中文版 | English
题名

基于冷冻电镜的锂金属电池界面结构工程及性能研究

其他题名
RESEARCH ON INTERPHASE STRUCTURE ENGINEERING AND PERFORMANCE OF LITHIUM METAL BATTERIES BASED ON CRYO-ELECTRON MICROSCOPY
姓名
姓名拼音
LI Menghao
学号
12049047
学位类型
博士
学位专业
0858 能源动力
学科门类/专业学位类别
08 工学
导师
罗光富
导师单位
材料科学与工程系;材料科学与工程系
论文答辩日期
2024-04-19
论文提交日期
2024-06-24
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

锂金属电池因其卓越的能量密度在电动汽车、便携式电子设备和大规模储能系统中具有巨大的应用潜力。然而,电解液副反应消耗、锂枝晶生长和正极材料结构退化等问题严重阻碍了锂金属电池的商业化应用。解决这些问题的关键在于构建理想的正负极电解质界面。因此,对锂金属负极固体电解质界面(Solid Electrolyte Interphase,SEI)及正极电解质界面(Cathode Electrolyte Interphase,CEI)的探索成为近年来锂金属电池的研究重点。然而,受限于传统表征手段的不足,目前对SEI以及CEI的认识还不够全面,如何通过合理的电解液或者界面工程来提高锂金属电池性能仍有待研究。基于此,本论文旨在借助冷冻电镜技术实现对不同体系锂金属电池界面的精细表征,揭示电解液、正负极电解质界面和电化学性能三者之间的内在联系。为推进高能量密度锂金属电池的产业化应用提供更多的实验参考和理论依据。

首先,研究了电解液溶剂化结构差异对锂金属负极SEI组成、结构以及电化学性能的影响。选取乙二醇二甲醚作为溶剂,双(2,2,2-三氟乙基)醚为稀释剂制备了低浓、高浓以及局部高浓三种不同溶剂化结构的醚类电解液。冷冻电镜表征揭示了低浓度电解液中沉积锂表面形成了具有碳酸锂晶粒杂乱分布的马赛克结构SEI,高浓电解液中形成了均匀的非晶SEI,而局部高浓电解液中形成了外部晶体层内部非晶的双层结构SEI。此外,电化学性能分析表明,独特的双层结构SEI有利于提升锂金属负极稳定性,实现了Li||Cu电池1000次保持99%左右库伦效率的稳定循环,并且Li||NCM523全电池在4.35 V截止电压下循环100圈后仍有96.5%的高容量保持率。

其次,基于对溶剂化结构和SEI的研究,开发了适用于高能量密度锂金属电池的新型电解液。乙腈具有优异的溶剂化和耐氧化能力,是一种极具潜力的高压电解液溶剂,然而较差的还原稳定性限制了其在锂金属电池中的应用。通过提高锂盐浓度并引入1,1,2,2-四氟乙基-2,2,3,3-四氟丙基醚作为稀释剂的策略来对电解液溶剂化结构以及SEI进行合理的调控,解决了乙腈与锂金属负极兼容性差的问题。界面的冷冻电镜表征及理论模拟计算结果表明,在乙腈局部高浓电解液中沉积锂表面形成了富无机的均匀非晶SEI,促进了锂金属电池的高效稳定循环。此外,该电解液有着高氧化稳定性(5.96 V)、良好的润湿性和阻燃性,Li||Cu电池有着高达99.5%的平均库伦效率。

再次,提出了一种简便的界面工程,通过将锂金属浸入有机试剂三乙胺硼烷中,成功构建了均匀、光滑且致密的人工SEI。冷冻电镜表征揭示了其具有独特的双层结构:外层为非晶层,内层为含有大量锂硼酸盐的晶体层。这一双层SEI可以允许快速的锂离子传输,并能够灵活适应锂沉积和剥离过程中的体积变化,有效抑制锂枝晶生长。得益于这种人工SEI,Li||Li对称电池在3 mA cm−2电流密度下可以稳定运行700小时以上,Li||LiFePO4全电池在1 C充放电倍率下循环500圈后容量保持率仍高达95%。

最后,以NCM811正极作为研究对象,使用冷冻电镜技术实现了对商业碳酸酯电解液衍生CEI精细结构的微观表征,并研究了CEI对正极材料稳定性和电化学性能的影响。在含碳酸乙烯酯的电解液中形成的以有机组分为主的非均匀CEI不利于阻碍电解液持续分解,导致正极颗粒出现大量的晶间裂纹和结构相变,因此Li||NCM811全电池循环200圈后容量保持率仅有72.2%。然而,通过将碳酸乙烯酯替换为氟代碳酸乙烯酯,成功在正极材料表面诱导形成了以氟化锂晶粒为主的富无机CEI,有效抑制了电解液持续分解,缓解了晶间裂纹以及结构相变问题,全电池容量保持率提升到90%。冷冻电镜在CEI微观结构表征中的成功应用对于设计更高能量密度、更稳定的锂金属电池具有重要的意义。

其他摘要

Lithium metal batteries hold tremendous potential for applications in electric vehicles, portable electronic devices, and large-scale energy storage systems due to their outstanding energy density. However, challenges such as electrolyte side reactions, lithium dendrite growth, and structural degradation of cathode materials impeded the commercialization of lithium metal batteries. Addressing these issues crucially depends on the formation of ideal interphases on both the anode and cathode sides. Therefore, extensive research efforts in recent years have focused on exploring the anode solid electrolyte interphase (SEI) and cathode electrolyte interphase (CEI) in lithium metal batteries. However, due to the limitations of traditional characterization techniques, the understanding of SEI and CEI remains incomplete, and there is still much research needed to improve lithium metal battery performance through rational electrolyte engineering and interface design. In this context, this paper aims to utilize cryogenic electron microscopy (Cryo-EM) technology to achieve detailed characterization of interphases in different lithium metal battery systems and unveil the intrinsic relationships among the electrolyte, anode, cathode, and electrochemical performance. The ultimate goal is to provide more experimental references and theoretical foundations for advancing the practical application of high-energy-density lithium metal batteries.

Firstly, the influence of solvation structure variations in electrolytes on the composition and structure of SEI, and the electrochemical performance of lithium metal anodes was investigated. Three different ether-based electrolytes with varying solvent structures were prepared, using 1,2-Dimethoxyethane as the solvent and bis(2,2,2-trifluoroethyl) ether as the diluent, to achieve low-concentration, high-concentration, and localized high-concentration solvation structures. Cryo-EM characterization revealed that in the low-concentration electrolyte, a mosaic-like SEI structure with randomly distributed Li2CO3 grains formed on the lithium metal surface. In the high-concentration electrolyte, a uniform amorphous SEI was observed. In the case of the localized high-concentration electrolyte, a unique dual-layer SEI structure emerged, consisting of an outer crystalline layer and an inner amorphous layer. Furthermore, electrochemical performance analysis indicated that this dual-layer SEI was conducive to enhancing the stability of lithium metal anodes. Specifically, it enabled stable cycling of Li||Cu cells with Coulombic efficiency maintained at around 99% over 1000 cycles and preserved a high-capacity retention rate of 96.5% for Li||NCM523 full cells even after 100 cycles at a cutoff voltage of 4.35 V.

Secondly, a novel electrolyte suitable for high-energy-density lithium metal batteries was developed based on the investigation of solvent structure and SEI. Acetonitrile, known for its excellent solvation and oxidative resistance properties, holds substantial potential as a high-voltage electrolyte solvent. However, its poor reduction stability limited its application in lithium metal batteries. By increasing the lithium salt concentration and introducing 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE) as a diluent, a rational strategy was employed to regulate the solvent structure and SEI, addressing the compatibility issues between acetonitrile and the lithium metal anode. Cryo-EM characterization of the interface, coupled with theoretical simulations, revealed that in the localized high-concentration acetonitrile-based electrolyte, a uniformly amorphous SEI was formed on the lithium surface, primarily composed of inorganic components. This structure facilitated efficient and stable cycling of lithium metal batteries. Additionally, the electrolyte exhibited high oxidative stability (5.96 V), good wettability, and flame-retardant properties, with Li||Cu cells achieving an average Coulombic efficiency of up to 99.5%.

Thirdly, a simple method was developed to successfully construct a uniform, smooth and dense artificial SEI by dipping lithium metal into the organic solvent triethylamine borane. At atomic resolution scale, Cryo-EM was used to characterize the unique two-layer structure of artificial SEI: the outer layer is an amorphous layer, and the inner layer is a crystal layer containing various lithium borates. This double-layer SEI structure allows rapid Li+ flux and can flexibly adapt to volume changes during lithium deposition and stripping, effectively inhibiting lithium dendrite growth. Benefit from this artificial SEI, Li||Li symmetric cells can stably operate for over 700 hours at a current density of 3 mA cm−2, while Li||LiFePO4 full cells exhibit an impressive capacity retention of up to 95% after 500 cycles at a 1 C charge/discharge rate.

Finally, utilizing NCM811 cathodes as the subject of investigation, microstructural characterization of CEI derived from commercial carbonate electrolytes was achieved using Cryo-EM. And, the impact of CEI on the stability and electrochemical performance of cathode materials was studied. In electrolytes containing ethylene carbonate the formation of an uneven CEI primarily composed of organic components was observed. This unfavorable CEI hinders the continuous suppression of electrolyte decomposition, leading to the occurrence of numerous intergranular cracks and structural phase transitions in the cathode particles. Consequently, Li||NCM811 full cells exhibited a capacity retention of only 72.2% after 200 cycles. However, by substituting ethylene carbonate with fluoroethylene carbonate, the induction of a predominantly inorganic CEI rich in LiF grains on the cathode material was successfully achieved. This transformation effectively mitigates electrolyte decomposition, alleviating issues related to intergranular cracks and structural phase transitions. As a result, the capacity retention of the full cell improved to 90%. The successful application of Cryo-EM in the microstructural characterization of CEI holds significant promise for the design of more efficient and stable lithium metal batteries.

关键词
其他关键词
语种
中文
培养类别
联合培养
入学年份
2020
学位授予年份
2024-06
参考文献列表

[1] JANEK J, ZEIER W G. A Solid Future for Battery Development [J]. Nature Energy, 2016, 1(9): 16141.
[2] JI X. A Paradigm of Storage Batteries [J]. Energy & Environmental Science, 2019, 12(11): 3203-24.
[3] BRUCE, DUNN, HARESH, et al. Electrical Energy Storage for the Grid: A Battery of Choices [J]. Science, 2011, 334(6058): 928-35.
[4] GREY C P, HALL D S. Prospects for Lithium-Ion Batteries and Beyond—a 2030 Vision [J]. Nature Communications, 2020, 11(1): 6279.
[5] SUN Y, LIU N, CUI Y. Promises and Challenges of Nanomaterials for Lithium-Based Rechargeable Batteries [J]. Nature Energy, 2016, 1(7): 16071.
[6] YE H, XIN S, YIN Y X, et al. Stable Li Plating/Stripping Electrochemistry Realized by a Hybrid Li Reservoir in Spherical Carbon Granules with 3d Conducting Skeletons [J]. Journal of the American Chemical Society, 2017, 139(16): 5916-22.
[7] MANTHIRAM A, FU Y, CHUNG S H, et al. Rechargeable Lithium-Sulfur Batteries [J]. Chemical Reviews, 2014, 114(23): 11751-87.
[8] WU X, WANG J, FEI D, et al. Lithium Metal Anodes for Rechargeable Batteries [J]. Energy & Environmental Science, 2014, 7(2): 513-37.
[9] JIE Y, REN X, CAO R, et al. Advanced Liquid Electrolytes for Rechargeable Li Metal Batteries [J]. Advanced Functional Materials, 2020, 30(25): 1910777.
[10] 刘凡凡, 张志文, 叶淑芬, et al. 锂金属负极的挑战与改善策略研究进展 [J]. 物理化学学报, 2021, 37(1): 2006021.
[11] LUO Y H, WEI H X, TANG L B, et al. Nickel-Rich and Cobalt-Free Layered Oxide Cathode Materials for Lithium Ion Batteries [J]. Energy Storage Materials, 2022, 50: 274-307.
[12] ZHAO C Z, ZHAO B C, YAN C, et al. Liquid Phase Therapy to Solid Electrolyte-Electrode Interface in Solid-State Li Metal Batteries: A Review [J]. Energy Storage Materials, 2020, 24: 75-84.
[13] KüHN S P, EDSTRöM K, WINTER M, et al. Face to Face at the Cathode Electrolyte Interphase: From Interface Features to Interphase Formation and Dynamics [J]. Advanced Materials Interfaces, 2022, 9(8): 2102078.
[14] MALEKI KHEIMEH SARI H, LI X. Controllable Cathode-Electrolyte Interface of Li[Ni0.8Co0.1Mn0.1]O2 for Lithium Ion Batteries: A Review [J]. Advanced Energy Materials, 2019, 9(39): 1901597.
[15] LI T, ZHANG X Q, SHI P, et al. Fluorinated Solid-Electrolyte Interphase in High-Voltage Lithium Metal Batteries [J]. Joule, 2019, 3(11): 2647-61.
[16] SHAN X, ZHONG Y, ZHANG L, et al. A Brief Review on Solid Electrolyte Interphase Composition Characterization Technology for Lithium Metal Batteries: Challenges and Perspectives [J]. The Journal of Physical Chemistry C, 2021, 125(35): 19060-80.
[17] WANG X, ZHANG M, ALVARADO J, et al. New Insights on the Structure of Electrochemically Deposited Lithium Metal and Its Solid Electrolyte Interphases Via Cryogenic TEM [J]. Nano Letters, 2017, 17(12): 7606-12.
[18] ZHANG X Q, CHENG X B, ZHANG Q. Advances in Interfaces between Li Metal Anode and Electrolyte [J]. Advanced Materials Interfaces, 2018, 5(2): 1701097.
[19] WU F, YUAN Y X, CHENG X B, et al. Perspectives for Restraining Harsh Lithium Dendrite Growth: Towards Robust Lithium Metal Anodes [J]. Energy Storage Materials, 2018, 15: 148-70.
[20] FENG X, OUYANG M, LIU X, et al. Thermal Runaway Mechanism of Lithium Ion Battery for Electric Vehicles: A Review [J]. Energy Storage Materials, 2018, 10: 246-67.
[21] LIU H, WEI Z, HE W, et al. Thermal Issues About Li-Ion Batteries and Recent Progress in Battery Thermal Management Systems: A Review [J]. Energy Conversion and Management, 2017, 150: 304-30.
[22] LI S, JIANG M, XIE Y, et al. Developing High-Performance Lithium Metal Anode in Liquid Electrolytes: Challenges and Progress [J]. Advanced Materials, 2018, 30(17): 1706375.
[23] XU W, WANG J, DING F, et al. Lithium Metal Anodes for Rechargeable Batteries [J]. Energy & Environmental Science, 2014, 7(2): 513-37.
[24] LIU D, BAI Z, LI M, et al. Developing High Safety Li-Metal Anodes for Future High-Energy Li-Metal Batteries: Strategies and Perspectives [J]. Chemical Society Reviews, 2020, 49(15): 5407-45.
[25] HE Y, REN X, XU Y, et al. Origin of Lithium Whisker Formation and Growth under Stress [J]. Nature Nanotechnology, 2019, 14(11): 1042-7.
[26] ZHANG L, YANG T, DU C, et al. Lithium Whisker Growth and Stress Generation in an in Situ Atomic Force Microscope-Environmental Transmission Electron Microscope Set-Up [J]. Nature Nanotechnology, 2020, 15(2): 94-8.
[27] 陈远亮, 袁兴平, 何翠萍, et al. 锂金属电池枝晶生长及其抑制机理研究 [J]. 中国有色金属学报, 2023: 1-19.
[28] MONROE C, NEWMAN J. Dendrite Growth in Lithium/Polymer Systems: A Propagation Model for Liquid Electrolytes under Galvanostatic Conditions [J]. Journal of the Electrochemical Society, 2003, 150(10): A1377.
[29] ELY D R, JANA A, GARCíA R E. Phase Field Kinetics of Lithium Electrodeposits [J]. Journal of Power Sources, 2014, 272: 581-94.
[30] YAN H, BIE Y, CUI X, et al. A Computational Investigation of Thermal Effect on Lithium Dendrite Growth [J]. Energy Conversion and Management, 2018, 161: 193-204.
[31] MU W, LIU X, WEN Z, et al. Numerical Simulation of the Factors Affecting the Growth of Lithium Dendrites [J]. Journal of Energy Storage, 2019, 26: 100921.
[32] GAO L, GUO Z. Phase-Field Simulation of Li Dendrites with Multiple Parameters Influence [J]. Computational Materials Science, 2020, 183: 109919.
[33] PELED E. The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems-the Solid Electrolyte Interphase Model [J]. Journal of the Electrochemical Society, 1979, 126(12): 2047-51.
[34] GOODENOUGH J B, KIM Y. Challenges for Rechargeable Li Batteries [J]. Chemistry of Materials, 2010, 22(3): 587-603.
[35] PELJO P, GIRAULT H H. Electrochemical Potential Window of Battery Electrolytes: The Homo–Lumo Misconception [J]. Energy & Environmental Science, 2018, 11(9): 2306-9.
[36] WU J, IHSAN-UL-HAQ M, CHEN Y, et al. Understanding Solid Electrolyte Interphases: Advanced Characterization Techniques and Theoretical Simulations [J]. Nano Energy, 2021, 89: 106489.
[37] PELED E, MENKIN S. SEI: Past, Present and Future [J]. Journal of the Electrochemical Society, 2017, 164(7): A1703.
[38] CHENG X B, ZHANG R, ZHAO C Z, et al. A Review of Solid Electrolyte Interphases on Lithium Metal Anode [J]. Advanced Science, 2016, 3(3): 1500213.
[39] ZHENG J, ENGELHARD M H, MEI D, et al. Electrolyte Additive Enabled Fast Charging and Stable Cycling Lithium Metal Batteries [J]. Nature Energy, 2017, 2(3): 1-8.
[40] WEBER R, GENOVESE M, LOULI A J, et al. Long Cycle Life and Dendrite-Free Lithium Morphology in Anode-Free Lithium Pouch Cells Enabled by a Dual-Salt Liquid Electrolyte [J]. Nature Energy, 2019, 4(8): 683-9.
[41] YU Z, WANG H, KONG X, et al. Molecular Design for Electrolyte Solvents Enabling Energy-Dense and Long-Cycling Lithium Metal Batteries [J]. Nature Energy, 2020, 5(7): 526-33.
[42] YAMADA Y, WANG J, KO S, et al. Advances and Issues in Developing Salt-Concentrated Battery Electrolytes [J]. Nature Energy, 2019, 4(4): 269-80.
[43] CAO X, JIA H, XU W, et al. Review-Localized High-Concentration Electrolytes for Lithium Batteries [J]. Journal of the Electrochemical Society, 2021, 168(1): 010522.
[44] HARUTA M, OKUBO T, MASUO Y, et al. Temperature Effects on Sei Formation and Cyclability of Si Nanoflake Powder Anode in the Presence of SEI-Forming Additives [J]. Electrochimica Acta, 2017, 224: 186-93.
[45] XU Y, WU H, JIA H, et al. Current Density Regulated Atomic to Nanoscale Process on Li Deposition and Solid Electrolyte Interphase Revealed by Cryogenic Transmission Electron Microscopy [J]. ACS Nano, 2020, 14(7): 8766-75.
[46] YUAN X, LIU B, MECKLENBURG M, et al. Ultrafast Deposition of Faceted Lithium Polyhedra by Outpacing Sei Formation [J]. Nature, 2023, 620(7972): 86-91.
[47] PELED, E. Advanced Model for Solid Electrolyte Interphase [SEI] Electrodes in Liquid and Polymer Electrolytes [J]. Journal of the Electrochemical Society, 1997, 144(8): L208-L.
[48] AURBACH D. Review of Selected Electrode-Solution Interactions Which Determine the Performance of Li and Li Ion Batteries [J]. Journal of Power Sources, 2000, 89(2): 206-18.
[49] AURBACH D. Electrode–Solution Interactions in Li-Ion Batteries: A Short Summary and New Insights [J]. Journal of Power Sources, 2003, 119-121: 497-503.
[50] TRIPATHI A M, SU W N, HWANG B J. In Situ Analytical Techniques for Battery Interface Analysis [J]. Chemical Society Reviews, 2018, 47(3): 736-851.
[51] PELED E, TOW D B, MERSON A, et al. Composition, Depth Profiles and Lateral Distribution of Materials in the SEI Built on HOPG-TOF SIMS and XPS Studies [J]. Journal of Power Sources, 2001, 97: 52-7.
[52] LIU X, WANG D, WAN L. Progress of Electrode/Electrolyte Interfacial Investigation of Li-Ion Batteries Via in Situ Scanning Probe Microscopy [J]. Science Bulletin, 2015, 60(9): 839-49.
[53] ZHANG J, WANG R, YANG X, et al. Direct Observation of Inhomogeneous Solid Electrolyte Interphase on Mno Anode with Atomic Force Microscopy and Spectroscopy [J]. Nano Letters, 2012, 12(4): 2153-7.
[54] ZHOU S, ZHENG Q, TANG S, et al. Liquid Cell Electrochemical TEM: Unveiling the Real-Time Interfacial Reactions of Advanced Li-Metal Batteries [J]. The Journal of Chemical Physics, 2022, 157(23).
[55] YASIN G, ARIF M, MEHTAB T, et al. Understanding and Suppression Strategies toward Stable Li Metal Anode for Safe Lithium Batteries [J]. Energy Storage Materials, 2020, 25: 644-78.
[56] XU K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries [J]. Chemical Reviews, 2004, 104(10): 4303-417.
[57] DING F, XU W, CHEN X, et al. Effects of Carbonate Solvents and Lithium Salts on Morphology and Coulombic Efficiency of Lithium Electrode [J]. Journal of the Electrochemical Society, 2013, 160(10): A1894-A901.
[58] LI Y, HUANG W, LI Y, et al. Correlating Structure and Function of Battery Interphases at Atomic Resolution Using Cryoelectron Microscopy [J]. Joule, 2018, 2(10): 2167-77.
[59] 邱亚明, 黄华文. 锂金属电池电解液的研究进展 [J]. 广东化工, 2023, 50(20): 41-3.
[60] YANG H, GUO C, NAVEED A, et al. Recent Progress and Perspective on Lithium Metal Anode Protection [J]. Energy Storage Materials, 2018, 14: 199-221.
[61] GOFER Y, BEN ZION M, AURBACH D. Solutions of LiAsF6 in 1,3-Dioxolane for Secondary Lithium Batteries [J]. Journal of Power Sources, 1992, 39(2): 163-78.
[62] MIAO R, YANG J, XU Z, et al. A New Ether-Based Electrolyte for Dendrite-Free Lithium-Metal Based Rechargeable Batteries [J]. Scientific Reports, 2016, 6(1): 1-9.
[63] NIE M, LUCHT B L. Role of Lithium Salt on Solid Electrolyte Interface (SEI) Formation and Structure in Lithium Ion Batteries [J]. Journal of the Electrochemical Society, 2014, 161(6): A1001.
[64] KIM H, WU F, LEE J T, et al. In Situ Formation of Protective Coatings on Sulfur Cathodes in Lithium Batteries with LIFSI-Based Organic Electrolytes [J]. Advanced Energy Materials, 2015, 5(6): 1401792.
[65] MIAO R, YANG J, FENG X, et al. Novel Dual-Salts Electrolyte Solution for Dendrite-Free Lithium-Metal Based Rechargeable Batteries with High Cycle Reversibility [J]. Journal of Power Sources, 2014, 271: 291-7.
[66] ZHANG X Q, CHENG X B, CHEN X, et al. Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries [J]. Advanced Functional Materials, 2017, 27(10): 1605989.
[67] HAN B, ZHANG Z, ZOU Y, et al. Poor Stability of Li2CO3 in the Solid Electrolyte Interphase of a Lithium-Metal Anode Revealed by Cryo-Electron Microscopy [J]. Advanced Materials, 2021, 33(22): 2100404.
[68] DING F, XU W, GRAFF G L, et al. Dendrite-Free Lithium Deposition Via Self-Healing Electrostatic Shield Mechanism [J]. Journal of the American Chemical Society, 2013, 135(11): 4450-6.
[69] ZHANG L, LING M, FENG J, et al. The Synergetic Interaction between LiNO3 and Lithium Polysulfides for Suppressing Shuttle Effect of Lithium-Sulfur Batteries [J]. Energy Storage Materials, 2018, 11: 24-9.
[70] QIAN J, HENDERSON W A, XU W, et al. High Rate and Stable Cycling of Lithium Metal Anode [J]. Nature Communications, 2015, 6(1): 6362.
[71] ZENG Z, MURUGESAN V, HAN K S, et al. Non-Flammable Electrolytes with High Salt-to-Solvent Ratios for Li-Ion and Li-Metal Batteries [J]. Nature Energy, 2018, 3(8): 674-81.
[72] CHEN S, ZHENG J, MEI D, et al. High-Voltage Lithium-Metal Batteries Enabled by Localized High-Concentration Electrolytes [J]. Advanced Materials, 2018, 30(21): 1706102.
[73] REN X, ZOU L, CAO X, et al. Enabling High-Voltage Lithium-Metal Batteries under Practical Conditions [J]. Joule, 2019, 3(7): 1662-76.
[74] LU G, NAI J, LUAN D, et al. Surface Engineering toward Stable Lithium Metal Anodes [J]. Science Advances, 2023, 9(14): eadf1550.
[75] XU R, CHENG X B, YAN C, et al. Artificial Interphases for Highly Stable Lithium Metal Anode [J]. Matter, 2019, 1(2): 317-44.
[76] UMEDA G A, MENKE E, RICHARD M, et al. Protection of Lithium Metal Surfaces Using Tetraethoxysilane [J]. Journal of Materials Chemistry, 2011, 21(5): 1593-9.
[77] LI N W, YIN Y X, YANG C P, et al. An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes [J]. Advanced Materials, 2016, 28(9): 1853-8.
[78] CHEN L, CHEN K S, CHEN X, et al. Novel Ald Chemistry Enabled Low-Temperature Synthesis of Lithium Fluoride Coatings for Durable Lithium Anodes [J]. ACS Applied Materials & Interfaces, 2018, 10(32): 26972-81.
[79] LI Y, SUN Y, PEI A, et al. Robust Pinhole-Free Li3N Solid Electrolyte Grown from Molten Lithium [J]. ACS Central Science, 2018, 4(1): 97-104.
[80] YUAN H, DING X, LIU T, et al. A Review of Concepts and Contributions in Lithium Metal Anode Development [J]. Materials Today, 2022, 53: 173-96.
[81] LOPEZ J, PEI A, OH J Y, et al. Effects of Polymer Coatings on Electrodeposited Lithium Metal [J]. Journal of the American Chemical Society, 2018, 140(37): 11735-44.
[82] XU R, ZHANG X Q, CHENG X B, et al. Artificial Soft-Rigid Protective Layer for Dendrite-Free Lithium Metal Anode [J]. Advanced Functional Materials, 2018, 28(8): 1705838.
[83] LIU Y, LIN D, YUEN P Y, et al. An Artificial Solid Electrolyte Interphase with High Li-Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes [J]. Advanced Materials, 2017, 29(10): 1605531.
[84] 刘洋洋, 王旭阳, 徐谢宇, et al. 锂金属负极用集流体改性研究及进展 [J]. 储能科学与技术, 2021, 10(04): 1261-72.
[85] CHENG Y, CHEN J, CHEN Y, et al. Lithium Host:Advanced Architecture Components for Lithium Metal Anode [J]. Energy Storage Materials, 2021, 38: 276-98.
[86] ZHANG R, SHEN X, CHENG X B, et al. The Dendrite Growth in 3D Structured Lithium Metal Anodes: Electron or Ion Transfer Limitation? [J]. Energy Storage Materials, 2019, 23: 556-65.
[87] YUN Q, HE Y-B, LV W, et al. Chemical Dealloying Derived 3D Porous Current Collector for Li Metal Anodes [J]. Advanced Materials, 2016, 28(32): 6932-9.
[88] WANG S H, YIN Y X, ZUO T T, et al. Stable Li Metal Anodes Via Regulating Lithium Plating/Stripping in Vertically Aligned Microchannels [J]. Advanced Materials, 2017, 29(40): 1703729.
[89] LUAN J, ZHANG Q, YUAN H, et al. Plasma-Strengthened Lithiophilicity of Copper Oxide Nanosheet-Decorated Cu Foil for Stable Lithium Metal Anode [J]. Advanced Science, 2019, 6(20): 1901433.
[90] GU Y, XU H-Y, ZHANG X-G, et al. Lithiophilic Faceted Cu(100) Surfaces: High Utilization of Host Surface and Cavities for Lithium Metal Anodes [J]. Angewandte Chemie International Edition, 2019, 58(10): 3092-6.
[91] WANG C, WANG X, ZHANG R, et al. Resolving Complex Intralayer Transition Motifs in High-Ni-Content Layered Cathode Materials for Lithium-Ion Batteries [J]. Nature Materials, 2023, 22(2): 235-41.
[92] DING Y, CANO Z P, YU A, et al. Automotive Li-Ion Batteries: Current Status and Future Perspectives [J]. Electrochemical Energy Reviews, 2019, 2(1): 1-28.
[93] KIM J M, ZHANG X, ZHANG J G, et al. A Review on the Stability and Surface Modification of Layered Transition-Metal Oxide Cathodes [J]. Materials Today, 2021, 46: 155-82.
[94] MANTHIRAM A, MURUGAN A V, SARKAR A, et al. Nanostructured Electrode Materials for Electrochemical Energy Storage and Conversion [J]. Energy & Environmental Science, 2008, 1(6): 621-38.
[95] DIXIT M, MARKOVSKY B, SCHIPPER F, et al. Origin of Structural Degradation During Cycling and Low Thermal Stability of Ni-Rich Layered Transition Metal-Based Electrode Materials [J]. The Journal of Physical Chemistry C, 2017, 121(41): 22628-36.
[96] LIN F, MARKUS I M, NORDLUND D, et al. Surface Reconstruction and Chemical Evolution of Stoichiometric Layered Cathode Materials for Lithium-Ion Batteries [J]. Nature Communications, 2014, 5(1): 3529.
[97] JUNG S K, GWON H, HONG J, et al. Understanding the Degradation Mechanisms of LiNi0.5Co0.2Mn0.3O2 Cathode Material in Lithium Ion Batteries [J]. Advanced Energy Materials, 2014, 4(1): 1300787.
[98] LIN Q, GUAN W, MENG J, et al. A New Insight into Continuous Performance Decay Mechanism of Ni-Rich Layered Oxide Cathode for High Energy Lithium Ion Batteries [J]. Nano Energy, 2018, 54: 313-21.
[99] LEE S, SU L, MESNIER A, et al. Cracking Vs. Surface Reactivity in High-Nickel Cathodes for Lithium-Ion Batteries [J]. Joule, 2023, 7(11): 2430-44.
[100] KONDRAKOV A O, SCHMIDT A, XU J, et al. Anisotropic Lattice Strain and Mechanical Degradation of High-and Low-Nickel Ncm Cathode Materials for Li-Ion Batteries [J]. The Journal of Physical Chemistry C, 2017, 121(6): 3286-94.
[101] SCHIPPER F, ERICKSON E M, ERK C, et al. Recent Advances and Remaining Challenges for Lithium Ion Battery Cathodes [J]. Journal of the Electrochemical Society, 2016, 164(1): A6220.
[102] YU F, YUAN Z, YANG T, et al. Contagious Degradation of a Chemically Active Surface on the Cathodes of Lithium-Ion Batteries [J]. Physical Chemistry Chemical Physics, 2018, 20(28): 19195-207.
[103] GUéGUEN A, STREICH D, HE M, et al. Decomposition of LiPF6 in High Energy Lithium-Ion Batteries Studied with Online Electrochemical Mass Spectrometry [J]. Journal of the Electrochemical Society, 2016, 163(6): A1095.
[104] LI Y, LI W, SHIMIZU R, et al. Elucidating the Effect of Borate Additive in High-Voltage Electrolyte for Li-Rich Layered Oxide Materials [J]. Advanced Energy Materials, 2022, 12(11): 2103033.
[105] SUN Y K, LEE Y S, YOSHIO M, et al. Synthesis and Electrochemical Properties of Zno-Coated LiNi0.5Mn1.5O4 Spinel as 5 V Cathode Material for Lithium Secondary Batteries [J]. Electrochemical and Solid-State Letters, 2002, 5(5): A99.
[106] WOO S U, YOON C S, AMINE K, et al. Significant Improvement of Electrochemical Performance of AlF3-Coated Li [Ni0.8Co0.1Mn0.1]O2 Cathode Materials [J]. Journal of the Electrochemical Society, 2007, 154(11): A1005.
[107] LIANG L, HU G, JIANG F, et al. Electrochemical Behaviours of SiO2-Coated Li Ni0.8Co0.1Mn0.1O2 Cathode Materials by a Novel Modification Method [J]. Journal of Alloys and Compounds, 2016, 657: 570-81.
[108] XIONG X, WANG Z, YIN X, et al. A Modified Lif Coating Process to Enhance the Electrochemical Performance Characteristics of LiNi0.8Co0.1Mn0.1O2 Cathode Materials [J]. Materials Letters, 2013, 110: 4-9.
[109] JAN S S, NURGUL S, SHI X, et al. Improvement of Electrochemical Performance of LiNi0.8Co0.1Mn0.1O2 Cathode Material by Graphene Nanosheets Modification [J]. Electrochimica Acta, 2014, 149: 86-93.
[110] SUN Y K, MYUNG S T, SHIN H S, et al. Novel Core-Shell-Structured Li [(Ni0.8Co0.2)0.8(Ni0.5Mn0.5)0.2]O2 Via Coprecipitation as Positive Electrode Material for Lithium Secondary Batteries [J]. The Journal of Physical Chemistry B, 2006, 110(13): 6810-5.
[111] SUN Y K, MYUNG S T, PARK B C, et al. High-Energy Cathode Material for Long-Life and Safe Lithium Batteries [J]. Nature Materials, 2009, 8(4): 320-4.
[112] HUA C, DU K, TAN C, et al. Study of Full Concentration-Gradient Li (Ni0.8Co0.1Mn0.1)O2 Cathode Material for Lithium Ion Batteries [J]. Journal of Alloys and Compounds, 2014, 614: 264-70.
[113] YUE P, WANG Z, GUO H, et al. A Low-Temperature Fluorine Substitution on the Electrochemical Performance of Layered LiNi0.8Co0.1Mn0.1O2-Zfz Cathode Materials [J]. Electrochimica Acta, 2013, 92: 1-8.
[114] LI L j, LI X h, WANG Z x, et al. Synthesis, Structural and Electrochemical Properties of LiNi0.79Co0.1Mn0.1Cr0.01O2 Via Fast Co-Precipitation [J]. Journal of Alloys and Compounds, 2010, 507(1): 172-7.
[115] WU Y, LIU X, WANG L, et al. Development of Cathode-Electrolyte-Interphase for Safer Lithium Batteries [J]. Energy Storage Materials, 2021, 37: 77-86.
[116] MA L, GLAZIER S, PETIBON R, et al. A Guide to Ethylene Carbonate-Free Electrolyte Making for Li-Ion Cells [J]. Journal of the Electrochemical Society, 2016, 164(1): A5008.
[117] XIA J, MADEC L, MA L, et al. Study of Triallyl Phosphate as an Electrolyte Additive for High Voltage Lithium-Ion Cells [J]. Journal of Power Sources, 2015, 295: 203-11.
[118] LI J, LI W, YOU Y, et al. Extending the Service Life of High-Ni Layered Oxides by Tuning the Electrode-Electrolyte Interphase [J]. Advanced Energy Materials, 2018, 8(29): 1801957.
[119] PAN R, JO E, CUI Z, et al. Degradation Pathways of Cobalt-Free LiNiO2 Cathode in Lithium Batteries [J]. Advanced Functional Materials, 2023, 33(10): 2211461.
[120] SUO L, XUE W, GOBET M, et al. Fluorine-Donating Electrolytes Enable Highly Reversible 5-V-Class Li Metal Batteries [J]. Proceedings of the National Academy of Sciences, 2018, 115(6): 1156-61.
[121] FAN X, CHEN L, JI X, et al. Highly Fluorinated Interphases Enable High-Voltage Li-Metal Batteries [J]. Chem, 2018, 4(1): 174-85.
[122] TAYLOR K A, GLAESER R M. Electron Diffraction of Frozen, Hydrated Protein Crystals [J]. Science, 1974, 186(4168): 1036-7.
[123] 张晓凯, 张丛丛, 刘忠民, et al. 冷冻电镜技术的应用与发展 [J]. 科学技术与工程, 2019, 19(24): 9-17.
[124] LI Y, LI Y, PEI A, et al. Atomic Structure of Sensitive Battery Materials and Interfaces Revealed by Cryo-Electron Microscopy [J]. Science, 2017, 358(6362): 506-10.
[125] WENG S, LI Y, WANG X. Cryo-Em for Battery Materials and Interfaces: Workflow, Achievements, and Perspectives [J]. Iscience, 2021, 24(12).
[126] 翁素婷, 刘泽鹏, 杨高靖, et al. 冷冻电镜表征锂电池中的辐照敏感材料 [J]. 储能科学与技术, 2022, 11(03): 760-80.
[127] YOUSAF M, NASEER U, IMRAN A, et al. Visualization of Battery Materials and Their Interfaces/Interphases Using Cryogenic Electron Microscopy [J]. Materials Today, 2022, 58: 238-74.
[128] CAO X, REN X, ZOU L, et al. Monolithic Solid-Electrolyte Interphases Formed in Fluorinated Orthoformate-Based Electrolytes Minimize Li Depletion and Pulverization [J]. Nature Energy, 2019, 4(9): 796-805.
[129] LIU Y, LIN D, LI Y, et al. Solubility-Mediated Sustained Release Enabling Nitrate Additive in Carbonate Electrolytes for Stable Lithium Metal Anode [J]. Nature Communications, 2018, 9(1): 3656.
[130] XU Y, WU H, HE Y, et al. Atomic to Nanoscale Origin of Vinylene Carbonate Enhanced Cycling Stability of Lithium Metal Anode Revealed by Cryo-Transmission Electron Microscopy [J]. Nano Letters, 2019, 20(1): 418-25.
[131] YUAN S, WENG S, WANG F, et al. Revisiting the Designing Criteria of Advanced Solid Electrolyte Interphase on Lithium Metal Anode under Practical Condition [J]. Nano Energy, 2021, 83: 105847.
[132] WANG J, HUANG W, PEI A, et al. Improving Cyclability of Li Metal Batteries at Elevated Temperatures and Its Origin Revealed by Cryo-Electron Microscopy [J]. Nature Energy, 2019, 4(8): 664-70.
[133] GAO Y, YAN Z, GRAY J L, et al. Polymer-Inorganic Solid-Electrolyte Interphase for Stable Lithium Metal Batteries under Lean Electrolyte Conditions [J]. Nature Materials, 2019, 18(4): 384-9.
[134] CHENG Y, WANG Z, CHEN J, et al. Catalytic Chemistry Derived Artificial Solid Electrolyte Interphase for Stable Lithium Metal Anodes Working at 20 mA cm-2 and 20 mAh cm-2 [J]. Angewandte Chemie, 2023: e202305723.
[135] CHENG D, WYNN T A, WANG X, et al. Unveiling the Stable Nature of the Solid Electrolyte Interphase between Lithium Metal and Lipon Via Cryogenic Electron Microscopy [J]. Joule, 2020, 4(11): 2484-500.
[136] LU X, CHENG Y, LI M, et al. A Stable Polymer-Based Solid-State Lithium Metal Battery and Its Interfacial Characteristics Revealed by Cryogenic Transmission Electron Microscopy [J]. Advanced Functional Materials, 2023, 33(12): 2212847.
[137] HAN B, ZOU Y, XU G, et al. Additive Stabilization of SEI on Graphite Observed Using Cryo-Electron Microscopy [J]. Energy & Environmental Science, 2021, 14(9): 4882-9.
[138] HE Y, ZHEN C, LI M, et al. Differing Electrolyte Implication on Anion and Cation Intercalation into Graphite [J]. ACS Nano, 2023, 17(21): 21730-8.
[139] YANG Y, YIN Y, DAVIES D M, et al. Liquefied Gas Electrolytes for Wide-Temperature Lithium Metal Batteries [J]. Energy & Environmental Science, 2020, 13(7): 2209-19.
[140] ALVARADO J, SCHROEDER M A, ZHANG M, et al. A Carbonate-Free, Sulfone-Based Electrolyte for High-Voltage Li-Ion Batteries [J]. Materials Today, 2018, 21(4): 341-53.
[141] ZHANG Z, YANG J, HUANG W, et al. Cathode-Electrolyte Interphase in Lithium Batteries Revealed by Cryogenic Electron Microscopy [J]. Matter, 2021, 4(1): 302-12.
[142] ADAMS B D, ZHENG J, REN X, et al. Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries [J]. Advanced Energy Materials, 2018, 8(7): 1702097.
[143] ABRAHAM M J, MURTOLA T, SCHULZ R, et al. Gromacs: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers [J]. SoftwareX, 2015, 1: 19-25.
[144] JORGENSEN W L, MAXWELL D S, TIRADO-RIVES J. Development and Testing of the Opls All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids [J]. Journal of the American Chemical Society, 1996, 118(45): 11225-36.
[145] BUSSI G, DONADIO D, PARRINELLO M. Canonical Sampling through Velocity Rescaling [J]. The Journal of Chemical Physics, 2007, 126(1): 014101.
[146] BERENDSEN H J, POSTMA J v, VAN GUNSTEREN W F, et al. Molecular Dynamics with Coupling to an External Bath [J]. The Journal of Chemical Physics, 1984, 81(8): 3684-90.
[147] KRESSE G, FURTHMüLLER J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set [J]. Physical Review B, 1996, 54(16): 11169.
[148] BLöCHL P E. Projector Augmented-Wave Method [J]. Physical Review B, 1994, 50(24): 17953.
[149] PERDEW J P, BURKE K, ERNZERHOF M. Generalized Gradient Approximation Made Simple [J]. Physical Review Letters, 1996, 77(18): 3865.
[150] GRIMME S, ANTONY J, EHRLICH S, et al. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu [J]. The Journal of Chemical Physics, 2010, 132(15): 154104.
[151] NOSé S. A Unified Formulation of the Constant Temperature Molecular Dynamics Methods [J]. The Journal of Chemical Physics, 1984, 81(1): 511-9.
[152] CHENOWETH K, VAN DUIN A C, GODDARD W A. Reaxff Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation [J]. The Journal of Physical Chemistry A, 2008, 112(5): 1040-53.
[153] SHEN X, ZHANG X Q, DING F, et al. Advanced Electrode Materials in Lithium Batteries: Retrospect and Prospect [J]. Energy Material Advances, 2021, 2021: 205324.
[154] LIN D, LIU Y, CUI Y. Reviving the Lithium Metal Anode for High-Energy Batteries [J]. Nature Nanotechnology, 2017, 12(3): 194-206.
[155] LI Q, ZHU S, LU Y. 3D Porous Cu Current Collector/Li-Metal Composite Anode for Stable Lithium-Metal Batteries [J]. Advanced Functional Materials, 2017, 27(18): 1606422.
[156] WANG S, XIONG P, ZHANG J, et al. Recent Progress on Flexible Lithium Metal Batteries: Composite Lithium Metal Anodes and Solid-State Electrolytes [J]. Energy Storage Materials, 2020, 29: 310-31.
[157] KIM M S, RYU J H, LIM Y R, et al. Langmuir-Blodgett Artificial Solid-Electrolyte Interphases for Practical Lithium Metal Batteries [J]. Nature Energy, 2018, 3(10): 889-98.
[158] WU H, JIA H, WANG C, et al. Recent Progress in Understanding Solid Electrolyte Interphase on Lithium Metal Anodes [J]. Advanced Energy Materials, 2021, 11(5): 2003092.
[159] ZHENG J, YAN P, MEI D, et al. Highly Stable Operation of Lithium Metal Batteries Enabled by the Formation of a Transient High-Concentration Electrolyte Layer [J]. Advanced Energy Materials, 2016, 6(8): 1502151.
[160] LIU Y, ZHEN Y, LI T, et al. High-Capacity, Dendrite-Free, and Ultrahigh-Rate Lithium-Metal Anodes Based on Monodisperse N-Doped Hollow Carbon Nanospheres [J]. Small, 2020, 16(44): 2004770.
[161] VAITKUS A, MERKYS A, GRAZULIS S. Validation of the Crystallography Open Database Using the Crystallographic Information Framework [J]. Journal of Applied Crystallography, 2021, 54(2): 661-72.
[162] JAIN A, ONG S P, HAUTIER G, et al. Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation [J]. APL Materials, 2013, 1(1): 011002.
[163] KAHLE L, MARCOLONGO A, MARZARI N. High-Throughput Computational Screening for Solid-State Li-Ion Conductors [J]. Energy & Environmental Science, 2020, 13(3): 928-48.
[164] SEDLMAIR J, GLEBER S C, PETH C, et al. Characterization of Refractory Organic Substances by Nexafs Using a Compact X-Ray Source [J]. Journal of Soils and Sediments, 2012, 12: 24-34.
[165] WANG J, ZHOU J, HU Y, et al. Chemical Interaction and Imaging of Single Co3O4/Graphene Sheets Studied by Scanning Transmission X-Ray Microscopy and X-Ray Absorption Spectroscopy [J]. Energy & Environmental Science, 2013, 6(3): 926-34.
[166] SHEN X, ZHANG X Q, DING F, et al. Advanced Electrode Materials in Lithium Batteries: Retrospect and Prospect [J]. Energy Material Advances, 2021, 2021: 1205324.
[167] LUO F, LIU B, ZHENG J, et al. Nano-Silicon/Carbon Composite Anode Materials Towards Practical Application for Next Generation Li-Ion Batteries [J]. Journal of the Electrochemical Society, 2015, 162(14): A2509.
[168] GUO Y, LI H, ZHAI T. Reviving Lithium-Metal Anodes for Next-Generation High-Energy Batteries [J]. Advanced Materials, 2017, 29(29): 1700007.
[169] LUO Z, QIU X, LIU C, et al. Interfacial Challenges Towards Stable Li Metal Anode [J]. Nano Energy, 2021, 79: 105507.
[170] ZHANG Y, ZUO T-T, POPOVIC J, et al. Towards Better Li Metal Anodes: Challenges and Strategies [J]. Materials Today, 2020, 33: 56-74.
[171] ZHANG X, WANG A, LIU X, et al. Dendrites in Lithium Metal Anodes: Suppression, Regulation, and Elimination [J]. Accounts of Chemical Research, 2019, 52(11): 3223-32.
[172] XIAO P, YUN X, CHEN Y, et al. Insights into the Solvation Chemistry in Liquid Electrolytes for Lithium-Based Rechargeable Batteries [J]. Chemical Society Reviews, 2023, 52: 5255-316.
[173] RIDDICK J A, BUNGER W B, SAKANO T K. Organic Solvents: Physical Properties and Methods of Purification [J]. 1986.
[174] SUáREZ-HERRERA M F, COSTA-FIGUEIREDO M, FELIU J M. Voltammetry of Basal Plane Platinum Electrodes in Acetonitrile Electrolytes: Effect of the Presence of Water [J]. Langmuir, 2012, 28(11): 5286-94.
[175] XIAO L, ZENG Z, LIU X, et al. Stable Li Metal Anode with “Ion-Solvent-Coordinated” Nonflammable Electrolyte for Safe Li Metal Batteries [J]. ACS Energy Letters, 2019, 4(2): 483-8.
[176] ZHANG Q, ZHOU C, LI M, et al. Revealing Structural Insights of Solid Electrolyte Interphase in High-Concentrated Non-Flammable Electrolyte for Li Metal Batteries by Cryo-TEM [J]. Small, 2023, 19(28): 2300849.
[177] YAMADA Y, FURUKAWA K, SODEYAMA K, et al. Unusual Stability of Acetonitrile-Based Superconcentrated Electrolytes for Fast-Charging Lithium-Ion Batteries [J]. Journal of the American Chemical Society, 2014, 136(13): 5039-46.
[178] PENG Z, CAO X, GAO P, et al. High-Power Lithium Metal Batteries Enabled by High-Concentration Acetonitrile-Based Electrolytes with Vinylene Carbonate Additive [J]. Advanced Functional Materials, 2020, 30(24): 2001285.
[179] CAO X, JIA H, XU W, et al. Localized High-Concentration Electrolytes for Lithium Batteries [J]. Journal of the Electrochemical Society, 2021, 168(1): 010522.
[180] ZHU C, SUN C, LI R, et al. Anion-Diluent Pairing for Stable High-Energy Li Metal Batteries [J]. ACS Energy Letters, 2022, 7(4): 1338-47.
[181] BEĆ K B, KARCZMIT D, KWAŚNIEWICZ M, et al. Overtones of ΝC≡N Vibration as a Probe of Structure of Liquid CH3CN, Cd3CN, and CCl3CN: Combined Infrared, Near-Infrared, and Raman Spectroscopic Studies with Anharmonic Density Functional Theory Calculations [J]. The Journal of Physical Chemistry A, 2019, 123(20): 4431-42.
[182] KERNER M, PLYLAHAN N, SCHEERS J, et al. Thermal Stability and Decomposition of Lithium Bis (Fluorosulfonyl) Imide (LiFSI) Salts [J]. RSC Advances, 2016, 6(28): 23327-34.
[183] LAFFONT L, MONTHIOUX M, SERIN V, et al. An Eels Study of the Structural and Chemical Transformation of Pan Polymer to Solid Carbon [J]. Carbon, 2004, 42(12-13): 2485-94.
[184] WANG F, GRAETZ J, MORENO M S, et al. Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy [J]. ACS Nano, 2011, 5(2): 1190-7.
[185] DONG W, HAKUKAWA H, YAMAHIRA N, et al. Mechanism of Reactive Compatibilization of PLLA/PVDF Blends Investigated by Scanning Transmission Electron Microscopy with Energy-Dispersive X-Ray Spectrometry and Electron Energy Loss Spectroscopy [J]. ACS Applied Polymer Materials, 2019, 1(4): 815-24.
[186] YU L, LI M, WEN J, et al. (S) TEM-EELS as an Advanced Characterization Technique for Lithium-Ion Batteries [J]. Materials Chemistry Frontiers, 2021, 5(14): 5186-93.
[187] ESHETU G G, JUDEZ X, LI C, et al. Lithium Azide as an Electrolyte Additive for All-Solid-State Lithium-Sulfur Batteries [J]. Angewandte Chemie International Edition, 2017, 56(48): 15368-72.
[188] GUO S, DENG Z, LI M, et al. Phosphorus-Doped Carbon Nitride Tubes with a Layered Micro-Nanostructure for Enhanced Visible-Light Photocatalytic Hydrogen Evolution [J]. Angewandte Chemie International Edition, 2016, 55(5): 1830-4.
[189] LI N W, YIN Y X, LI J Y, et al. Passivation of Lithium Metal Anode Via Hybrid Ionic Liquid Electrolyte toward Stable Li Plating/Stripping [J]. Advanced Science, 2017, 4(2): 1600400.
[190] YAN C, YAO Y X, CHEN X, et al. Lithium Nitrate Solvation Chemistry in Carbonate Electrolyte Sustains High-Voltage Lithium Metal Batteries [J]. Angewandte Chemie International Edition, 2018, 57(43): 14055-9.
[191] SEH Z W, WANG H, HSU P C, et al. Facile Synthesis of Li2S-Polypyrrole Composite Structures for High-Performance Li2S Cathodes [J]. Energy & Environmental Science, 2014, 7(2): 672-6.
[192] CHASTAIN J, KING JR R C. Handbook of X-Ray Photoelectron Spectroscopy [J]. Perkin-Elmer Corporation, 1992, 40: 221.
[193] KUMAR R, LIU J, HWANG J Y, et al. Recent Research Trends in Li-S Batteries [J]. Journal of Materials Chemistry A, 2018, 6(25): 11582-605.
[194] SHEN X, LIU H, CHENG X B, et al. Beyond Lithium Ion Batteries: Higher Energy Density Battery Systems Based on Lithium Metal Anodes [J]. Energy Storage Materials, 2018, 12: 161-75.
[195] LOPEZ C M, VAUGHEY J T, DEES D W. Morphological Transitions on Lithium Metal Anodes [J]. Journal of the Electrochemical Society, 2009, 156(9): A726.
[196] GAO X, ZHOU Y-N, HAN D, et al. Thermodynamic Understanding of Li-Dendrite Formation [J]. Joule, 2020, 4(9): 1864-79.
[197] ZHANG X, YANG Y, ZHOU Z. Towards Practical Lithium-Metal Anodes [J]. Chemical Society Reviews, 2020, 49(10): 3040-71.
[198] REN W, DING C, FU X, et al. Advanced Gel Polymer Electrolytes for Safe and Durable Lithium Metal Batteries: Challenges, Strategies, and Perspectives [J]. Energy Storage Materials, 2021, 34: 515-35.
[199] HAN Y, LIU B, XIAO Z, et al. Interface Issues of Lithium Metal Anode for High-Energy Batteries: Challenges, Strategies, and Perspectives [J]. InfoMat, 2021, 3(2): 155-74.
[200] CHENG Y, CHEN J, CHEN Y, et al. Lithium Host: Advanced Architecture Components for Lithium Metal Anode [J]. Energy Storage Materials, 2021, 38: 276-98.
[201] ZHANG H, ESHETU G G, JUDEZ X, et al. Electrolyte Additives for Lithium Metal Anodes and Rechargeable Lithium Metal Batteries: Progress and Perspectives [J]. Angewandte Chemie International Edition, 2018, 57(46): 15002-27.
[202] LIU J, BAO Z, CUI Y, et al. Pathways for Practical High-Energy Long-Cycling Lithium Metal Batteries [J]. Nature Energy, 2019, 4(3): 180-6.
[203] WANG H, LIU J, HE J, et al. Pseudo-Concentrated Electrolytes for Lithium Metal Batteries [J]. eScience, 2022, 2(5): 557-65.
[204] SANG J, TANG B, PAN K, et al. Current Status and Enhancement Strategies for All-Solid-State Lithium Batteries [J]. Accounts of Materials Research, 2023, 4(6): 472–483.
[205] HUANG K, BI S, KURT B, et al. Regulation of SEI Formation by Anion Receptors to Achieve Ultra-Stable Lithium-Metal Batteries [J]. Angewandte Chemie, 2021, 133(35): 19381-9.
[206] LIU S, JI X, PIAO N, et al. An Inorganic-Rich Solid Electrolyte Interphase for Advanced Lithium-Metal Batteries in Carbonate Electrolytes [J]. Angewandte Chemie International Edition, 2021, 60(7): 3661-71.
[207] TAN S J, WANG W P, TIAN Y F, et al. Advanced Electrolytes Enabling Safe and Stable Rechargeable Li-Metal Batteries: Progress and Prospects [J]. Advanced Functional Materials, 2021, 31(45): 2105253.
[208] ZHAI P, LIU L, GU X, et al. Interface Engineering for Lithium Metal Anodes in Liquid Electrolyte [J]. Advanced Energy Materials, 2020, 10(34): 2001257.
[209] LIU G, LU W. A Model of Concurrent Lithium Dendrite Growth, SEI Growth, SEI Penetration and Regrowth [J]. Journal of the Electrochemical Society, 2017, 164(9): A1826.
[210] WOOD K N, TEETER G. XPS on Li-Battery-Related Compounds: Analysis of Inorganic SEI Phases and a Methodology for Charge Correction [J]. ACS Applied Energy Materials, 2018, 1(9): 4493-504.
[211] PILLI A, JONES J, CHUGH N, et al. Atomic Layer Deposition of BN as a Novel Capping Barrier for B2O3 [J]. Journal of Vacuum Science & Technology A, 2019, 37(4): 041505.
[212] JAIN A, ONG S P, HAUTIER G, et al. Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation [J]. APL Materials, 2013, 1(1): 011002.
[213] SUN H H, DOLOCAN A, WEEKS J A, et al. In Situ Formation of a Multicomponent Inorganic-Rich SEI Layer Provides a Fast Charging and High Specific Energy Li-Metal Battery [J]. Journal of Materials Chemistry A, 2019, 7(30): 17782-9.
[214] XIA L, LEE S, JIANG Y, et al. Fluorinated Electrolytes for Li-Ion Batteries: The Lithium Difluoro (Oxalato) Borate Additive for Stabilizing the Solid Electrolyte Interphase [J]. ACS Omega, 2017, 2(12): 8741-50.
[215] DING N, SUMBOJA A, YIN X, et al. Reversible Lithium Electroplating for High-Energy Rechargeable Batteries [J]. Journal of the Electrochemical Society, 2023, 170(1): 010540.
[216] HUANG S, WANG S, HU G, et al. Modulation of Solid Electrolyte Interphase of Lithium-Ion Batteries by LiDFOB and LiBOB Electrolyte Additives [J]. Applied Surface Science, 2018, 441: 265-71.
[217] KRANZ S, KRANZ T, JAEGERMANN A G, et al. Is the Solid Electrolyte Interphase in Lithium-Ion Batteries Really a Solid Electrolyte? Transport Experiments on Lithium Bis(Oxalato)Borate-Based Model Interphases [J]. Journal of Power Sources, 2019, 418: 138-46.
[218] LIU J, WANG J, NI Y, et al. Recent Breakthroughs and Perspectives of High-Energy Layered Oxide Cathode Materials for Lithium Ion Batteries [J]. Materials Today, 2021, 43: 132-65.
[219] BREDDEMANN U, KROSSING I. Review on Synthesis, Characterization, and Electrochemical Properties of Fluorinated Nickel-Cobalt-Manganese Cathode Active Materials for Lithium-Ion Batteries [J]. ChemElectroChem, 2020, 7(6): 1389-430.
[220] PARK G T, RYU H H, NOH T C, et al. Microstructure-Optimized Concentration-Gradient NCM Cathode for Long-Life Li-Ion Batteries [J]. Materials Today, 2022, 52: 9-18.
[221] CHENG F, ZHANG X, QIU Y, et al. Tailoring Electrolyte to Enable High-Rate and Super-Stable Ni-Rich Ncm Cathode Materials for Li-Ion Batteries [J]. Nano Energy, 2021, 88: 106301.
[222] ZHUANG G V, CHEN G, SHIM J, et al. Li2CO3 in LiNi0.8Co0.15Al0.05O2 Cathodes and Its Effects on Capacity and Power [J]. Journal of Power Sources, 2004, 134(2): 293-7.
[223] ZHANG Y, KATAYAMA Y, TATARA R, et al. Revealing Electrolyte Oxidation Via Carbonate Dehydrogenation on Ni-Based Oxides in Li-Ion Batteries by in Situ Fourier Transform Infrared Spectroscopy [J]. Energy & Environmental Science, 2020, 13(1): 183-99.
[224] HU L, ZHANG Z, AMINE K. Fluorinated Electrolytes for Li-Ion Battery: An Fec-Based Electrolyte for High Voltage LiNi0.5Mn1.5O4/Graphite Couple [J]. Electrochemistry Communications, 2013, 35: 76-9.
[225] WANG L, MA Y, QU Y, et al. Influence of Fluoroethylene Carbonate as Co-Solvent on the High-Voltage Performance of LiNi1/3Co1/3Mn1/3O2 Cathode for Lithium-Ion Batteries [J]. Electrochimica Acta, 2016, 191: 8-15.

所在学位评定分委会
化学
国内图书分类号
O646.21
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765925
专题南方科技大学
工学院_材料科学与工程系
推荐引用方式
GB/T 7714
李梦浩. 基于冷冻电镜的锂金属电池界面结构工程及性能研究[D]. 哈尔滨. 哈尔滨工业大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12049047-李梦浩-材料科学与工程(17382KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李梦浩]的文章
百度学术
百度学术中相似的文章
[李梦浩]的文章
必应学术
必应学术中相似的文章
[李梦浩]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。