[1] HAWGEL N M, MARGOLIS R, BUONASSISI T, et al. Terawatt-scale photovoltaics: trajectories and challenges[J]. Science, 2017, 356(6334): 141-143.
[2] CHAPIN D M, FULLER C S, PEARSON G L. A new silicon p-n junction photocell for converting solar radiation into electrical power[J]. Journal of Applied Physics, 1954, 25(5): 676-677.
[3] ZHAO J, WANG A, GREEN M A, et al. 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells[J]. Applied Physics Letters, 1998, 73(14): 1991-1993.
[4] SCHULTZ O, GLUNZ S W, WILLEKE G P. SHORT COMMUNICATION: ACCELERATED PUBLICATION: Multicrystalline silicon solar cells exceeding 20% efficiency[J]. Progress in Photovoltaics: Research and Applications, 2004, 12(7): 553-558.
[5] MORIKAWA H, NIINOBE D, NISHIMURA K, et al. Processes for over 18.5% high-efficiency multicrystalline silicon solar cell[J]. Current Applied Physics, 2010, 10(2): S210-S214.
[6] CARLSON D E, WRONSKI C R. Amorphous silicon solar cell[J]. Applied Physics Letters, 1976,28(11): 671-673.
[7] TAWADA Y, TSUGE K, KONDO M, et al. Properties and structure of a-SiC:H for high-efficiency a-Si solar cell[J]. Journal of Applied Physics, 1982, 53(7): 5273-5281.
[8] BAUHUIS G J, MULDER P, HAVERKAMP E J, et al. 26.1% thin-film GaAs solar cell using epitaxial lift-off[J]. Solar Energy Materials and Solar Cells, 2009, 93(9): 1488-1491.
[9] WALLENTIN J, ANTTU N, ASOLI D, et al. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit[J]. Science, 2013, 339(6123): 1057-1060.
[10] REPINS I, CONTRERAS M A, EGAAS B, et al. 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor[J]. Progress in Photovoltaics: Research and Applications, 2008, 16(3): 235-239.
[11] YAMAGUCHI M, YAMADA H, KATSUMATA Y, et al. Efficiency potential and recent activities of high-efficiency solar cells[J]. Journal of Materials Research, 2017, 32(18): 3445-3457.
[12] GLOECKLER M, SANKIN I, ZHAO Z. CdTe solar cells at the threshold to 20% efficiency[J]. IEEE Journal of Photovoltaics, 2013, 3(4): 1389-1393.
[13] CHENG P, ZHAN X. Stability of organic solar cells: challenges and strategies[J]. ChemicalSociety Review, 2016, 45(9): 2544-2582.
[14] GRATZEL M. Dye-sensitized solar cells[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2003, 4(2): 145-153.
[15] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of American Chemical Society, 2009, 131(17): 6050-6051.
[16] NOZIK A J, BEARD M C, LUTHER J M, et al. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells[J]. Chemical Review, 2010, 110(11): 6873-6890.
[17] National Renewable Energy Laboratory. https://www.nrel.gov/pv/cell-efficiency.html
[18] KIM H S, LEE C R, IM J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Scientific Reports, 2012, 2: 591.
[19] LIU M, JOHNSTON M B, SNAITH H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501(7467): 395-398.
[20] KIM M, KIM G H, LEE T K, et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells[J]. Joule, 2019, 3(9): 2179-2192.
[21] JIANG Q, ZHAO Y, ZHANG X, et al. Surface passivation of perovskite film for efficient solar cells[J]. Nature Photonics, 2019, 13(7): 460-466.
[22] BURSCHKA J, PELLET N, MOON S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499(7458): 316-319.
[23] JENG J Y, CHIANG Y F, LEE M H, et al. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells[J]. Advanced Materials, 2013, 25(27): 3732-3732.
[24] WANG K C, JENG J Y, SHEN P S, et al. p-type Mesoscopic nickel oxide/ organometallic perovskite heterojunction solar cells[J]. Scientific Reports, 2014, 4, 4756.
[25] PARK J H, SEO J, PARK S, et al. Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition[J]. Advanced Materials, 2015, 27(27): 4013-4019.
[26] LI Z, LI B, WU X, et al. Organometallic-functionalized interfaces for highlyefficient inverted perovskite solar cells[J]. Science, 2022, 376(6591): 416-420.
[27] RANDALL C A, BHALLA A S, SHROUT T R, et al. Classification and consequences of complex lead perovskite ferroelectrics with regard to B-site cation order[J]. Journal of Materials Research, 2011, 5(4): 829-834.
[28] GONZALEZ-PEDRO V, JUAREZ-PEREZ E J, ARSYAD W S, et al. General working principles of CH3NH3PbX3 perovskite solar cells[J]. Nano Letters, 2014, 14(2): 888-893.
[29] KIM H S, LEE J W, YANTARA N, et al. High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer[J]. Nano Letters, 2013, 13(6): 2412-2417.
[30] YELLA A, HEINIGER L P, GAO P, et al. Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency[J]. Nano Letters, 2014, 14(5): 2591-2596.
[31] WANG S, MA Z, LIU B, et al. High-performance perovskite solar cells with large grain-size obtained by using the lewis acid-base adduct of thiourea[J]. Solar RRL, 2018, 2(6): 1800034.
[32] JEON N J, NOH J H, KIM Y C, et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells[J]. Nature Materials, 2014, 13: 897-903.
[33] HAN Q, BAE S H, SUN P, et al. Single crystal formamidinium lead iodide (FAPbI3): insight into the structural, optical, and electrical properties[J]. Advanced Materials, 2016, 28(11): 2253-2258.
[34] CHEN T R, FOLEY B J, PARK C, et al. Entropy-driven structural transition and kinetic trapping in formamidinium lead iodide perovskite[J]. Science Advances, 2016, 2(10): e1601650.
[35] JUAREZ-PEREZ E J, ONO L K, QI Y B. Thermal degradation of formamidinium based lead halide perovskites into sym-triazine and hydrogen cyanide observed by coupled thermogravimetry-mass spectrometry analysis[J]. Journal of Materials Chemistry A, 2019, 7(28): 16912-16919.
[36] ZHANG D W, ZHANG H D, GUO H X, et al. Stable α-FAPbI3 in inverted perovskite solar cells with efficiency exceeding 22% via a self-passivation strategy[J]. Advanced Functional Materials, 2022, 32(27): 2200174.
[37] KIM B, SEOK S Il. Molecular aspects of organic cations affecting the humidity stability of perovskites[J]. Energy & Environmental Science, 2020, 13(3): 805-820.
[38] JUAREZ-PEREZ E J, HAWASH Z, RAGA S R, et al. Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry-mass spectrometry analysis[J]. Energy & Environmental Science, 2016, 9(11): 3406-3410.
[39] TURREN-CRUZ S, HAGFELDT A, SALIBA M. Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture[J]. Science, 2018, 362(6413): 449-453.
[40] WU Z W, SANG S Y, ZHENG J J, et al. Crystallization kinetics of hybrid perovskite solar cells[J]. Angewandte Chemie International Edition, 2024, 63(17): e202319170.
[41] ZENG L X, CHEN S, FORBERICH K, et al. Controlling the crystallization dynamics of photovoltaic perovskite layers on larger-area coatings[J]. Energy & Environmental Science, 2020, 13(12): 4666-4690.
[42] GE J H, CHEN R, MA Y B, et al. Kinetics controlled perovskite crystallization for high performance solar cells[J]. Angewandte Chemie International Edition, 2024, 63(14): e202319282.
[43] 朱晓萌, 曹丙强. 碳量子点掺杂绿色反溶剂法制备的钙钛矿电池的性能提升[J]. 中国粉体技术, 2019, 25(04): 41-47.
[44] GUO P F, YANG X K, YE Q, et al. Laser-generated nanocrystals in perovskite: universal embedding of ligand-free and sub-10 nm nanocrystals in solution-processed metal halide perovskite films for effectively modulated optoelectronic performance[J]. Advanced Energy Materials, 2019, 9(35): 1901341.
[45] YANG W T, CHEN J H, LIAN X M, et al. Black phosphorus quantum dots induced high-quality perovskite film for efficient and thermally stable planar perovskite solar cells[J]. Solar RRL, 2019, 3(8): 1900132.
[46] LI S H, LI Y, LIU K, et al. Laser generated WS2 quantum dots for effective charge transport in high-performance carbon-based perovskite solar cells[J]. Journal of Power Sources, 2022, 518(15): 230766.
[47] GUO P F, LIU C, LI X L, et al. Laser manufactured nano-MXenes with tailored halogen terminations enable interfacial ionic stabilization of high performance perovskite solar cells[J]. Advanced Energy Materials, 2022, 12(46): 2202395.
[48] YAO Y X, HANG P J, WANG P, et al. CsPbBr3 quantum dots assisted crystallization of solution-processed perovskite films with preferential orientation for high performance perovskite solar cells[J]. Nanotechnology, 2020, 31(8): 085401.
[49] WHEELER L M, SANEHIRA E M, MARSHALL A R, et al. Targeted ligand-exchange chemistry on cesium lead halide perovskite quantum dots for high-efficiency photovoltaics[J]. Journal of The American Chemical Society, 2018, 140(33): 10504-10513.
[50] CHEN K Q, ZHONG Q H, CHEN W, et al. Short-chain ligand-passivated stable α-CsPbI3 quantum dot for all-inorganic perovskite solar cells[J]. Advanced Functional Materials, 2019, 29(24): 1900991.
[51] WANG Y, YUAN J Y, ZHANG X L, et al. Surface ligand management aided by a secondary amine enables increased synthesis yield of CsPbI3 perovskite quantum dots and high photovoltaic performance[J]. Advanced Materials, 2020, 32(32): 2000449.
[52] YE J Z, BYRANVAND M M, MARTINEZ C O, et al. Defect passivation in lead-halide perovskite nanocrystals and thin films: toward efficient LEDs and solar cells[J]. Angewandte Chemie International Edition, 2021, 60(60): 21636-21660.
[53] JIA D L, CHEN J X, QIU J M, et al. Tailoring solvent-mediated ligand exchange for CsPbI3 perovskite quantum dot solar cells with efficiency exceeding 16.5%[J]. Joule, 2022, 6(7): 1632-1653.
[54] KIM J, HAN S, LEE G, et al. Single-step-fabricated perovskite quantum dot photovoltaic absorbers enabled by surface ligand manipulation[J]. Chemical Engineering Journal, 2022, 448: 137672.
[55] XU Y Y, REN Y K, CHENG S, et al. A residual strain regulation strategy based on quantum dots for efficient perovskite solar cells[J]. Journal of Materials Chemistry A, 2023, 11(2): 868-877.
[56] DU T, MACDONALD T J, YANG R X, et al. Additive-free, low-temperature crystallization of stable α-FAPbI3 perovskite[J]. Advanced Materials, 2022, 34(9): 2107850.
[57] SANGALE S S, KWON S, PATIL P, et al. Locally supersaturated inks for a slot-die process to enable highly efficient and robust perovskite solar cells[J]. Advanced Energy Materials, 2023, 13(33): 2300537.
[58] NAN Z, CHEN L, LIU Q, et al. Revealing phase evolution mechanism for stabilizing formamidinium-based lead halide perovskites by a key intermediate phase[J]. Chem, 2021, 7(9): 2513-2526.
[59] WANG S Q, YANG T H, YANG Y G, et al. In situ self-elimination of defects via controlled perovskite crystallization dynamics for high-performance solar cells[J]. Advanced Materials, 2023, 35(42): 2305314.
[60] MA C Q, EICKEMEYER F T, LEE S, et al. Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells[J]. Science, 2023, 379(6628): 173-178.
[61] HARUYAMA J, SODEYAMA K, HAN L Y, et al. First-principles study of ion diffusion in perovskite solar cell sensitizers[J]. Journal of the American Chemical Society, 2015, 137(32): 10048–10051.
[62] LIANG Z, ZHANG Y, XU H F, et al. Homogenizing out-of-plane cation composition in perovskite solar cells[J]. Nature, 2023, 624: 557-563.
[63] LI J H, XU L M, WANG T, et al. 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control[J]. Advanced Materials, 2017, 29(5): 1603885.
[64] YANG W Q, SU R, LUO D Y, et al. Surface modification induced by perovskite quantum dots for triple-cation perovskite solar cells[J]. Nano Energy, 2020, 67: 104189.
[65] CHEN H, LIU C, XU J, et al. Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands[J]. Science, 2024, 384(6692): 189-193.
[66] ZHAO L C, LI Q Y, HOU C, et al. Chemical polishing of perovskite surface enhances photovoltaic performances[J]. Journal of the American Chemical Society, 2022, 144(4): 1700-1708.
[67] HU S F, ZHAO P, NAKANO K, et al. Synergistic surface modification of tin-lead perovskite solar cells[J]. Advanced Materials, 2023, 35(9): 2208320.
[68] TAN Q, LI Z N, LUO G F, et al. Inverted perovskite solar cells using dimethylacridine-based dopants[J]. Nature, 2023, 620: 545-551.
[69] WANG H, SONG Y L, DANG S, et al. Reducing photovoltage loss in inverted perovskite solar cells by quantum dots alloying modification at cathode contact[J]. Solar RRL, 2020, 4(3): 1900468.
[70] WANG P J, CHEN X, LIU T Y, et al. Seed-assisted growth of methylammonium-free perovskite for efficient inverted perovskite solar cells[J]. Small Methods, 2022, 6(5): 2200048.
修改评论