiology, 2001, 74(885): 779-781.
[27] GRAVES M J. Magnetic resonance angiography[J]. The British Journal of Radiology, 1997, 70(829): 6-28.
[28] FENSTER A, DOWNEY D B, CARDINAL H N. Three-dimensional ultrasound imaging[J]. Physics in medicine & biology, 2001, 46(5): R67.
[29] FRAUENFELDER T, LOTFEY M, BOEHM T, et al. Computational fluid dynamics: hemodynamic changes in abdominal aortic aneurysm after stent-graft implantation[J]. Cardiovascular and interventional radiology, 2006, 29: 613-623.
[30] KUNG E, BARETTA A, BAKER C, et al. Predictive modeling of the virtual Hemi- Fontan operation for second stage single ventricle palliation: two patient-specific cases[J]. Journal of biomechanics, 2013, 46(2): 423-429.
[31] YANG W, MARSDEN A L, OGAWA M T, et al. Right ventricular stroke work correlates with outcomes in pediatric pulmonary arterial hypertension[J]. Pulmonary circulation, 2018, 8(3): 2045894018780534.
[32] YANG W, DONG M, Rabinovitch M, et al. Evolution of hemodynamic forces in the pulmonary tree with progressively worsening pulmonary arterial hypertension in pediatric patients[J]. Biomechanics and modeling in mechanobiology, 2019, 18(3): 779-796.
[33] RAMACHANDRA A B, KAHN A M, MARSDEN A L. Patient-specific simulations reveal significant differences in mechanical stimuli in venous and arterial coronary grafts[J]. Journal of cardiovascular translational research, 2016, 9(4): 279-290.
[34] LONG C C, MARSDEN A L, BAZILEVS Y. Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk[J]. Computational Mechanics, 2014, 54: 921-932.
[35] GUNDERT T J, MARSDEN A L, YANG W, et al. Identification of hemodynamically optimal coronary stent designs based on vessel caliber[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(7): 1992-2002.
[36] MIGLIAVACCA F, PETRINI L, COLOMBO M, et al. Mechanical behavior of coronary stents investigated through the finite element method[J]. Journal of biomechanics, 2002, 35(6): 803-811.
[37] LAMBERT J W. Fluid flow in a nonrigid tube[M]. Purdue University, 1956.
[38] LAMBERT J W. On the nonlinearities of fluid flow in nonrigid tubes[J]. Journal of the Franklin Institute, 1958, 266(2): 83-102.
[39] HUGHES T J R. A study of the one-dimensional theory of arterial pulse propagation[M]. Structural Engineering Laboratory, University of California, 1974.
[40] HUGHES T J R, LUBLINER J. On the one-dimensional theory of blood flow in the larger vessels[J]. Mathematical Biosciences, 1973, 18(1-2): 161-170.
[41] OLUFSEN M S. Structured tree outflow condition for blood flow in larger systemic arteries[J]. American journal of physiology-Heart and circulatory physiology, 1999, 276(1): H257-H268.
[42] WAN J, STEELE B, SPICER S A, et al. A one-dimensional finite element method for simulation-based medical planning for cardiovascular disease[J]. Computer Methods in Biomechanics & Biomedical Engineering, 2002, 5(3): 195-206.
[43] CHEN P, QUARTERONI A, ROZZA G. Simulation‐based uncertainty quantification of human arterial network hemodynamics[J]. International journal for numerical methods in biomedical engineering, 2013, 29(6): 698-721.
[44] BLANCO P J, BULANT C A, MÜLLER L O, et al. Comparison of 1D and 3D models for the estimation of fractional flow reserve[J]. Scientific reports, 2018, 8(1): 17275.
[45] HUMPHREY J D, RAJAGOPAL K R. A constrained mixture model for growth and remodeling of soft tissues[J]. Mathematical models and methods in applied sciences, 2002, 12(03): 407-430.
[46] GLEASON R L, TABER L A, HUMPHREY J D. A 2-D model of flow-induced alterations in the geometry, structure, and properties of carotid arteries[J]. J. Biomech. Eng., 2004, 126(3): 371-381.
[47] ALFORD P W, HUMPHREY J D, TABER L A. Growth and remodeling in a thick- walled artery model: effects of spatial variations in wall constituents[J]. Biomechanics and modeling in mechanobiology, 2008, 7: 245-262.
[48] LAUBRIE J D, MOUSAVI J S, AVRIL S. A new finite‐element shell model for arterial growth and remodeling after stent implantation[J]. International journal for numerical methods in biomedical engineering, 2020, 36(1): e3282.
[49] GACEK E, MAHUTGA R R, BAROCAS V H. Hybrid discrete-continuum multiscale model of tissue growth and remodeling[J]. Acta Biomaterialia, 2023, 163: 7-24.
[50] LOH W L. On Latin hypercube sampling[J]. The annals of statistics, 1996, 24(5): 2058-2080.
[51] STEIN M. Large sample properties of simulations using Latin hypercube sampling[J]. Technometrics, 1987, 29(2): 143-151.
[52] NIEDERREITER H. Random number generation and quasi-Monte Carlo methods[M]. Society for Industrial and Applied Mathematics, 1992.
[53] Monte Carlo and quasi-Monte Carlo methods 1996: proceedings of a conference at the University of Salzburg, Austria, July 9-12, 1996[M]. Springer Science & Business Media, 1998.
[54] GILES M B. Multilevel monte carlo methods[J]. Acta numerica, 2015, 24: 259-328.
[55] NG L W T, WILLCOX K E. Multifidelity approaches for optimization under uncertainty[J]. International Journal for numerical methods in Engineering, 2014, 100(10): 746-772.
[56] GERACI G, ELDRED M S, Iaccarino G. A multifidelity multilevel Monte Carlo method for uncertainty propagation in aerospace applications[C]//19th AIAA non- deterministic approaches conference. 2017: 1951.
[57] GERSTNER T, GRIEBEL M. Dimension–adaptive tensor–product quadrature[J]. Computing, 2003, 71: 65-87.
[58] MA X, ZABARAS N. An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations[J]. Journal of Computational Physics, 2009, 228(8): 3084-3113.
[59] AGARWAL N, ALURU N R. A domain adaptive stochastic collocation approach for analysis of MEMS under uncertainties[J]. Journal of Computational Physics, 2009, 228(20): 7662-7688.
[60] SCHIAVAZZI D E, DOOSTAN A, IACCARINO G. Sparse multiresolution regression for uncertainty propagation[J]. International Journal for Uncertainty Quantification, 2014, 4(4).
[61] WAN X, KARNIADAKIS G E. Multi-element generalized polynomial chaos for arbitrary probability measures[J]. SIAM Journal on Scientific Computing, 2006, 28(3): 901-928.
[62] WAN X, KARNIADAKIS G E. An adaptive multi-element generalized polynomial chaos method for stochastic differential equations[J]. Journal of Computational Physics, 2005, 209(2): 617-642.
[63] SEO J, SCHIAVAZZI D E, KAHN A M, et al. The effects of clinically‐derived parametric data uncertainty in patient‐specific coronary simulations with deformable walls[J]. International journal for numerical methods in biomedical engineering, 2020, 36(8): e3351.
[64] BERTAGLIA G, CALEFFI V, PARESCHI L, et al. Uncertainty quantification of viscoelastic parameters in arterial hemodynamics with the a-FSI blood flow model[J]. Journal of Computational Physics, 2021, 430: 110102.
[65] YAN J, CAI S, CAI X, et al. Uncertainty quantification of microcirculatory characteristic parameters for recognition of cardiovascular diseases[J]. Computer Methods and Programs in Biomedicine, 2023, 240: 107674.
[66] BOCCADIFUOCO A, MARIOTTI A, Celi S, et al. Impact of uncertainties in outflow boundary conditions on the predictions of hemodynamic simulations of ascending thoracic aortic aneurysms[J]. Computers & Fluids, 2018, 165: 96-115.
[67] ANTONUCCIO M N, MARIOTTI A, FANNI B M, et al. Effects of uncertainty of outlet boundary conditions in a patient-specific case of aortic coarctation[J]. Annals of biomedical engineering, 2021, 49(12): 3494-3507.
[68] BRÜNING J, HELLMEIER F, YEVTUSHENKO P, et al. Uncertainty quantification for non-invasive assessment of pressure drop across a coarctation of the aorta using CFD[J]. Cardiovascular engineering and technology, 2018, 9: 582-596.
[69] FOSSAN F E, STURDY J, MÜLLER L O, et al. Uncertainty quantification and sensitivity analysis for computational FFR estimation in stable coronary artery disease[J]. Cardiovascular engineering and technology, 2018, 9: 597-622.
[70] KU D N. Blood flow in arteries[J]. Annual review of fluid mechanics, 1997, 29(1): 399-434.
[71] LOTH F, FISCHER P F, BASSIOUNY H S. Blood flow in end-to-side anastomoses[J]. Annu. Rev. Fluid Mech., 2008, 40: 367-393.
[72] SANKARAN S, HUMPHREY J D, MARSDEN A L. An efficient framework for optimization and parameter sensitivity analysis in arterial growth and remodeling computations[J]. Computer methods in applied mechanics and engineering, 2013, 256: 200-210.
[73] TRUESDELL C, NOLL W, TRUESDELL C, et al. The non-linear field theories of mechanics[M]. Springer Berlin Heidelberg, 2004.
[74] RAJAGOPAL K R, TAO L. Mechanics of mixtures[M]. World scientific, 1995.
[75] BAEK S, RAJAGOPAL K R, HUMPHREY J D. A theoretical model of enlarging intracranial fusiform aneurysms[J]. Journal of biomechanical engineering, 2006, 128(1): 142-149.
[76] VALENTIN A, HUMPHREY J D. Evaluation of fundamental hypotheses underlying constrained mixture models of arterial growth and remodelling[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 367(1902): 3585-3606.
[77] VALENTIN A, CARDAMONE L, BAEK S, et al. Complementary vasoactivity and matrix remodelling in arterial adaptations to altered flow and pressure[J]. Journal of The Royal Society Interface, 2009, 6(32): 293-306.
[78] RIZVI M A D, MYERS P R. Nitric oxide modulates basal and endothelin-induced coronary artery vascular smooth muscle cell proliferation and collagen levels[J]. Journal of molecular and cellular cardiology, 1997, 29(7): 1779-1789.
[79] RIZVI M A D, KATWA L, SPADONE D P, et al. The effects of endothelin-1 on collagen type I and type III synthesis in cultured porcine coronary artery vascular smooth muscle cells[J]. Journal of molecular and cellular cardiology, 1996, 28(2): 243-252.
[80] PRICE J M, DAVIS D L, KNAUSS E B. Length-dependent sensitivity in vascular smooth muscle[J]. American Journal of Physiology-Heart and Circulatory Physiology, 1981, 241(4): H557-H563.
[81] RACHEV A, HAYASHI K. Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in arteries[J]. Annals of biomedical engineering, 1999, 27: 459-468.
[82] BAEK S, VALENTÍN A, HUMPHREY J D. Biochemomechanics of cerebral vasospasm and its resolution: II. Constitutive relations and model simulations[J]. Annals of biomedical engineering, 2007, 35: 1498-1509.
[83] UEMATSU M, OHARA Y, NAVAS J P, et al. Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress[J]. American Journal of Physiology-Cell Physiology, 1995, 269(6): C1371-C1378.
[84] MALEK A, IZUMO S. Physiological fluid shear stress causes downregulation of endothelin-1 mRNA in bovine aortic endothelium[J]. American Journal of Physiology-Cell Physiology, 1992, 263(2): C389-C396.
[85] LANGILLE B L. Arterial remodeling: relation to hemodynamics[J]. Canadian journal of physiology and pharmacology, 1996, 74(7): 834-841.
[86] STENMARK K R, MECHAM R P. Cellular and molecular mechanisms of pulmonary vascular remodeling[J]. Annual review of physiology, 1997, 59(1): 89-144.
[87] RODRIGUEZ E K, HOGER A, MCCULLOCH A D. Stress-dependent finite growth in soft elastic tissues[J]. Journal of biomechanics, 1994, 27(4): 455-467.
[88] BAZILEVS Y, CALO V M, COTTRELL J A, et al. Variational multiscale residual- based turbulence modeling for large eddy simulation of incompressible flows[J]. Computer methods in applied mechanics and engineering, 2007, 197(1-4): 173-201.
[89] FRANCA L P, FREY S L. Stabilized finite element methods: II. The incompressible Navier-Stokes equations[J]. Computer Methods in Applied Mechanics and Engineering, 1992, 99(2-3): 209-233.
[90] FIGUEROA C A. A coupled-momentum method to model blood flow and vessel deformation in human arteries: applications in disease research and simulation-based medical planning[M]. Stanford university, 2006.
[91] BAZILEVS Y, GOHEAN J R, HUGHES T J R, et al. Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(45-46): 3534-3550.
[92] JANSEN K E, WHITING C H, HULBERT G M. A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method[J]. Computer methods in applied mechanics and engineering, 2000, 190(3-4): 305-319.
[93] CHUNG J, HULBERT G M. A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method[J]. 1993.
[94] MOGHADAM M E, VIGNON-CLEMENTEL I E, FIGLIOLA R, et al. A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations[J]. Journal of Computational Physics, 2013, 244: 63-79.
[95] LAN I S, LIU J, YANG W, et al. A reduced unified continuum formulation for vascular fluid–structure interaction[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 394: 114852.
[96] LIU J, YANG W, LAN I S, et al. Fluid-structure interaction modeling of blood flow in the pulmonary arteries using the unified continuum and variational multiscale formulation[J]. Mechanics research communications, 2020, 107: 103556.
[97] UPDEGROVE A, WILSON N M, MERKOW J, et al. SimVascular: an open source pipeline for cardiovascular simulation[J]. Annals of biomedical engineering, 2017, 45: 525-541.
[98] LOÈVE M. Elementary probability theory[M]. Springer New York, 1977.
[99] BABUSKA I, TEMPONE R, ZOURARIS G E. Galerkin finite element approximations of stochastic elliptic partial differential equations[J]. SIAM Journal on Numerical Analysis, 2004, 42(2): 800-825.
[100] WIENER N. The homogeneous chaos[J]. American Journal of Mathematics, 1938, 60(4): 897-936.
[101] XIU D, KARNIADAKIS G E. The Wiener--Askey polynomial chaos for stochastic differential equations[J]. SIAM journal on scientific computing, 2002, 24(2): 619- 644.
[102] 王鹏, 修东滨. 不确定性量化导论[M]. 科学出版社, 2019.
[103] SMOLYAK S A. Quadrature and interpolation formulas for tensor products of certain classes of functions[C]//Doklady Akademii Nauk. Russian Academy of Sciences, 1963, 148(5): 1042-1045.
[104] BUNGARTZ H J, GRIEBEL M. Sparse grids[J]. Acta numerica, 2004, 13: 147-269.
[105] GAO F, GUO Z, SAKAMOTO M, et al. Fluid-structure interaction within a layered aortic arch model[J]. Journal of biological physics, 2006, 32: 435-454.
修改评论