[1] LIU R, WANG Z L, FUKUDA K, et al. Flexible self-charging power sources [J]. Nature Reviews Materials, 2022, 7(11): 870-886.doi:10.1038/s41578-022-00441-0
[2] SHI X, CHEN L. Thermoelectric materials step up [J]. Nature Materials, 2016, 15(7): 691-692.doi:10.1038/nmat4643
[3] KüHN R, KOEPPEN O, SCHULZE P, et al. Comparison between a Plate and a Tube Bundle Geometry of a Simulated Thermoelectric Generator in the Exhaust Gas System of a Vehicle [J]. Materials Today: Proceedings, 2015, 2(2): 761-769.doi:https://doi.org/10.1016/j.matpr.2015.05.096
[4] CAO T, SHI X-L, CHEN Z-G. Advances in the design and assembly of flexible thermoelectric device [J]. Progress in Materials Science, 2023, 131: 101003.doi:https://doi.org/10.1016/j.pmatsci.2022.101003
[5] LI K, GARRISON G, ZHU Y, et al. Thermoelectric power generator: Field test at Bottle Rock geothermal power plant [J]. Journal of Power Sources, 2021, 485: 229266.doi:https://doi.org/10.1016/j.jpowsour.2020.229266
[6] KUROKI T, KABEYA K, MAKINO K, et al. Thermoelectric Generation Using Waste Heat in Steel Works [J]. Journal of Electronic Materials, 2014, 43(6): 2405-2410.doi:10.1007/s11664-014-3094-5
[7] ZHAO Y, WANG S, GE M, et al. Performance investigation of an intermediate fluid thermoelectric generator for automobile exhaust waste heat recovery [J]. Applied Energy, 2019, 239: 425-433.doi:https://doi.org/10.1016/j.apenergy.2019.01.233
[8] ZHANG Y, CLEARY M, WANG X, et al. High-temperature and high-power-density nanostructured thermoelectric generator for automotive waste heat recovery [J]. Energy Conversion and Management, 2015, 105: 946-950.doi:https://doi.org/10.1016/j.enconman.2015.08.051
[9] QI Y, MA X, JIANG P, et al. Review on heat-to-power conversion technologies for hypersonic vehicles [J]. Chinese Journal of Aeronautics, (2024), https://doi.org/10.1016/j.cja.2023.11.002
[10] TAO H, ZHOU J, MUSHARAVATI F. Techno-economic examination and optimization of a combined solar power and heating plant to achieve a clean energy conversion plant [J]. Process Safety and Environmental Protection, 2023, 174: 223-234.doi:https://doi.org/10.1016/j.psep.2023.03.082
[11] HOSEINZADEH S, ASSAREH E, RIAZ A, et al. Ocean thermal energy conversion (OTEC) system driven with solar-wind energy and thermoelectric based on thermo-economic analysis using multi-objective optimization technique [J]. Energy Reports, 2023, 10: 2982-3000.doi:https://doi.org/10.1016/j.egyr.2023.09.131
[12] GAO Y, ZHANG M, CUI Y, et al. A hierarchical thermal interface material based on a double self-assembly technique enables efficient output power via solar thermoelectric conversion [J]. Journal of Materials Chemistry A, 2022, 10(19): 10452-10465.doi:10.1039/D2TA00818A
[13] HE S, LEHMANN S, BAHRAMI A, et al. Current State-of-the-Art in the Interface/Surface Modification of Thermoelectric Materials [J]. Advanced Energy Materials, 2021, 11(37): 2101877.doi:https://doi.org/10.1002/aenm.202101877
[14] GAN Y X. Recent development of thermoelectric nanofibers and their composites [J]. Journal of Materiomics, 2023, 9(1): 99-130.doi:https://doi.org/10.1016/j.jmat.2022.08.009
[15] BROWN J S, DOMANSKI P A. Review of alternative cooling technologies [J]. Applied Thermal Engineering, 2014, 64(1-2): 252-262.doi:10.1016/j.applthermaleng.2013.12.014
[16] 周秀衡. 三元硫属化合物热电材料的合成与性能研究 [D]; 电子科技大学, 2020.
[17] ZHAO L, LI H, MENG J, et al. The recent advances in self-powered medical information sensors [J]. InfoMat, 2020, 2(1): 212-234.doi:https://doi.org/10.1002/inf2.12064
[18] YUAN C, KREß S, SADASHIVAIAH G, et al. Towards efficient design optimization of a miniaturized thermoelectric generator for electrically active implants via model order reduction and submodeling technique [J]. International Journal for Numerical Methods in Biomedical Engineering, 2020, 36(4): e3311.doi:https://doi.org/10.1002/cnm.3311
[19] WANG Y, ZHU W, DENG Y, et al. Self-powered wearable pressure sensing system for continuous healthcare monitoring enabled by flexible thin-film thermoelectric generator [J]. Nano Energy, 2020, 73: 104773.doi:https://doi.org/10.1016/j.nanoen.2020.104773
[20] CHEN W Y, SHI X L, ZOU J, et al. Thermoelectric Coolers: Progress, Challenges, and Opportunities [J]. Small Methods, 2022, 6(2): 2101235-2101255.doi:10.1002/smtd.202101235
[21] 陈立东,刘睿恒,史迅. 热电材料与器件 [M]. 北京:科学出版社, 2018.
[22] SONG Y, YU H, RAN Y, et al. High-performance flexible wavy-structure thermoelectric generator based on (Bi, Sb)2Te3 films for energy harvesting [J]. Journal of Power Sources, 2024, 600: 234260.doi:https://doi.org/10.1016/j.jpowsour.2024.234260
[23] CHEN Z G, HAN G, YANG L, et al. Nanostructured thermoelectric materials: Current research and future challenge [J]. Progress in Natural Science-Materials International, 2012, 22(6): 535-549.doi:10.1016/j.pnsc.2012.11.011
[24] GAYNER C, KAR K K. Recent advances in thermoelectric materials [J]. Progress in Materials Science, 2016, 83: 330-382.doi:10.1016/j.pmatsci.2016.07.002
[25] 王旭. 碲化铋基热电器件的结构设计与性能优化 [D]; 中国科学院上海硅酸盐所, 2020.
[26] 朱黎明. 碲化铋阻挡层的化学镀工艺与电化学分析及电连接铜研究 [D]; 桂林电子科技大学, 2022.
[27] LIU M, ZHANG X, TANG J, et al. Screening metallic diffusion barriers for weldable thermoelectric devices [J]. Science Bulletin, 2023, 68(21): 2536-2539.doi:https://doi.org/10.1016/j.scib.2023.09.030
[28] TASHIRO M, SUKENAGA S, IKEMOTO K, et al. Investigation of interfacial reactions between metallic substrates and n-type bulk bismuth telluride thermoelectric material [J]. Journal of Materials Science, 2021, 56(25): 14170-14180.doi:10.1007/s10853-021-06198-1
[29] ZHU W, WEI P, ZHANG J, et al. Fabrication and Excellent Performances of Bismuth Telluride-Based Thermoelectric Devices [J]. ACS Applied Materials & Interfaces, 2022, 14(10): 12276-12283.doi:10.1021/acsami.1c24627
[30] SHI T F, ZHENG J Y, WANG X, et al. Recent advances of electrodeposition of Bi2Te3 and its thermoelectric applications in miniaturized power generation and cooling [J]. International Materials Reviews, 2022, 68(5): 521-555.doi:10.1080/09506608.2022.2145359
[31] 黄高飞. Bi2Se3纳米热电材料的合成与物性研究 [D]; 新疆大学, 2016.
[32] 赵伟, 侯清润, 陈宜保, 等. 半导体硅的 Seebeck系数和电阻率测量 [J]. 物理与工程, 2007(01): 26-30.
[33] 管梦佳. M(M=Cu,Ag)2X(X=S,Se,Te)基热电化合物的结构及性能研究 [D]; 中国科学院大学(中国科学院上海硅酸盐研究所, 2019.
[34] 况志祥. Bi2Te3基热电器件防扩散阻挡层的制备及性能优化 [D]; 武汉科技大学, 2022.
[35] 张春笑. GeTe体系的相结构调控与热电性能研究 [D]; 深圳大学, 2019.
[36] 杨含欣. 碲化铋基微型热电器件的研究 [D]; 浙江大学, 2019.
[37] BARTHOLOMé K, BALKE B, ZUCKERMANN D, et al. Thermoelectric Modules Based on Half-Heusler Materials Produced in Large Quantities [J]. Journal of Electronic Materials, 2014, 43(6): 1775-1781.doi:10.1007/s11664-013-2863-x
[38] 樊希安. (Bi,Sb)2(Te,Se)3系热电材料的制备及性能优化研究 [D]; 华中科技大学, 2007.
[39] 刘培海. Bi2Te3基热电材料表面 Ni涂层的制备及性能优化 [D]; 武汉科技大学, 2020.
[40] TELKES M. Power Output of Thermoelectric Generators [J]. Journal of Applied Physics, 1954, 25(8): 1058-1059.doi:10.1063/1.1721793
[41] ROWE D M. CRC Handbook of Thermoelectrics [M]. CRC Press.
[42] HICKS L D, DRESSELHAUS M S. EFFECT OF QUANTUM-WELL STRUCTURES ON THE THERMOELECTRIC FIGURE OF MERIT [J]. Physical Review B, 1993, 47(19): 12727-12731.doi:10.1103/PhysRevB.47.12727
[43] TKACH A, RESENDE J, SARAVANAN K V, et al. Abnormal Grain Growth as a Method To Enhance the Thermoelectric Performance of Nb-Doped Strontium Titanate Ceramics [J]. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 15988-15994.doi:10.1021/acssuschemeng.8b03875
[44] KOUMOTO K, FUNAHASHI R, GUILMEAU E, et al. Thermoelectric Ceramics for Energy Harvesting [J]. Journal of the American Ceramic Society, 2013, 96(1): 1-23.doi:10.1111/jace.12076
[45] PEI Y Z, HEINZ N A, LALONDE A, et al. Combination of large nanostructures and complex band structure for high performance thermoelectric lead telluride [J]. Energy & Environmental Science, 2011, 4(9): 3640-3645.doi:10.1039/c1ee01928g
[46] GE Z H, JI Y H, QIU Y, et al. Enhanced thermoelectric properties of bismuth telluride bulk achieved by telluride-spilling during the spark plasma sintering process [J]. Scripta Materialia, 2018, 143: 90-93.doi:10.1016/j.scriptamat.2017.09.020
[47] HU L P, ZHU T J, LIU X H, et al. Point Defect Engineering of High-Performance Bismuth-Telluride-Based Thermoelectric Materials [J]. Advanced Functional Materials, 2014, 24(33): 5211-5218.doi:10.1002/adfm.201400474
[48] PARK K, AHN K, CHA J, et al. Extraordinary Off-Stoichiometric Bismuth Telluride for Enhanced n-Type Thermoelectric Power Factor [J]. Journal of the American Chemical Society, 2016, 138(43): 14458-14468.doi:10.1021/jacs.6b09222
[49] HEREMANS J P, JOVOVIC V, TOBERER E S, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states [J]. Science, 2008, 321(5888): 554-557.doi:10.1126/science.1159725
[50] BISWAS K, HE J Q, BLUM I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures [J]. Nature, 2012, 489(7416): 414-418.doi:10.1038/nature11439
[51] ORTIZ B R, CRAWFORD C M, MCKINNEY R W, et al. Thermoelectric properties of bromine filled CoSb3 skutterudite [J]. Journal of Materials Chemistry A, 2016, 4(21): 8444-8450.doi:10.1039/C6TA02116F
[52] ZHANG B, ZHENG T, WANG Q X, et al. Stable and low contact resistance electrical contacts for high temperature SiGe thermoelectric generators [J]. Scripta Materialia, 2018, 152: 36-39.doi:10.1016/j.scriptamat.2018.03.040
[53] ZHENG Z-H, SHI X-L, AO D-W, et al. Rational band engineering and structural manipulations inducing high thermoelectric performance in n-type CoSb3 thin films [J]. Nano Energy, 2021, 81: 105683.doi:https://doi.org/10.1016/j.nanoen.2020.105683
[54] WITTING I T, CHASAPIS T C, RICCI F, et al. The Thermoelectric Properties of Bismuth Telluride [J]. Advanced Electronic Materials, 2019, 5(6): 1800904.doi:https://doi.org/10.1002/aelm.201800904
[55] POUDEL B, HAO Q, MA Y, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys [J]. Science, 2008, 320(5876): 634-638.doi:10.1126/science.1156446
[56] SEO J, LEE C, PARK K. Thermoelectric properties of n-type SbI3-doped Bi2Te2.85Se0.15 compound fabricated by hot pressing and hot extrusion [J]. Journal of Materials Science, 2000, 35(6): 1549-1554.doi:10.1023/a:1004713920086
[57] GOLDSMID H J. RECENT STUDIES OF BISMUTH TELLURIDE AND ITS ALLOYS [J]. Journal of Applied Physics, 1961, 32: 2198-2210.doi:10.1063/1.1777042
[58] JAWORSKI C M, KULBACHINSKII V, HEREMANS J P. Resonant level formed by tin in Bi2Te3 and the enhancement of room-temperature thermoelectric power [J]. Physical Review B, 2009, 80(23): 233201.doi:10.1103/PhysRevB.80.233201
[59] 冯波, 张景双, 赵华东, 等. 碲化铋基热电材料电镀镍阻隔层工艺优化 [J]. 电镀与涂饰, 2022(07): 461-464.
[60] TANG H, BAI H, YANG X, et al. Thermal stability and interfacial structure evolution of Bi2Te3-based micro thermoelectric devices [J]. Journal of Alloys and Compounds, 2022, 896: 163090.doi:https://doi.org/10.1016/j.jallcom.2021.163090
[61] 张骐昊, 柏胜强, 陈立东. 热电发电器件与应用技术:现状、挑战与展望 [J]. 无机材料学报, 2019(03): 279-293.
[62] MIN E B, LING Y F, ZHAO L H, et al. Extremely Low Contact Resistivity of Bi2Te3-Based Modules Enabled by NiP-Based Alloy Barrier [J]. Acs Applied Materials & Interfaces, 2023, 15(50): 59066-59074.doi:10.1021/acsami.3c14646
[63] LIU W S, JIE Q, KIM H S, et al. Current progress and future challenges in thermoelectric power generation: From materials to devices [J]. Acta Materialia, 2015, 87: 357-376.doi:10.1016/j.actamat.2014.12.042
[64] 胡晓凯, 张双猛, 赵府, 等. 热电器件的界面和界面材料 [J]. 无机材料学报, 2019(03): 269-278.
[65] 刘硕. Bi2Te2.7Se0.3与铜电极钎焊工艺及机理研究 [D]; 哈尔滨工业大学, 2021.
[66] LIN Y, WU X, LI Y, et al. Revealing multi-stage growth mechanism of Kirkendall voids at electrode interfaces of Bi2Te3-based thermoelectric devices with in-situ TEM technique [J]. Nano Energy, 2022, 102: 117736.doi:10.1016/j.nanoen.2022.107736
[67] LIU W S, WANG H Z, WANG L J, et al. Understanding of the contact of nanostructured thermoelectric n-type Bi2Te2.7Se0.3legs for power generation applications [J]. Journal of Materials Chemistry A, 2013, 1(42): 13093-13100.doi:10.1039/c3ta13456c
[68] CHENG J X, HU X W, LI Q L. Influence of Ni and Cu electrodeposits on the interfacial reaction between SAC305 solder and the Bi 2(Te,Se)3thermoelectric material [J]. Journal of Materials Science-Materials in Electronics, 2019, 30(15): 14791-14804.doi:10.1007/s10854-019-01852-6
[69] CHAO W H, CHEN Y R, TSENG S C, et al. Enhanced thermoelectric properties of metal film on bismuth telluride-based materials [J]. Thin Solid Films, 2014, 570: 172-177.doi:10.1016/j.tsf.2014.04.025
[70] LEAVITT F A, BASS J C, ELSNER N B. Thermoelectric module with gapless eggcrate, US5875098 [P/OL].
[71] SUN Y, GUO F, FENG Y, et al. Performance boost for bismuth telluride thermoelectric generator via barrier layer based on low Young’s modulus and particle sliding [J]. Nature Communications, 2023, 14(1): 8085.doi:10.1038/s41467-023-43879-8
[72] ZYBALA R, KASZYCA K, SCHMIDT M, et al. The Properties of Bi 2Te3-Cu Joints Obtained by SPS/FAST Method [J]. Journal of Electronic Materials, 2019, 48(6): 3859-3865.doi:10.1007/s11664-019-07120-x
[73] LI S Y, YANG D H, TAN Q, et al. Evaluation of Electroplated Co-P Film as Diffusion Barrier Between In-48Sn Solder and SiC-Dispersed Bi2Te3 Thermoelectric Material [J]. Journal of Electronic Materials, 2015, 44(6): 2007-2014.doi:10.1007/s11664-015-3642-7
[74] SONG E D, SWARTZENTRUBER B S, KORIPELLA C R, et al. Highly Effective GeNi Alloy Contact Diffusion Barrier for BiSbTe Long-Term Thermal Exposure [J]. Acs Omega, 2019, 4(5): 9376-9382.doi:10.1021/acsomega.9b00551
[75] BAE N H, HAN S, LEE K E, et al. Diffusion at interfaces of micro thermoelectric devices [J]. Current Applied Physics, 2011, 11(5): S40-S44.doi:10.1016/j.cap.2011.05.036
[76] MIN E, LING Y, ZHAO L, et al. Extremely Low Contact Resistivity of Bi2Te3-Based Modules Enabled by NiP-Based Alloy Barrier [J]. ACS Applied Materia ls & Interfaces, 2023, 15(50): 59066-59074.doi:10.1021/acsami.3c14646
[77] GROMOV D G, SHTERN Y I, ROGACHEV M S, et al. Mo/Ni and Ni/Ta–W–N/Ni thin-film contact layers for (Bi,Sb)2Te3-based intermediate-temperature thermoelectric elements [J]. Inorganic Materials, 2016, 52(11): 1132-1136.doi:10.1134/S0020168516110030
[78] LIN W P, WESOLOWSKI D E, LEE C C. Barrier/bonding layers on bismuth telluride (Bi2Te3) for high temperature thermoelectric modules [J]. Journal of Materials Science: Materials in Electronics, 2011, 22(9): 1313-1320.doi:10.1007/s10854-011-0306-0
[79] NGUYEN Y N, KIM K-T, CHUNG S-H, et al. Performance of Bi 2Te3-based thermoelectric modules tailored by diffusion barriers [J]. Journal of Alloys and Compounds, 2022, 895: 162716.doi:https://doi.org/10.1016/j.jallcom.2021.162716
[80] ZEVALKINK A, GORAI P, MELE P, et al. Early Career Researchers Present Their Latest Work at the Virtual Conference on Thermoelectrics 2020 [J]. ACS Applied Energy Materials, 2020, 3(11): 10278-10281.doi:10.1021/acsaem.0c02698
[81] WANG C-H, HSIEH H-C, SUN Z-W, et al. Interfacial Stability in Bi2Te3 Thermoelectric Joints [J]. ACS Applied Materials & Interfaces, 2020, 12(24): 27001-27009.doi:10.1021/acsami.9b22853
[82] HU J, SHI Y N, LU K. Thermal analysis of electrodeposited nano-grained Ni-Mo alloys [J]. Scripta Materialia, 2018, 154: 182-185.doi:https://doi.org/10.1016/j.scriptamat.2018.05.036
[83] ZHOU J, FENG J, LI H, et al. Modulation of Vacancy Defects and Texture for High Performance n-Type Bi2Te3 via High Energy Refinement [J]. Small, 2023, 19(24): 2300654.doi:https://doi.org/10.1002/smll.202300654
[84] BIGOS A, VALENZA F, CZAJA P, et al. Interface Reaction between Tin Solder and Nanocrystalline Ni and Ni-Mo Coatings Obtained by Electrodeposition [J]. Journal of Materials Engineering and Performance, 2022, 31(9): 7061-7067.doi:10.1007/s11665-022-06840-2
[85] PARK J M, HYEON D Y, MA H-S, et al. Enhanced output power of thermoelectric modules with reduced contact resistance by adopting the optimized Ni diffusion barrier layer [J]. Journal of Alloys and Compounds, 2021, 884: 161119.doi:https://doi.org/10.1016/j.jallcom.2021.161119
[86] YOO B Y, HUANG C K, LIM J R, et al. Electrochemically deposited thermoelectric n-type Bi2Te3 thin films [J]. Electrochimica Acta, 2005, 50(22): 4371-4377.doi:10.1016/j.electacta.2005.02.016
[87] 王昱程. 镁合金表面电化学沉积镍铬合金的结构表征与测试 [D]; 长春理工大学, 2020.
[88] 张志鹏. 镍铬合金电镀工艺研究 [D]; 长春理工大学, 2011.
[89] ISPAS A, WAIBEL A, FRITZ M, et al. Influence of Plating Conditions on Nickel-Chromium Alloy Electrodeposition [J]. ECS Meeting Abstracts, 2020, MA2020-02(18): 1530.doi:10.1149/MA2020-02181530mtgabs
[90] LIU J H, YAN J X, PEI Z L, et al. Effects of Mo content on the grain size, hardness and anti–wear performance of electrodeposited nanocrystalline and amorphous Ni–Mo alloys [J]. Surface and Coatings Technology, 2020, 404: 126476.doi:https://doi.org/10.1016/j.surfcoat.2020.126476
[91] LIU J H, PEI Z L, SHI W B, et al. Studies on preparation, microstructure, mechanical properties and corrosion resistance of NiMo/micron-sized diamond composite coatings [J]. Surface and Coatings Technology, 2020, 385: 125451.doi:https://doi.org/10.1016/j.surfcoat.2020.125451
[92] YU-CHEN TSENG, HSUAN LEE, NGA YU HAU, et al. Electrodeposition of Ni on Bi2Te3 and Interfacial Reaction Between Sn and Ni-Coated Bi2Te3 [J]. Electron Mater, 2018, 47: 27-34.doi:10.1007/s11664-017-5777-1
[93] CHEN S-W, LIU Z-W, CHU H-S, et al. Interfacial reactions between Ni and Bi2(Se0.1Te0.9)3 and its constituent material systems [J]. Journal of Alloys and Compounds, 2018, 731: 111-117.doi:https://doi.org/10.1016/j.jallcom.2017.09.261
修改评论