[1] BLUDAU I, AEBERSOLD R. Proteomic and interactomic insights into the molecular basis of cell functional diversity[J]. Nat. Rev. Mol. Cell Biol., 2020, 21(6): 327-340.
[2] ROZAKIS-ADCOCK M, FERNLEY R, WADE J, et al. The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1[J]. Nature, 1993, 363(6424): 83-85.
[3] OLIVIER J P, RAABE T, HENKEMEYER M, et al. A Drosophila SH2-SH3 adaptor protein implicated in coupling the sevenless tyrosine kinase to an activator of Ras guanine nucleotide exchange, Sos[J]. Cell, 1993, 73(1): 179-191.
[4] WAKSMAN G, KOMINOS D, ROBERTSON S C, et al. Crystal structure of the phosphotyrosine recognition domain SH2 of v-src complexed with tyrosine-phosphorylated peptides[J]. Nature, 1992, 358(6388): 646-653.
[5] SONGYANG Z, CANTLEY L C. ZIP codes for delivering SH2 domains[J]. Cell, 2004, 116(2 Suppl): S41-S43.
[6] WU P, NIELSEN T E, CLAUSEN M H. Small-molecule kinase inhibitors: an analysis of FDA-approved drugs[J]. Drug Discovery Today, 2016, 21(1): 5-10.
[7] ATTWOOD M M, FABBRO D, SOKOLOV A V, et al. Trends in kinase drug discovery: targets, indications and inhibitor design[J]. Nat. Rev. Drug Discovery, 2021, 20(11): 839-861.
[8] HEIL L R, DAMOC E, ARREY T N, et al. Evaluating the performance of the astral mass analyzer for quantitative proteomics using data-independent acquisition[J]. J. Proteome Res., 2023, 22(10): 3290-3300.
[9] CHEN W, CHEN L, TIAN R. An integrated strategy for highly sensitive phosphoproteome analysis from low micrograms of protein samples[J]. Analyst, 2018, 143(15): 3693-3701.
[10] MAO Y, CHEN P, KE M, et al. Fully integrated and multiplexed sample preparation technology for sensitive interactome profiling[J]. Anal. Chem., 2021, 93(5): 3026-3034.
[11] CHEN W, WANG S, ADHIKARI S, et al. Simple and integrated spintip-based technology applied for deep proteome profiling[J]. Anal. Chem., 2016, 88(9): 4864-4871.
[12] YAO Y, WANG Y, WANG S, et al. One-step SH2 superbinder-based approach for sensitive analysis of tyrosine phosphoproteome[J]. J. Proteome Res., 2019, 18(4): 1870-1879.
[13] AHSAN N, WILSON R S, RAO R S P, et al. Mass spectrometry-based identification of phospho-Tyr in plant proteomics[J]. J. Proteome Res., 2020, 19(2): 561-571.
[14] URBAN J. A review on recent trends in the phosphoproteomics workflow. From sample preparation to data analysis[J]. Anal. Chim. Acta., 2022, 1199: 338857-338877.
[15] BIAN Y, LI L, DONG M, et al. Ultra-deep tyrosine phosphoproteomics enabled by a phosphotyrosine superbinder[J]. Nat. Chem. Biol., 2016, 12(11): 959-966.
[16] BISSON N, JAMES D A, IVOSEV G, et al. Selected reaction monitoring mass spectrometry reveals the dynamics of signaling through the GRB2 adaptor[J]. Nat. Biotechnol., 2011, 29(7): 653-658.
[17] KE M, LIU J, CHEN W, et al. Integrated and quantitative proteomic approach for charting temporal and endogenous protein complexes[J]. Anal. Chem., 2018, 90(21): 12574-12583.
[18] LIU J, YANG L, HE A, et al. Stable and EGF-induced temporal interactome profiling of CBL and CBLB highlights their signaling complex diversity[J]. J. Proteome Res., 2021, 20(7): 3709-3719.
[19] KE M, YUAN X, HE A, et al. Spatiotemporal profiling of cytosolic signaling complexes in living cells by selective proximity proteomics[J]. Nat. Commun., 2021, 12(1): 71.
[20] QIN W, CHO K F, CAVANAGH P E, et al. Deciphering molecular interactions by proximity labeling[J]. Nat. Methods, 2021, 18(2): 133-143.
[21] LAM S S, MARTELL J D, KAMER K J, et al. Directed evolution of APEX2 for electron microscopy and proximity labeling[J]. Nat. Methods, 2015, 12(1): 51-54.
[22] KONG Q, KE M, WENG Y, et al. Dynamic phosphotyrosine-dependent signaling profiling in living cells by two-dimensional proximity proteomics[J]. J. Proteome Res., 2022, 21(11): 2727-2735.
[23] ABRAHAM R T, WEISS A. Jurkat T cells and development of the T-cell receptor signalling paradigm[J]. Nat. Rev. Immunol., 2004, 4(4): 301-308.
[24] ASTOUL E, EDMUNDS C, CANTRELL D A, et al. PI 3-K and T-cell activation: limitations of T-leukemic cell lines as signaling models[J]. Trends Immunol., 2001, 22(9): 490-496.
[25] CARON E, RONCAGALLI R, HASE T, et al. Precise temporal profiling of signaling complexes in primary cells using SWATH mass spectrometry[J]. Cell Rep., 2017, 18(13): 3219-3226.
[26] YU J S. From discovery of tyrosine phosphorylation to targeted cancer therapies: The 2018 Tang Prize in Biopharmaceutical Science[J]. Biomed. J., 2019, 42(2): 80-83.
[27] SHI Y, GAO W, LYTLE N K, et al. Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring[J]. Nature, 2019, 569(7754): 131-135.
[28] TREASE A J, LI H, SPAGNOL G, et al. Regulation of Connexin32 by ephrin receptors and T-cell protein-tyrosine phosphatase[J]. J. Biol. Chem., 2019, 294(1): 341-350.
[29] BOROWICZ P, SUNDVOLD V, CHAN H, et al. Tyr(192) regulates lymphocyte-specific tyrosine kinase activity in T cells[J]. J. Immunol., 2021, 207(4): 1128-1137.
[30] TERADA Y, HIGASHI N, HIDAKA Y, et al. Protein tyrosine phosphatase inhibitor, orthovanadate, induces contraction via Rho kinase activation in mouse thoracic aortas[J]. Biol. Pharm. Bull., 2019, 42(6): 877-885.
[31] LI J, ZHAN X. Mass spectrometry analysis of phosphotyrosine-containing proteins[J]. Mass Spectrom. Rev., 2023,1-31.
[32] HUNTER T. The genesis of tyrosine phosphorylation[J]. Cold Spring Harbor Perspect. Biol., 2014, 6(5): 20644-20658.
[33] BELTRAN L, CUTILLAS P R. Advances in phosphopeptide enrichment techniques for phosphoproteomics[J]. Amino Acids, 2012, 43(3): 1009-1024.
[34] GEMBITSKY D S, LAWLOR K, JACOVINA A, et al. A prototype antibody microarray platform to monitor changes in protein tyrosine phosphorylation[J]. Mol. Cell. Proteomics, 2004, 3(11): 1102-1118.
[35] TINTI M, NARDOZZA A P, FERRARI E, et al. The 4G10, pY20 and p-Tyr-100 antibody specificity: profiling by peptide microarrays[J]. Nat. Biotechnol., 2012, 29(5): 571-577.
[36] STANFORD S M, BOTTINI N. Targeting protein phosphatases in cancer immunotherapy and autoimmune disorders[J]. Nat. Rev. Drug Discovery, 2023, 22(4): 273-294.
[37] DIOP A, SANTORELLI D, MALAGRINò F, et al. SH2 Domains: folding, binding and therapeutical approaches[J]. Int. J. Mol. Sci., 2022, 23(24):15944-15967.
[38] HORNBECK P V, CHABRA I, KORNHAUSER J M, et al. PhosphoSite: A bioinformatics resource dedicated to physiological protein phosphorylation[J]. Proteomics, 2004, 4(6): 1551-1561.
[39] KANEKO T, HUANG H, CAO X, et al. Superbinder SH2 domains act as antagonists of cell signaling[J]. Sci. Signal., 2012, 5(243): 68-78.
[40] LADBURY J E, AROLD S T. Energetics of Src homology domain interactions in receptor tyrosine kinase-mediated signaling[J]. Methods Enzymol., 2011, 488: 147-183.
[41] JONES R B, GORDUS A, KRALL J A, et al. A quantitative protein interaction network for the ErbB receptors using protein microarrays[J]. Nature, 2006, 439(7073): 168-174.
[42] LADBURY J E, LEMMON M A, ZHOU M, et al. Measurement of the binding of tyrosyl phosphopeptides to SH2 domains: a reappraisal[J]. Proc. Natl. Acad. Sci. U. S. A., 1995, 92(8): 3199-3203.
[43] DONG M, BIAN Y, WANG Y, et al. Sensitive, robust, and cost-effective approach for tyrosine phosphoproteome analysis[J]. Anal. Chem., 2017, 89(17): 9307-9314.
[44] KONG Q, WENG Y, ZHENG Z, et al. Integrated and high-throughput approach for sensitive analysis of tyrosine phosphoproteome[J]. Anal. Chem., 2022, 94(40): 13728-13736.
[45] LUNDBY A, FRANCIOSA G, EMDAL K B, et al. Oncogenic mutations rewire signaling pathways by switching protein recruitment to phosphotyrosine sites[J]. Cell, 2019, 179(2): 543-560.
[46] HUTTLIN E L, JEDRYCHOWSKI M P, ELIAS J E, et al. A tissue-specific atlas of mouse protein phosphorylation and expression[J]. Cell, 2010, 143(7): 1174-1189.
[47] DITTMANN A, KENNEDY N J, SOLTERO N L, et al. High-fat diet in a mouse insulin-resistant model induces widespread rewiring of the phosphotyrosine signaling network[J]. Mol. Syst. Biol., 2019, 15(8): 8849-8871.
[48] TIAN R, WANG H, GISH G D, et al. Combinatorial proteomic analysis of intercellular signaling applied to the CD28 T-cell costimulatory receptor[J]. Proc. Natl. Acad. Sci. U. S. A., 2015, 112(13): 1594-1603.
[49] CONDE J N. Yeast two-hybrid system for mapping novel dengue protein interactions[J]. Methods Mol. Biol., 2022, 2409: 119-132.
[50] FIELDS S, STERNGLANZ R. The two-hybrid system: an assay for protein-protein interactions[J]. Trends Genet., 1994, 10(8): 286-292.
[51] LUCK K, KIM D K, LAMBOURNE L, et al. A reference map of the human binary protein interactome[J]. Nature, 2020, 580(7803): 402-408.
[52] YOON T Y, LEE H W. Shedding light on complexity of protein-protein interactions in cancer[J]. Curr. Opin. Chem. Biol., 2019, 53: 75-81.
[53] ZHENG J, CHEN X, YANG Y, et al. Mass spectrometry-based protein complex profiling in time and space[J]. Anal. Chem., 2021, 93(1): 598-619.
[54] HAN S, LI J, TING A Y. Proximity labeling: spatially resolved proteomic mapping for neurobiology[J]. Curr. Opin. Neurobiol., 2018, 50: 17-23.
[55] GINGRAS A C, ABE K T, RAUGHT B. Getting to know the neighborhood: using proximity-dependent biotinylation to characterize protein complexes and map organelles[J]. Curr. Opin. Chem. Biol., 2019, 48: 44-54.
[56] KUSHNER J, PAPA A, MARX S O. Use of proximity labeling in cardiovascular research[J]. JACC Basic Transl. Sci., 2021, 6(7): 598-609.
[57] CHOI-RHEE E, SCHULMAN H, CRONAN J E. Promiscuous protein biotinylation by Escherichia coli biotin protein ligase[J]. Protein Sci., 2004, 13(11): 3043-3050.
[58] ROUX K J, KIM D I, RAIDA M, et al. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells[J]. J. Cell Biol., 2012, 196(6): 801-810.
[59] BRANON T C, BOSCH J A, SANCHEZ A D, et al. Efficient proximity labeling in living cells and organisms with TurboID[J]. Nat. Biotechnol., 2018, 36(9): 880-887.
[60] LEE S Y, CHEAH J S, ZHAO B, et al. Engineered allostery in light-regulated LOV-Turbo enables precise spatiotemporal control of proximity labeling in living cells[J]. Nat. Methods, 2023, 20(6): 908-917.
[61] MARTELL J D, DEERINCK T J, SANCAK Y, et al. Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy[J]. Nat. Biotechnol., 2012, 30(11): 1143-1148.
[62] LOH K H, STAWSKI P S, DRAYCOTT A S, et al. Proteomic analysis of unbounded cellular compartments: synaptic clefts[J]. Cell, 2016, 166(5): 1295-1307.
[63] LI J, HAN S, LI H, et al. Cell-surface proteomic profiling in the fly brain uncovers wiring regulators[J]. Cell, 2020, 180(2): 373-386.
[64] XIE Q, LI J, LI H, et al. Transcription factor Acj6 controls dendrite targeting via a combinatorial cell-surface code[J]. Neuron, 2022, 110(14): 2299-2314.
[65] SHUSTER S A, LI J, CHON U, et al. In situ cell-type-specific cell-surface proteomic profiling in mice[J]. Neuron, 2022, 110(23): 3882-3896.
[66] MANDELMAN D, SCHWARZ F P, LI H, et al. The role of quaternary interactions on the stability and activity of ascorbate peroxidase[J]. Protein Sci., 1998, 7(10): 2089-2098.
[67] RHEE H W, ZOU P, UDESHI N D, et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging[J]. Science, 2013, 339(6125): 1328-1331.
[68] PAEK J, KALOCSAY M, STAUS D P, et al. Multidimensional tracking of GPCR signaling via peroxidase-catalyzed proximity labeling[J]. Cell, 2017, 169(2): 338-349.
[69] LOBINGIER B T, HüTTENHAIN R, EICHEL K, et al. An approach to spatiotemporally resolve protein interaction networks in living cells[J]. Cell, 2017, 169(2): 350-360.
[70] PEREZ VERDAGUER M, ZHANG T, SURVE S, et al. Time-resolved proximity labeling of protein networks associated with ligand-activated EGFR[J]. Cell Rep., 2022, 39(11): 110950-110987.
[71] KE M, YUAN X, HE A, et al. Spatiotemporal profiling of cytosolic signaling complexes in living cells by selective proximity proteomics[J]. Nat. Commun., 2021, 12(1): 71-84.
[72] ZHOU Y, ZOU P. The evolving capabilities of enzyme-mediated proximity labeling[J]. Curr. Opin. Chem. Biol., 2021, 60: 30-38.
[73] UEZU A, KANAK D J, BRADSHAW T W, et al. Identification of an elaborate complex mediating postsynaptic inhibition[J]. Science, 2016, 353(6304): 1123-1129.
[74] DINGAR D, KALKAT M, CHAN P K, et al. BioID identifies novel c-MYC interacting partners in cultured cells and xenograft tumors[J]. J. Proteomics, 2015, 118: 95-111.
[75] DROUJININE I A, MEYER A S, WANG D, et al. Proteomics of protein trafficking by in vivo tissue-specific labeling[J]. Nat. Commun., 2021, 12(1): 2382-2404.
[76] KIM K E, PARK I, KIM J, et al. Dynamic tracking and identification of tissue-specific secretory proteins in the circulation of live mice[J]. Nat. Commun., 2021, 12(1): 5204-5213.
[77] WEI W, RILEY N M, YANG A C, et al. Cell type-selective secretome profiling in vivo[J]. Nat. Chem. Biol., 2021, 17(3): 326-334.
[78] KLEIMAN L B, MAIWALD T, CONZELMANN H, et al. Rapid phospho-turnover by receptor tyrosine kinases impacts downstream signaling and drug binding[J]. Mol. Cell, 2011, 43(5): 723-737.
[79] ARDITO F, GIULIANI M, PERRONE D, et al. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy[J]. Int. J. Mol. Med., 2017, 40(2): 271-280.
[80] SABLINA A A, BUDANOV A V, ILYINSKAYA G V, et al. The antioxidant function of the p53 tumor suppressor[J]. Nat. Med., 2005, 11(12): 1306-1313.
[81] NAKAMURA J, PURVIS E R, SWENBERG J A. Micromolar concentrations of hydrogen peroxide induce oxidative DNA lesions more efficiently than millimolar concentrations in mammalian cells[J]. Nucleic Acids Res., 2003, 31(6): 1790-1795.
[82] DUMRONGPRECHACHAN V, SALISBURY R B, SOTO G, et al. Cell-type and subcellular compartment-specific APEX2 proximity labeling reveals activity-dependent nuclear proteome dynamics in the striatum[J]. Nat. Commun., 2021, 12(1): 4855-4871.
[83] LIU G, PAPA A, KATCHMAN A N, et al. Mechanism of adrenergic Ca(V)1.2 stimulation revealed by proximity proteomics[J]. Nature, 2020, 577(7792): 695-700.
[84] DONG D, ZHENG L, LIN J, et al. Structural basis of assembly of the human T cell receptor-CD3 complex[J]. Nature, 2019, 573(7775): 546-552.
[85] WANG W, AI X. Primary culture of immature, naïve mouse CD4(+) T cells[J]. STAR Protoc., 2021, 2(3): 100756-100778.
[86] POLONI C, SCHONHOFER C, IVISON S, et al. T-cell activation-induced marker assays in health and disease[J]. Immunol. Cell Biol., 2023, 101(6): 491-503.
[87] TAN X, QI C, ZHAO X, et al. ERK inhibition promotes engraftment of allografts by reprogramming T-Cell metabolism[J]. Adv. Sci. (Weinh), 2023, 10(16): 2206768-2206786.
[88] KIM J E, WHITE F M. Quantitative analysis of phosphotyrosine signaling networks triggered by CD3 and CD28 costimulation in Jurkat cells[J]. Ja. Immunol., 2006, 176(5): 2833-2843.
[89] TAKEMOTO Y, SATO M, FURUTA M, et al. Distinct binding patterns of HS1 to the Src SH2 and SH3 domains reflect possible mechanisms of recruitment and activation of downstream molecules[J]. Int. Immunol., 1996, 8(11): 1699-1705.
[90] RIECKMANN J C, GEIGER R, HORNBURG D, et al. Social network architecture of human immune cells unveiled by quantitative proteomics[J]. Nat. Immunol., 2017, 18(5): 583-593.
[91] WANGE R L, GUITIáN R, ISAKOV N, et al. Activating and inhibitory mutations in adjacent tyrosines in the kinase domain of ZAP-70[J]. J. Biol. Chem., 1995, 270(32): 18730-18733.
[92] WATTS J D, AFFOLTER M, KREBS D L, et al. Identification by electrospray ionization mass spectrometry of the sites of tyrosine phosphorylation induced in activated Jurkat T cells on the protein tyrosine kinase ZAP-70[J]. J. Biol. Chem., 1994, 269(47): 29520-29529.
[93] HUMPHREY S J, AZIMIFAR S B, MANN M. High-throughput phosphoproteomics reveals in vivo insulin signaling dynamics[J]. Nat. Biotechnol., 2015, 33(9): 990-995.
[94] LUNDBY A, SECHER A, LAGE K, et al. Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues[J]. Nat. Commun., 2012, 3: 876-886.
[95] ZIELINSKI R, PRZYTYCKI P F, ZHENG J, et al. The crosstalk between EGF, IGF, and Insulin cell signaling pathways-computational and experimental analysis[J]. BMC Syst. Biol., 2009, 3: 88-98.
[96] WENG Y, CHEN W, KONG Q, et al. DeKinomics pulse-chases kinase functions in living cells[J]. Nat. Chem. Biol., 2024, 1-9.
[97] CARVER R S, STEVENSON M C, SCHEVING L A, et al. Diverse expression of Erbb receptor proteins during rat liver development and regeneration[J]. Gastroenterology, 2002, 123(6): 2017-2027.
[98] REN R, MAYER B J, CICCHETTI P, et al. Identification of a ten-amino acid proline-rich SH3 binding site[J]. Science, 1993, 259(5098): 1157-1161.
[99] SONGYANG Z, SHOELSON S E, CHAUDHURI M, et al. SH2 domains recognize specific phosphopeptide sequences[J]. Cell, 1993, 72(5): 767-778.
[100] MICHALOPOULOS G K, BHUSHAN B. Liver regeneration: biological and pathological mechanisms and implications[J]. Nat. Rev. Gastroenterol. Hepatol., 2021, 18(1): 40-55.
[101] ZHENG Y, ZHANG C, CROUCHER D R, et al. Temporal regulation of EGF signalling networks by the scaffold protein Shc1[J]. Nature, 2013, 499(7457): 166-171.
[102] MARTINS P N, THERUVATH T P, NEUHAUS P. Rodent models of partial hepatectomies[J]. Liver Int., 2008, 28(1): 3-11.
[103] PARANJPE S, BOWEN W C, MARS W M, et al. Combined systemic elimination of MET and epidermal growth factor receptor signaling completely abolishes liver regeneration and leads to liver decompensation[J]. Hepatology, 2016, 64(5): 1711-1724.
[104] BAI H, FANG C W, SHI Y, et al. Mitochondria-derived H(2)O(2) triggers liver regeneration via FoxO3a signaling pathway after partial hepatectomy in mice[J]. Cell Death Dis., 2023, 14(3): 216-229.
[105] BARD-CHAPEAU E A, YUAN J, DROIN N, et al. Concerted functions of Gab1 and Shp2 in liver regeneration and hepatoprotection[J]. Mol. Cell. Biol., 2006, 26(12): 4664-4674.
[106] GU H, NEEL B G. The "Gab" in signal transduction[J]. Trends Cell Biol., 2003, 13(3): 122-130.
修改评论