[1] LI J, REN J, LI C, et al. High-adhesion anionic copolymer as solid-state electrolyte for dendrite-free Zn-ion battery[J]. Nano Research, 2022, 15(8): 7190-7198.
[2] WANG Z, LI H, TANG Z, et al. Hydrogel Electrolytes for Flexible Aqueous Energy Storage Devices[J]. Advanced Functional Materials, 28(48), 1804560
[3] CHEN M, XIE S, ZHAO X, et al. Aqueous zinc-ion batteries at extreme temperature: Mechanisms, challenges, and strategies[J]. Energy Storage Materials, 2022, 51: 683-718.
[4] GAO S, ZHANG Z, MAO F, et al. Advances and strategies of electrolyte regulation in Zn-ion batteries[J]. Materials Chemistry Frontiers, 2023,7, 3232-3258
[5] LUO Z, LI W, YAN J, et al. Roles of Ionic Liquids in Adjusting Nature of Ionogels: A Mini Review[J]. Advanced Functional Materials, 2022, 32(32),2203988
[6] DUNN B, KAMATH H, TARASCON J-M. Electrical Energy Storage for the Grid: A Battery of Choices[J]. Science, 2011, 334(6058): 928-935.
[7] GOODENOUGH J B, PARK K-S. The Li-Ion Rechargeable Battery: A Perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176.
[8] WANG N, ZHANG X, JU Z, et al. Thickness-independent scalable high-performane Li-S batteries with high areal sulfur loading via electron-enriched carbon framework[J]. Nature Communications, 2021, 12(1): 4519.
[9] WANG M, BAI Z, WANG N. Beyond electrode materials structure design: Binders play a vital role for battery application of micro-size electroactive materials[J]. Nan Research Energy, 2023, 2: e9120067.
[10] WANG M, BAI Z, YANG T, et al. Advances in High Sulfur Loading Cathodes for Practical Lithium-Sulfur Batteries[J]. Advanced Energy Materials, 2022, 12(39): 2201585.
[11] WANG N, WANG Y, BAI Z, et al. High-performance room-temperature sodium–sulfur battery enabled by electrocatalytic sodium polysulfides full conversion[J]. Energy & Environmental Science, 2020, 13(2): 562-570.
[12] WANG J, YAMADA Y, SODEYAMA K, et al. Fire-extinguishing organic electrolytes for safe batteries[J]. Nature Energy, 2018, 3(1): 22-29.
[13] MA R, XU Z, WANG X. Polymer Hydrogel Electrolytes for Flexible and Multifunctional Zinc‐Ion Batteries and Capacitors[J]. Energy & Environmental Materials, 2023 , 6(5):e1246.
[14] NIU F, BAI Z, MAO Y, et al. Rational design of MWCNTs@amorphous carbon@MoS2: Towards high performance cathode for aqueous zinc-ion batteries[J]. Chemical Engineering Journal, 2023, 453: 139933.
[15] QIN Y, LI H, HAN C, et al. Chemical Welding of the Electrode -Electrolyte Interface by Zn-Metal-Initiated In Situ Gelation for Ultralong-Life Zn-Ion Batteries[J]. Advanced Materials, 2022, 34(44): e2207118.
[16] YUAN Y, YANG J, LIU Z, et al. A Proton‐Barrier Separator Induced via Hofmeister Effect for High‐Performance Electrolytic MnO2–Zn Batteries[J]. Advanced Energy Materials,2022, 12(16): 2103705
[17] LI Y, DAI H. Recent advances in zinc–air batteries[J]. Chemical Society Reviews, 2014, 43(15): 5257-5275.
[18] GU P, ZHENG M, ZHAO Q, et al. Rechargeable zinc–air batteries: a promising way to green energy[J]. Journal of Materials Chemistry A, 2017, 5(17): 7651-7666.
[19] MCLARNON F R, CAIRNS E J. The Secondary Alkaline Zinc Electrode[J]. Journal of The Electrochemical Society, 1991, 138(2): 645.
[20] CHEN J, CHENG F. Combination of Lightweight Elements and Nanostructured Materials for Batteries[J]. Accounts of Chemical Research, 2009, 42(6): 713 -723.
[21] WANG X, WANG F, WANG L, et al. An Aqueous Rechargeable Zn//Co3O4 Battery with High Energy Density and Good Cycling Behavior[J]. Advanced Materials, 2016, 28(24): 4904-4911.
[22] SENGUTTUVAN P, HAN S-D, KIM S, et al. A High Power Rechargeable Nonaqueous Multivalent Zn/V2O5 Battery[J]. Advanced Energy Materials, 2016, 6(24): 1600826.
[23] LIU Z, CUI T, PULLETIKURTHI G, et al. Dendrite-Free Nanocrystalline Zinc Electrodeposition from an Ionic Liquid Containing Nickel Triflate for Rechargeable Zn-Based Batteries[J]. Angewandte Chemie International Edition, 2016, 55(8): 2889-2893.
[24] ZENG X, HAO J, WANG Z, et al. Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes[J]. Energy Storage Materials, 2019, 20: 410-437.
[25] KONAROV A, VORONINA N, JO J H, et al. Present and Future Perspective on Electrode Materials for Rechargeable Zinc-Ion Batteries[J]. ACS Energy Letters, 2018, 3(10): 2620-2640.
[26] YU W, LIU Y, LIU L, et al. Rechargeable aqueous Zn-LiMn2O4 hybrid batteries with high performance and safety for energy storage[J]. Journal of Energy Storage, 2022, 45: 103744.
[27] WU X, XIANG Y, PENG Q, et al. Green-low-cost rechargeable aqueous zinc-ion batteries using hollow porous spinel ZnMn2O4 as the cathode material[J]. Journal of Materials Chemistry A, 2017, 5(34): 17990-17997.
[28] WANG H, WANG W, REN Y, et al. A new cathode material Na 2V6O16·xH2O nanowire for lithium ion battery[J]. Journal of Power Sources, 2012, 199: 263 -269.
[29] NGUYEN D, GIM J, MATHEW V, et al. Plate-Type NaV3O8 Cathode by Solid State Reaction for Sodium-Ion Batteries[J]. ECS Electrochemistry Letters, 2014, 3(7): A69.
[30] DONG Y, LI S, ZHAO K, et al. Hierarchical zigzag Na 1.25V3O8 nanowires with topotactically encoded superior performance for sodium-ion battery cathodes[J]. Energy & Environmental Science, 2015, 8(4): 1267-1275.
[31] WANG H, LIU S, REN Y, et al. Ultrathin Na 1.08V3O8 nanosheets—a novel cathode material with superior rate capability and cycling stability for Li-ion batteries[J]. Energy & Environmental Science, 2012, 5(3): 6173-6179.
[32] KO Y W, TEH P F, PRAMANA S S, et al. Electrospun Single-Phase Na1.2V3O8 Materials with Tunable Morphologies as Cathodes for Rechargeable Lithium-Ion Batteries[J]. ChemElectroChem, 2015, 2(6): 837-846.
[33] LI Y, HUANG Z, KALAMBATE P K, et al. V2O5 nanopaper as a cathode material with high capacity and long cycle life for rechargeable aqueous zinc -ion battery[J]. Nano Energy, 2019, 60: 752-759.
[34] TANG B, SHAN L, LIANG S, et al. Issues and opportunities facing aqueous zinc -ion batteries[J]. Energy & Environmental Science, 2019, 12(11): 3288 -3304.
[35] DING J, DU Z, GU L, et al. Ultrafast Zn2+ Intercalation and Deintercalation in Vanadium Dioxide[J]. Advanced Materials, 2018, 30(26): 1800762.
[36] YAN M, HE P, CHEN Y, et al. Water-Lubricated Intercalation in V2O5·nH2O for High-Capacity and High-Rate Aqueous Rechargeable Zinc Batteries[J]. Advanced Materials, 2018, 30(1): 1703725.
[37] LIU Y, WU X. Review of vanadium-based electrode materials for rechargeable aqueous zinc ion batteries[J]. Journal of Energy Chemistry, 2021, 56: 223-237.
[38] KUNDU D, ADAMS B D, DUFFORT V, et al. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode[J]. Nature Energy, 2016, 1(10): 16119.
[39] XIA C, GUO J, LEI Y, et al. Rechargeable Aqueous Zinc-Ion Battery Based on Porous Framework Zinc Pyrovanadate Intercalation Cathode[J]. Advanced Materials, 2018, 30(5): 1705580.
[40] SONG M, TAN H, CHAO D, et al. Recent Advances in Zn-Ion Batteries[J]. Advanced Functional Materials, 2018, 28(41): 1802564.
[41] EUSTACE D J. Bromine Complexation in Zinc‐Bromine Circulating Batteries[J]. Journal of The Electrochemical Society, 1980, 127(3): 528.
[42] LIN D, LI Y. Recent Advances of Aqueous Rechargeable Zinc -Iodine Batteries: Challenges, Solutions, and Prospects[J]. Advanced Materials, 2022, 34(23): 2108856.
[43] CHEN G, KANG Y, YANG H, et al. Toward Forty Thousand-Cycle Aqueous Zinc-Iodine Battery: Simultaneously Inhibiting Polyiodides Shuttle and Stabilizing Zinc Anode through a Suspension Electrolyte[J]. Advanced Functional Materials, 2023, 33(28): 2300656.
[44] CHAI L, WANG X, HU Y, et al. In-MOF-Derived Hierarchically Hollow Carbon Nanostraws for Advanced Zinc-Iodine Batteries[J]. Advanced Science, 2022, 9(33): 2105063.
[45] CHEN H, LI X, FANG K, et al. Aqueous Zinc-Iodine Batteries: From Electrochemistry to Energy Storage Mechanism[J]. Advanced Energy Materials, 2023, 13(41): 2302187.
[46] KUNDU D, OBERHOLZER P, GLAROS C, et al. Organic Cathode for Aqueous Zn-Ion Batteries: Taming a Unique Phase Evolution toward Stable Electrochemical Cycling[J]. Chemistry of Materials, 2018, 30(11): 3874-3881.
[47] WAN F, ZHANG L, WANG X, et al. An Aqueous Rechargeable Zinc -Organic Battery with Hybrid Mechanism[J]. Advanced Functional Materials, 2018, 28(45): 1804975.
[48] SHI H-Y, YE Y-J, LIU K, et al. A Long-Cycle-Life Self-Doped Polyaniline Cathode for Rechargeable Aqueous Zinc Batteries[J]. Angewandte Chemie International Edition, 2018, 57(50): 16359-16363.
[49] WIPPERMANN K, SCHULTZE J W, KESSEL R, et al. The inhibition of zinc corrosion by bisaminotriazole and other triazole derivatives[J]. Corrosion Science, 1991, 32(2): 205-230.
[50] ZHANG N, CHENG F, LIU Y, et al. Cation-Deficient Spinel ZnMn2O4 Cathode in Zn(CF3SO3)2 Electrolyte for Rechargeable Aqueous Zn-Ion Battery[J]. Journal of the American Chemical Society, 2016, 138(39): 12894-12901.
[51] CHENG X-B, HOU T-Z, ZHANG R, et al. Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries[J]. Advanced Materials, 2016, 28(15): 2888-2895.
[52] YUFIT V, TARIQ F, EASTWOOD D S, et al. Operando Visualization and Multi-scale Tomography Studies of Dendrite Formation and Dissolution in Zinc Batteries[J]. Joule,2019, 3(2): 485-502.
[53] ZOU P, WANG Y, CHIANG S-W, et al. Directing lateral growth of lithium dendrites in micro-compartmented anode arrays for safe lithium metal batteries[J]. Nature Communications, 2018, 9(1): 464.
[54] HIGASHI S, LEE S W, LEE J S, et al. Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration[J]. Nature Communications, 2016, 7(1): 11801.
[55] LI H, XU C, HAN C, et al. Enhancement on Cycle Performance of Zn Anodes by Activated Carbon Modification for Neutral Rechargeable Zinc Ion Batteries[J]. Journal of The Electrochemical Society, 2015, 162(8): A1439.
[56] TSAI W L, HSU P C, HWU Y, et al. Building on bubbles in metal electrodeposition[J]. Nature, 2002, 417(6885): 139-139.
[57] LU J, XIONG T, ZHOU W, et al. Metal Nickel Foam as an Efficient and Stable Electrode for Hydrogen Evolution Reaction in Acidic Electrolyte under Reasonable Overpotentials[J]. ACS Applied Materials & Interfaces, 2016, 8(8): 5065 -5069.
[58] HAO J, LI B, LI X, et al. An In-Depth Study of Zn Metal Surface Chemistry for Advanced Aqueous Zn-Ion Batteries[J]. Advanced Materials, 2020, 32(34): 2003021.
[59] MUSTER T H, COLE I S. The protective nature of passivation films on zinc: surface charge[J]. Corrosion Science, 2004, 46(9): 2319-2335.
[60] LIU W, DONG L, JIANG B, et al. Layered vanadium oxides with proton and zinc ion insertion for zinc ion batteries[J]. Electrochimica Acta, 2019, 320: 134565.
[61] ZHAO Z, FAN X, DING J, et al. Challenges in Zinc Electrodes for Alkaline Zinc –Air Batteries: Obstacles to Commercialization[J]. ACS Energy Letters, 2019, 4(9): 2259-2270.
[62] AHMED M, YAZDI A Z, MITHA A, et al. Introducing Artificial Solid Electrolyte Interphase onto the Anode of Aqueous Lithium Energy Storage Systems[J]. ACS Applied Materials & Interfaces, 2018, 10(36): 30348-30356.
[63] YUAN D, ZHAO J, REN H, et al. Anion Texturing Towards Dendrite -Free Zn Anode for Aqueous Rechargeable Batteries[J]. Angewandte Chemie International Edition, 2021, 60(13): 7213-7219.
[64] XU C, LI B, DU H, et al. Energetic Zinc Ion Chemistry: The Rechargeable Zinc Ion Battery[J]. Angewandte Chemie International Edition, 2012, 51(4): 933 -935.
[65] TAO F, LIU Y, REN X, et al. Different surface modification methods and coating materials of zinc metal anode[J]. Journal of Energy Chemistry, 2022, 66: 397 -412.
[66] YANG Y, LIU C, LV Z, et al. Synergistic Manipulation of Zn2+ Ion Flux and Desolvation Effect Enabled by Anodic Growth of a 3D ZnF2 Matrix for Long-Lifespan and Dendrite-Free Zn Metal Anodes[J]. Advanced Materials, 2021, 33(11): 2007388.
[67] LU G, QIU H, DU X, et al. Heteroleptic Coordination Polymer Electrolytes Initiated by Lewis-Acidic Eutectics for Solid Zinc–Metal Batteries[J]. Chemistry of Materials, 2022, 34(19): 8975-8986.
[68] ZHANG C, HOLOUBEK J, WU X, et al. A ZnCl 2 water-in-salt electrolyte for a reversible Zn metal anode[J]. Chemical Communications, 2018, 54(100): 14097-14099.
[69] HUANG J, CHI X, DU Y, et al. Ultrastable Zinc Anodes Enabled by Anti-Dehydration Ionic Liquid Polymer Electrolyte for Aqueous Zn Batteries[J]. ACS Appl Mater Interfaces, 2021, 13(3): 4008-4016.
[70] GUO Y, ZHENG K, WAN P. A Flexible Stretchable Hydrogel Electrolyte for Healable All-in-One Configured Supercapacitors[J]. Small, 2018, 14(14): e1704497.
[71] XIE K, REN K, WANG Q, et al. In situ construction of zinc -rich polymeric solid–electrolyte interface for high-performance zinc anode[J]. eScience, 2023, 3(4): 100153
[72] HUANG Y, LI Z, PEI Z, et al. Solid-State Rechargeable Zn//NiCo and Zn-Air Batteries with Ultralong Lifetime and High Capacity: The Role of a Sodium Polyacrylate Hydrogel Electrolyte[J]. Advanced Energy Materials, 2018, 8(31): 1802288
[73] LIU Q, CHEN R, XU L, et al. Steric Molecular Combing Effect Enables Ultrafast Self-Healing Electrolyte in Quasi-Solid-State Zinc-Ion Batteries[J]. ACS Energy Letters, 2022, 7(8): 2825-2832.
[74] CHEN Z, WANG T, HOU Y, et al. Polymeric Single-Ion Conductors with Enhanced Side-Chain Motion for High-Performance Solid Zinc-Ion Batteries[J]. Advanced Materials, 2022, 34(50): e2207682.
[75] CUI Y, ZHAO Q, WU X, et al. Quasi-solid single Zn-ion conductor with high conductivity enabling dendrite-free Zn metal anode[J]. Energy Storage Materials, 2020, 27: 1-8.
[76] WAN F, ZHANG L, DAI X, et al. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers[J]. Nature Communications, 2018, 9(1): 1656.
修改评论