中文版 | English
题名

基于纳米晶增强反溶剂法的纯相甲脒铅碘钙钛矿电池研究

其他题名
RESEARCH ON PURE PHASE FORMAMIDINE LEAD IODIDE PEROVSKITE CELLS BASED ON NANOCRYSTALS ENHANCED ANTISOLVENT METHOD
姓名
姓名拼音
WANG Jiafeng
学号
12132075
学位类型
硕士
学位专业
0809 电子科学与技术
学科门类/专业学位类别
08 工学
导师
何祝兵
导师单位
材料科学与工程系
论文答辩日期
2024-05-29
论文提交日期
2024-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
  能源是全球经济社会发展的关键资源,目前地球上传统能源的储量不断减少,人们开始利用太阳能、风能、潮汐能等各种新型能源,其中太阳能相关的研究及应用在近些年内具有良好的发展,钙钛矿太阳能电池正是其中发展较为迅速的一部分。然而目前其发展仍存在一些限制,如材料对环境具有污染、微观机理较为复杂、稳定性较差导致器件寿命较短等问题,使其发展只停留于实验室研究阶段,并未走向大规模的商业化生产。在目前的钙钛矿太阳能电池体系中,甲脒铅碘基钙钛矿太阳能电池具有更好的稳定性及更高的效率。然而现有的研究工作通常是在前驱体溶液中加入甲胺盐酸盐以促进钙钛矿的相转变,这种方法容易导致甲胺在钙钛矿中残留,从而影响钙钛矿的热稳定性。因此,对于无添加的纯相甲脒铅碘钙钛矿的研究是非常有必要的。在本文中,我们采用了一种纳米晶体增强的反溶剂来制备无添加的纯相甲脒铅碘钙钛矿太阳能电池,主要研究工作如下:
  我们将异质成核原理引入钙钛矿薄膜的制备工艺中,在烷烃中添加甲脒铅碘纳米晶体形成功能化反溶剂,作为钙钛矿薄膜的异质成核位点,减小相变能垒,促进甲脒铅碘钙钛矿从δα的相转变,从而获得了高取向高结晶度的钙钛矿薄膜。
  但上述方法容易导致纳米晶体表面封端的油酸和油胺长链配体在钙钛矿薄膜表面富集。针对这一科学问题,我们选择了醋酸铅的异丙醇溶液对薄膜进行界面钝化处理,其中异丙醇溶剂用于清洗表面富集的配体,醋酸铅溶质用于中和表面过量的甲脒。处理后器件的光电转化效率达到 21.76 %,其中开路电压为 1.08 V,短路电流密度为 25.31 mA·cm-2,填充因子为 79.61 %。优化器件在空气环境贮存超过 800 小时仍保持 95 %的初始性能。
  本研究工作有效解决了该体系钙钛矿材料在相转变与相稳定性方面的问题,对于该体系钙钛矿太阳能电池的发展与应用具有推进作用。
其他摘要
  Energy is a vital resource for global economic and social development. At present, the reserves of traditional energy on the earth are constantly decreasing. People begin to use solar energy, wind energy, tidal energy and other new energy sources, among which solar related research and application have had good development in recent years, and perovskite solar cells are rapid-developed part in solar energy applications. However there are still many limitations to its current development, such as the pollution of materials to the environment, the complexity of microscopic mechanisms, the short device life of poor stability and other reasons. So that its development stays in the laboratory research stage and has not moved towards large-scale commercial production. The formamidine lead iodine based perovskite solar cells have better stability and higher efficiency in the current perovskite solar cells system. However, the existing research work usually adds methylamine hydrochloride into the precursor solution to promote the phase transition of perovskite, which is easy to cause methylamine residue in perovskite, thus affecting the thermal stability of perovskite. Therefore, it’s very necessary to study the pure phase formamidine lead iodine perovskite without additive. In this paper, we employ a nanocrystal enhanced antisolvent to fabricate the pure phase formamidine lead iodine perovskite solar cells without additive, the main research of this thesis could be summarized as follows:
  We introduce the heteronucleation principle into the fabrication process of perovskite films, and add formamidine lead iodine nanocrystal into the alkane to form a functionalized antisolvent as the heteronucleation site of perovskite films to reduce the phase transition energy barrier and promote the phase transition of formamidine lead iodine perovskite from δ phase to α phase, so as to obtain high orientation and
crystallinity perovskite films.
  However, the above method can easily lead to the enrichment of oleic acid and oleamine long-chain ligands on the surface of the perovskite film, which are the capping ligands on the surface of formamidine lead iodine nanocrystal. In view of this problem, we selected isopropanol solution of lead acetate for interfacial passivation treatment of the film, in which the isopropanol solvent is used to clean the surface-enriched ligands and the lead acetate solute is used to neutralize the excess formamidine on the surface. The photoelectric conversion efficiency of the treated devices has reached 21.76 %, in which the open circuit voltage is 1.08 V, the short circuit current density is 25.31 mA·cm-2 , and the fill factor is 79.61 %. The optimized device still maintains 95 % of the initial performance after 800 h storage in ambient air.
  This work has effectively solved the problems of phase transition and phase stability of the perovskite materials in this system, and has promoted its development and application.
关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-07
参考文献列表

[1] HAWGEL N M, MARGOLIS R, BUONASSISI T, et al. Terawatt-scale photovoltaics: trajectories and challenges[J]. Science, 2017, 356(6334): 141-143.
[2] CHAPIN D M, FULLER C S, PEARSON G L. A new silicon p-n junction photocell for converting solar radiation into electrical power[J]. Journal of Applied Physics, 1954, 25(5): 676-677.
[3] ZHAO J, WANG A, GREEN M A, et al. 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells[J]. Applied Physics Letters, 1998, 73(14): 1991-1993.
[4] SCHULTZ O, GLUNZ S W, WILLEKE G P. SHORT COMMUNICATION: ACCELERATED PUBLICATION: Multicrystalline silicon solar cells exceeding 20% efficiency[J]. Progress in Photovoltaics: Research and Applications, 2004, 12(7): 553-558.
[5] MORIKAWA H, NIINOBE D, NISHIMURA K, et al. Processes for over 18.5% high-efficiency multicrystalline silicon solar cell[J]. Current Applied Physics, 2010, 10(2): S210-S214.
[6] CARLSON D E, WRONSKI C R. Amorphous silicon solar cell[J]. Applied Physics Letters, 1976,28(11): 671-673.
[7] TAWADA Y, TSUGE K, KONDO M, et al. Properties and structure of a-SiC:H for high-efficiency a-Si solar cell[J]. Journal of Applied Physics, 1982, 53(7): 5273-5281.
[8] BAUHUIS G J, MULDER P, HAVERKAMP E J, et al. 26.1% thin-film GaAs solar cell using epitaxial lift-off[J]. Solar Energy Materials and Solar Cells, 2009, 93(9): 1488-1491.
[9] WALLENTIN J, ANTTU N, ASOLI D, et al. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit[J]. Science, 2013, 339(6123): 1057-1060.
[10] REPINS I, CONTRERAS M A, EGAAS B, et al. 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor[J]. Progress in Photovoltaics: Research and Applications, 2008, 16(3): 235-239.
[11] YAMAGUCHI M, YAMADA H, KATSUMATA Y, et al. Efficiency potential and recent activities of high-efficiency solar cells[J]. Journal of Materials Research, 2017, 32(18): 3445-3457.
[12] GLOECKLER M, SANKIN I, ZHAO Z. CdTe solar cells at the threshold to 20% efficiency[J]. IEEE Journal of Photovoltaics, 2013, 3(4): 1389-1393.
[13] CHENG P, ZHAN X. Stability of organic solar cells: challenges and strategies[J]. ChemicalSociety Review, 2016, 45(9): 2544-2582.
[14] GRATZEL M. Dye-sensitized solar cells[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2003, 4(2): 145-153.
[15] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of American Chemical Society, 2009, 131(17): 6050-6051.
[16] NOZIK A J, BEARD M C, LUTHER J M, et al. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells[J]. Chemical Review, 2010, 110(11): 6873-6890.
[17] National Renewable Energy Laboratory. https://www.nrel.gov/pv/cell-efficiency.html
[18] KIM H S, LEE C R, IM J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Scientific Reports, 2012, 2: 591.
[19] LIU M, JOHNSTON M B, SNAITH H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501(7467): 395-398.
[20] KIM M, KIM G H, LEE T K, et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells[J]. Joule, 2019, 3(9): 2179-2192.
[21] JIANG Q, ZHAO Y, ZHANG X, et al. Surface passivation of perovskite film for efficient solar cells[J]. Nature Photonics, 2019, 13(7): 460-466.
[22] BURSCHKA J, PELLET N, MOON S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499(7458): 316-319.
[23] JENG J Y, CHIANG Y F, LEE M H, et al. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells[J]. Advanced Materials, 2013, 25(27): 3732-3732.
[24] WANG K C, JENG J Y, SHEN P S, et al. p-type Mesoscopic nickel oxide/ organometallic perovskite heterojunction solar cells[J]. Scientific Reports, 2014, 4, 4756.
[25] PARK J H, SEO J, PARK S, et al. Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition[J]. Advanced Materials, 2015, 27(27): 4013-4019.
[26] LI Z, LI B, WU X, et al. Organometallic-functionalized interfaces for highlyefficient inverted perovskite solar cells[J]. Science, 2022, 376(6591): 416-420.
[27] RANDALL C A, BHALLA A S, SHROUT T R, et al. Classification and consequences of complex lead perovskite ferroelectrics with regard to B-site cation order[J]. Journal of Materials Research, 2011, 5(4): 829-834.
[28] GONZALEZ-PEDRO V, JUAREZ-PEREZ E J, ARSYAD W S, et al. General working principles of CH3NH3PbX3 perovskite solar cells[J]. Nano Letters, 2014, 14(2): 888-893.
[29] KIM H S, LEE J W, YANTARA N, et al. High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer[J]. Nano Letters, 2013, 13(6): 2412-2417.
[30] YELLA A, HEINIGER L P, GAO P, et al. Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency[J]. Nano Letters, 2014, 14(5): 2591-2596.
[31] WANG S, MA Z, LIU B, et al. High-performance perovskite solar cells with large grain-size obtained by using the lewis acid-base adduct of thiourea[J]. Solar RRL, 2018, 2(6): 1800034.
[32] JEON N J, NOH J H, KIM Y C, et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells[J]. Nature Materials, 2014, 13: 897-903.
[33] HAN Q, BAE S H, SUN P, et al. Single crystal formamidinium lead iodide (FAPbI3): insight into the structural, optical, and electrical properties[J]. Advanced Materials, 2016, 28(11): 2253-2258.
[34] CHEN T R, FOLEY B J, PARK C, et al. Entropy-driven structural transition and kinetic trapping in formamidinium lead iodide perovskite[J]. Science Advances, 2016, 2(10): e1601650.
[35] JUAREZ-PEREZ E J, ONO L K, QI Y B. Thermal degradation of formamidinium based lead halide perovskites into sym-triazine and hydrogen cyanide observed by coupled thermogravimetry-mass spectrometry analysis[J]. Journal of Materials Chemistry A, 2019, 7(28): 16912-16919.
[36] ZHANG D W, ZHANG H D, GUO H X, et al. Stable α-FAPbI3 in inverted perovskite solar cells with efficiency exceeding 22% via a self-passivation strategy[J]. Advanced Functional Materials, 2022, 32(27): 2200174.
[37] KIM B, SEOK S Il. Molecular aspects of organic cations affecting the humidity stability of perovskites[J]. Energy & Environmental Science, 2020, 13(3): 805-820.
[38] JUAREZ-PEREZ E J, HAWASH Z, RAGA S R, et al. Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry-mass spectrometry analysis[J]. Energy & Environmental Science, 2016, 9(11): 3406-3410.
[39] TURREN-CRUZ S, HAGFELDT A, SALIBA M. Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture[J]. Science, 2018, 362(6413): 449-453.
[40] WU Z W, SANG S Y, ZHENG J J, et al. Crystallization kinetics of hybrid perovskite solar cells[J]. Angewandte Chemie International Edition, 2024, 63(17): e202319170.
[41] ZENG L X, CHEN S, FORBERICH K, et al. Controlling the crystallization dynamics of photovoltaic perovskite layers on larger-area coatings[J]. Energy & Environmental Science, 2020, 13(12): 4666-4690.
[42] GE J H, CHEN R, MA Y B, et al. Kinetics controlled perovskite crystallization for high performance solar cells[J]. Angewandte Chemie International Edition, 2024, 63(14): e202319282.
[43] 朱晓萌, 曹丙强. 碳量子点掺杂绿色反溶剂法制备的钙钛矿电池的性能提升[J]. 中国粉体技术, 2019, 25(04): 41-47.
[44] GUO P F, YANG X K, YE Q, et al. Laser-generated nanocrystals in perovskite: universal embedding of ligand-free and sub-10 nm nanocrystals in solution-processed metal halide perovskite films for effectively modulated optoelectronic performance[J]. Advanced Energy Materials, 2019, 9(35): 1901341.
[45] YANG W T, CHEN J H, LIAN X M, et al. Black phosphorus quantum dots induced high-quality perovskite film for efficient and thermally stable planar perovskite solar cells[J]. Solar RRL, 2019, 3(8): 1900132.
[46] LI S H, LI Y, LIU K, et al. Laser generated WS2 quantum dots for effective charge transport in high-performance carbon-based perovskite solar cells[J]. Journal of Power Sources, 2022, 518(15): 230766.
[47] GUO P F, LIU C, LI X L, et al. Laser manufactured nano-MXenes with tailored halogen terminations enable interfacial ionic stabilization of high performance perovskite solar cells[J]. Advanced Energy Materials, 2022, 12(46): 2202395.
[48] YAO Y X, HANG P J, WANG P, et al. CsPbBr3 quantum dots assisted crystallization of solution-processed perovskite films with preferential orientation for high performance perovskite solar cells[J]. Nanotechnology, 2020, 31(8): 085401.
[49] WHEELER L M, SANEHIRA E M, MARSHALL A R, et al. Targeted ligand-exchange chemistry on cesium lead halide perovskite quantum dots for high-efficiency photovoltaics[J]. Journal of The American Chemical Society, 2018, 140(33): 10504-10513.
[50] CHEN K Q, ZHONG Q H, CHEN W, et al. Short-chain ligand-passivated stable α-CsPbI3 quantum dot for all-inorganic perovskite solar cells[J]. Advanced Functional Materials, 2019, 29(24): 1900991.
[51] WANG Y, YUAN J Y, ZHANG X L, et al. Surface ligand management aided by a secondary amine enables increased synthesis yield of CsPbI3 perovskite quantum dots and high photovoltaic performance[J]. Advanced Materials, 2020, 32(32): 2000449.
[52] YE J Z, BYRANVAND M M, MARTINEZ C O, et al. Defect passivation in lead-halide perovskite nanocrystals and thin films: toward efficient LEDs and solar cells[J]. Angewandte Chemie International Edition, 2021, 60(60): 21636-21660.
[53] JIA D L, CHEN J X, QIU J M, et al. Tailoring solvent-mediated ligand exchange for CsPbI3 perovskite quantum dot solar cells with efficiency exceeding 16.5%[J]. Joule, 2022, 6(7): 1632-1653.
[54] KIM J, HAN S, LEE G, et al. Single-step-fabricated perovskite quantum dot photovoltaic absorbers enabled by surface ligand manipulation[J]. Chemical Engineering Journal, 2022, 448: 137672.
[55] XU Y Y, REN Y K, CHENG S, et al. A residual strain regulation strategy based on quantum dots for efficient perovskite solar cells[J]. Journal of Materials Chemistry A, 2023, 11(2): 868-877.
[56] DU T, MACDONALD T J, YANG R X, et al. Additive-free, low-temperature crystallization of stable α-FAPbI3 perovskite[J]. Advanced Materials, 2022, 34(9): 2107850.
[57] SANGALE S S, KWON S, PATIL P, et al. Locally supersaturated inks for a slot-die process to enable highly efficient and robust perovskite solar cells[J]. Advanced Energy Materials, 2023, 13(33): 2300537.
[58] NAN Z, CHEN L, LIU Q, et al. Revealing phase evolution mechanism for stabilizing formamidinium-based lead halide perovskites by a key intermediate phase[J]. Chem, 2021, 7(9): 2513-2526.
[59] WANG S Q, YANG T H, YANG Y G, et al. In situ self-elimination of defects via controlled perovskite crystallization dynamics for high-performance solar cells[J]. Advanced Materials, 2023, 35(42): 2305314.
[60] MA C Q, EICKEMEYER F T, LEE S, et al. Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells[J]. Science, 2023, 379(6628): 173-178.
[61] HARUYAMA J, SODEYAMA K, HAN L Y, et al. First-principles study of ion diffusion in perovskite solar cell sensitizers[J]. Journal of the American Chemical Society, 2015, 137(32): 10048–10051.
[62] LIANG Z, ZHANG Y, XU H F, et al. Homogenizing out-of-plane cation composition in perovskite solar cells[J]. Nature, 2023, 624: 557-563.
[63] LI J H, XU L M, WANG T, et al. 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control[J]. Advanced Materials, 2017, 29(5): 1603885.
[64] YANG W Q, SU R, LUO D Y, et al. Surface modification induced by perovskite quantum dots for triple-cation perovskite solar cells[J]. Nano Energy, 2020, 67: 104189.
[65] CHEN H, LIU C, XU J, et al. Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands[J]. Science, 2024, 384(6692): 189-193.
[66] ZHAO L C, LI Q Y, HOU C, et al. Chemical polishing of perovskite surface enhances photovoltaic performances[J]. Journal of the American Chemical Society, 2022, 144(4): 1700-1708.
[67] HU S F, ZHAO P, NAKANO K, et al. Synergistic surface modification of tin-lead perovskite solar cells[J]. Advanced Materials, 2023, 35(9): 2208320.
[68] TAN Q, LI Z N, LUO G F, et al. Inverted perovskite solar cells using dimethylacridine-based dopants[J]. Nature, 2023, 620: 545-551.
[69] WANG H, SONG Y L, DANG S, et al. Reducing photovoltage loss in inverted perovskite solar cells by quantum dots alloying modification at cathode contact[J]. Solar RRL, 2020, 4(3): 1900468.
[70] WANG P J, CHEN X, LIU T Y, et al. Seed-assisted growth of methylammonium-free perovskite for efficient inverted perovskite solar cells[J]. Small Methods, 2022, 6(5): 2200048.

所在学位评定分委会
材料科学与工程
国内图书分类号
TM914.4
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765915
专题南方科技大学
工学院_材料科学与工程系
推荐引用方式
GB/T 7714
王嘉峰. 基于纳米晶增强反溶剂法的纯相甲脒铅碘钙钛矿电池研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132075-王嘉峰-材料科学与工程(8821KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王嘉峰]的文章
百度学术
百度学术中相似的文章
[王嘉峰]的文章
必应学术
必应学术中相似的文章
[王嘉峰]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。