[1] JANEK J, ZEIER W G. A Solid Future for Battery Development [J]. Nature Energy, 2016, 1(9): 16141.
[2] JI X. A Paradigm of Storage Batteries [J]. Energy & Environmental Science, 2019, 12(11): 3203-24.
[3] BRUCE, DUNN, HARESH, et al. Electrical Energy Storage for the Grid: A Battery of Choices [J]. Science, 2011, 334(6058): 928-35.
[4] GREY C P, HALL D S. Prospects for Lithium-Ion Batteries and Beyond—a 2030 Vision [J]. Nature Communications, 2020, 11(1): 6279.
[5] SUN Y, LIU N, CUI Y. Promises and Challenges of Nanomaterials for Lithium-Based Rechargeable Batteries [J]. Nature Energy, 2016, 1(7): 16071.
[6] YE H, XIN S, YIN Y X, et al. Stable Li Plating/Stripping Electrochemistry Realized by a Hybrid Li Reservoir in Spherical Carbon Granules with 3d Conducting Skeletons [J]. Journal of the American Chemical Society, 2017, 139(16): 5916-22.
[7] MANTHIRAM A, FU Y, CHUNG S H, et al. Rechargeable Lithium-Sulfur Batteries [J]. Chemical Reviews, 2014, 114(23): 11751-87.
[8] WU X, WANG J, FEI D, et al. Lithium Metal Anodes for Rechargeable Batteries [J]. Energy & Environmental Science, 2014, 7(2): 513-37.
[9] JIE Y, REN X, CAO R, et al. Advanced Liquid Electrolytes for Rechargeable Li Metal Batteries [J]. Advanced Functional Materials, 2020, 30(25): 1910777.
[10] 刘凡凡, 张志文, 叶淑芬, et al. 锂金属负极的挑战与改善策略研究进展 [J]. 物理化学学报, 2021, 37(1): 2006021.
[11] LUO Y H, WEI H X, TANG L B, et al. Nickel-Rich and Cobalt-Free Layered Oxide Cathode Materials for Lithium Ion Batteries [J]. Energy Storage Materials, 2022, 50: 274-307.
[12] ZHAO C Z, ZHAO B C, YAN C, et al. Liquid Phase Therapy to Solid Electrolyte-Electrode Interface in Solid-State Li Metal Batteries: A Review [J]. Energy Storage Materials, 2020, 24: 75-84.
[13] KüHN S P, EDSTRöM K, WINTER M, et al. Face to Face at the Cathode Electrolyte Interphase: From Interface Features to Interphase Formation and Dynamics [J]. Advanced Materials Interfaces, 2022, 9(8): 2102078.
[14] MALEKI KHEIMEH SARI H, LI X. Controllable Cathode-Electrolyte Interface of Li[Ni0.8Co0.1Mn0.1]O2 for Lithium Ion Batteries: A Review [J]. Advanced Energy Materials, 2019, 9(39): 1901597.
[15] LI T, ZHANG X Q, SHI P, et al. Fluorinated Solid-Electrolyte Interphase in High-Voltage Lithium Metal Batteries [J]. Joule, 2019, 3(11): 2647-61.
[16] SHAN X, ZHONG Y, ZHANG L, et al. A Brief Review on Solid Electrolyte Interphase Composition Characterization Technology for Lithium Metal Batteries: Challenges and Perspectives [J]. The Journal of Physical Chemistry C, 2021, 125(35): 19060-80.
[17] WANG X, ZHANG M, ALVARADO J, et al. New Insights on the Structure of Electrochemically Deposited Lithium Metal and Its Solid Electrolyte Interphases Via Cryogenic TEM [J]. Nano Letters, 2017, 17(12): 7606-12.
[18] ZHANG X Q, CHENG X B, ZHANG Q. Advances in Interfaces between Li Metal Anode and Electrolyte [J]. Advanced Materials Interfaces, 2018, 5(2): 1701097.
[19] WU F, YUAN Y X, CHENG X B, et al. Perspectives for Restraining Harsh Lithium Dendrite Growth: Towards Robust Lithium Metal Anodes [J]. Energy Storage Materials, 2018, 15: 148-70.
[20] FENG X, OUYANG M, LIU X, et al. Thermal Runaway Mechanism of Lithium Ion Battery for Electric Vehicles: A Review [J]. Energy Storage Materials, 2018, 10: 246-67.
[21] LIU H, WEI Z, HE W, et al. Thermal Issues About Li-Ion Batteries and Recent Progress in Battery Thermal Management Systems: A Review [J]. Energy Conversion and Management, 2017, 150: 304-30.
[22] LI S, JIANG M, XIE Y, et al. Developing High-Performance Lithium Metal Anode in Liquid Electrolytes: Challenges and Progress [J]. Advanced Materials, 2018, 30(17): 1706375.
[23] XU W, WANG J, DING F, et al. Lithium Metal Anodes for Rechargeable Batteries [J]. Energy & Environmental Science, 2014, 7(2): 513-37.
[24] LIU D, BAI Z, LI M, et al. Developing High Safety Li-Metal Anodes for Future High-Energy Li-Metal Batteries: Strategies and Perspectives [J]. Chemical Society Reviews, 2020, 49(15): 5407-45.
[25] HE Y, REN X, XU Y, et al. Origin of Lithium Whisker Formation and Growth under Stress [J]. Nature Nanotechnology, 2019, 14(11): 1042-7.
[26] ZHANG L, YANG T, DU C, et al. Lithium Whisker Growth and Stress Generation in an in Situ Atomic Force Microscope-Environmental Transmission Electron Microscope Set-Up [J]. Nature Nanotechnology, 2020, 15(2): 94-8.
[27] 陈远亮, 袁兴平, 何翠萍, et al. 锂金属电池枝晶生长及其抑制机理研究 [J]. 中国有色金属学报, 2023: 1-19.
[28] MONROE C, NEWMAN J. Dendrite Growth in Lithium/Polymer Systems: A Propagation Model for Liquid Electrolytes under Galvanostatic Conditions [J]. Journal of the Electrochemical Society, 2003, 150(10): A1377.
[29] ELY D R, JANA A, GARCíA R E. Phase Field Kinetics of Lithium Electrodeposits [J]. Journal of Power Sources, 2014, 272: 581-94.
[30] YAN H, BIE Y, CUI X, et al. A Computational Investigation of Thermal Effect on Lithium Dendrite Growth [J]. Energy Conversion and Management, 2018, 161: 193-204.
[31] MU W, LIU X, WEN Z, et al. Numerical Simulation of the Factors Affecting the Growth of Lithium Dendrites [J]. Journal of Energy Storage, 2019, 26: 100921.
[32] GAO L, GUO Z. Phase-Field Simulation of Li Dendrites with Multiple Parameters Influence [J]. Computational Materials Science, 2020, 183: 109919.
[33] PELED E. The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems-the Solid Electrolyte Interphase Model [J]. Journal of the Electrochemical Society, 1979, 126(12): 2047-51.
[34] GOODENOUGH J B, KIM Y. Challenges for Rechargeable Li Batteries [J]. Chemistry of Materials, 2010, 22(3): 587-603.
[35] PELJO P, GIRAULT H H. Electrochemical Potential Window of Battery Electrolytes: The Homo–Lumo Misconception [J]. Energy & Environmental Science, 2018, 11(9): 2306-9.
[36] WU J, IHSAN-UL-HAQ M, CHEN Y, et al. Understanding Solid Electrolyte Interphases: Advanced Characterization Techniques and Theoretical Simulations [J]. Nano Energy, 2021, 89: 106489.
[37] PELED E, MENKIN S. SEI: Past, Present and Future [J]. Journal of the Electrochemical Society, 2017, 164(7): A1703.
[38] CHENG X B, ZHANG R, ZHAO C Z, et al. A Review of Solid Electrolyte Interphases on Lithium Metal Anode [J]. Advanced Science, 2016, 3(3): 1500213.
[39] ZHENG J, ENGELHARD M H, MEI D, et al. Electrolyte Additive Enabled Fast Charging and Stable Cycling Lithium Metal Batteries [J]. Nature Energy, 2017, 2(3): 1-8.
[40] WEBER R, GENOVESE M, LOULI A J, et al. Long Cycle Life and Dendrite-Free Lithium Morphology in Anode-Free Lithium Pouch Cells Enabled by a Dual-Salt Liquid Electrolyte [J]. Nature Energy, 2019, 4(8): 683-9.
[41] YU Z, WANG H, KONG X, et al. Molecular Design for Electrolyte Solvents Enabling Energy-Dense and Long-Cycling Lithium Metal Batteries [J]. Nature Energy, 2020, 5(7): 526-33.
[42] YAMADA Y, WANG J, KO S, et al. Advances and Issues in Developing Salt-Concentrated Battery Electrolytes [J]. Nature Energy, 2019, 4(4): 269-80.
[43] CAO X, JIA H, XU W, et al. Review-Localized High-Concentration Electrolytes for Lithium Batteries [J]. Journal of the Electrochemical Society, 2021, 168(1): 010522.
[44] HARUTA M, OKUBO T, MASUO Y, et al. Temperature Effects on Sei Formation and Cyclability of Si Nanoflake Powder Anode in the Presence of SEI-Forming Additives [J]. Electrochimica Acta, 2017, 224: 186-93.
[45] XU Y, WU H, JIA H, et al. Current Density Regulated Atomic to Nanoscale Process on Li Deposition and Solid Electrolyte Interphase Revealed by Cryogenic Transmission Electron Microscopy [J]. ACS Nano, 2020, 14(7): 8766-75.
[46] YUAN X, LIU B, MECKLENBURG M, et al. Ultrafast Deposition of Faceted Lithium Polyhedra by Outpacing Sei Formation [J]. Nature, 2023, 620(7972): 86-91.
[47] PELED, E. Advanced Model for Solid Electrolyte Interphase [SEI] Electrodes in Liquid and Polymer Electrolytes [J]. Journal of the Electrochemical Society, 1997, 144(8): L208-L.
[48] AURBACH D. Review of Selected Electrode-Solution Interactions Which Determine the Performance of Li and Li Ion Batteries [J]. Journal of Power Sources, 2000, 89(2): 206-18.
[49] AURBACH D. Electrode–Solution Interactions in Li-Ion Batteries: A Short Summary and New Insights [J]. Journal of Power Sources, 2003, 119-121: 497-503.
[50] TRIPATHI A M, SU W N, HWANG B J. In Situ Analytical Techniques for Battery Interface Analysis [J]. Chemical Society Reviews, 2018, 47(3): 736-851.
[51] PELED E, TOW D B, MERSON A, et al. Composition, Depth Profiles and Lateral Distribution of Materials in the SEI Built on HOPG-TOF SIMS and XPS Studies [J]. Journal of Power Sources, 2001, 97: 52-7.
[52] LIU X, WANG D, WAN L. Progress of Electrode/Electrolyte Interfacial Investigation of Li-Ion Batteries Via in Situ Scanning Probe Microscopy [J]. Science Bulletin, 2015, 60(9): 839-49.
[53] ZHANG J, WANG R, YANG X, et al. Direct Observation of Inhomogeneous Solid Electrolyte Interphase on Mno Anode with Atomic Force Microscopy and Spectroscopy [J]. Nano Letters, 2012, 12(4): 2153-7.
[54] ZHOU S, ZHENG Q, TANG S, et al. Liquid Cell Electrochemical TEM: Unveiling the Real-Time Interfacial Reactions of Advanced Li-Metal Batteries [J]. The Journal of Chemical Physics, 2022, 157(23).
[55] YASIN G, ARIF M, MEHTAB T, et al. Understanding and Suppression Strategies toward Stable Li Metal Anode for Safe Lithium Batteries [J]. Energy Storage Materials, 2020, 25: 644-78.
[56] XU K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries [J]. Chemical Reviews, 2004, 104(10): 4303-417.
[57] DING F, XU W, CHEN X, et al. Effects of Carbonate Solvents and Lithium Salts on Morphology and Coulombic Efficiency of Lithium Electrode [J]. Journal of the Electrochemical Society, 2013, 160(10): A1894-A901.
[58] LI Y, HUANG W, LI Y, et al. Correlating Structure and Function of Battery Interphases at Atomic Resolution Using Cryoelectron Microscopy [J]. Joule, 2018, 2(10): 2167-77.
[59] 邱亚明, 黄华文. 锂金属电池电解液的研究进展 [J]. 广东化工, 2023, 50(20): 41-3.
[60] YANG H, GUO C, NAVEED A, et al. Recent Progress and Perspective on Lithium Metal Anode Protection [J]. Energy Storage Materials, 2018, 14: 199-221.
[61] GOFER Y, BEN ZION M, AURBACH D. Solutions of LiAsF6 in 1,3-Dioxolane for Secondary Lithium Batteries [J]. Journal of Power Sources, 1992, 39(2): 163-78.
[62] MIAO R, YANG J, XU Z, et al. A New Ether-Based Electrolyte for Dendrite-Free Lithium-Metal Based Rechargeable Batteries [J]. Scientific Reports, 2016, 6(1): 1-9.
[63] NIE M, LUCHT B L. Role of Lithium Salt on Solid Electrolyte Interface (SEI) Formation and Structure in Lithium Ion Batteries [J]. Journal of the Electrochemical Society, 2014, 161(6): A1001.
[64] KIM H, WU F, LEE J T, et al. In Situ Formation of Protective Coatings on Sulfur Cathodes in Lithium Batteries with LIFSI-Based Organic Electrolytes [J]. Advanced Energy Materials, 2015, 5(6): 1401792.
[65] MIAO R, YANG J, FENG X, et al. Novel Dual-Salts Electrolyte Solution for Dendrite-Free Lithium-Metal Based Rechargeable Batteries with High Cycle Reversibility [J]. Journal of Power Sources, 2014, 271: 291-7.
[66] ZHANG X Q, CHENG X B, CHEN X, et al. Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries [J]. Advanced Functional Materials, 2017, 27(10): 1605989.
[67] HAN B, ZHANG Z, ZOU Y, et al. Poor Stability of Li2CO3 in the Solid Electrolyte Interphase of a Lithium-Metal Anode Revealed by Cryo-Electron Microscopy [J]. Advanced Materials, 2021, 33(22): 2100404.
[68] DING F, XU W, GRAFF G L, et al. Dendrite-Free Lithium Deposition Via Self-Healing Electrostatic Shield Mechanism [J]. Journal of the American Chemical Society, 2013, 135(11): 4450-6.
[69] ZHANG L, LING M, FENG J, et al. The Synergetic Interaction between LiNO3 and Lithium Polysulfides for Suppressing Shuttle Effect of Lithium-Sulfur Batteries [J]. Energy Storage Materials, 2018, 11: 24-9.
[70] QIAN J, HENDERSON W A, XU W, et al. High Rate and Stable Cycling of Lithium Metal Anode [J]. Nature Communications, 2015, 6(1): 6362.
[71] ZENG Z, MURUGESAN V, HAN K S, et al. Non-Flammable Electrolytes with High Salt-to-Solvent Ratios for Li-Ion and Li-Metal Batteries [J]. Nature Energy, 2018, 3(8): 674-81.
[72] CHEN S, ZHENG J, MEI D, et al. High-Voltage Lithium-Metal Batteries Enabled by Localized High-Concentration Electrolytes [J]. Advanced Materials, 2018, 30(21): 1706102.
[73] REN X, ZOU L, CAO X, et al. Enabling High-Voltage Lithium-Metal Batteries under Practical Conditions [J]. Joule, 2019, 3(7): 1662-76.
[74] LU G, NAI J, LUAN D, et al. Surface Engineering toward Stable Lithium Metal Anodes [J]. Science Advances, 2023, 9(14): eadf1550.
[75] XU R, CHENG X B, YAN C, et al. Artificial Interphases for Highly Stable Lithium Metal Anode [J]. Matter, 2019, 1(2): 317-44.
[76] UMEDA G A, MENKE E, RICHARD M, et al. Protection of Lithium Metal Surfaces Using Tetraethoxysilane [J]. Journal of Materials Chemistry, 2011, 21(5): 1593-9.
[77] LI N W, YIN Y X, YANG C P, et al. An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes [J]. Advanced Materials, 2016, 28(9): 1853-8.
[78] CHEN L, CHEN K S, CHEN X, et al. Novel Ald Chemistry Enabled Low-Temperature Synthesis of Lithium Fluoride Coatings for Durable Lithium Anodes [J]. ACS Applied Materials & Interfaces, 2018, 10(32): 26972-81.
[79] LI Y, SUN Y, PEI A, et al. Robust Pinhole-Free Li3N Solid Electrolyte Grown from Molten Lithium [J]. ACS Central Science, 2018, 4(1): 97-104.
[80] YUAN H, DING X, LIU T, et al. A Review of Concepts and Contributions in Lithium Metal Anode Development [J]. Materials Today, 2022, 53: 173-96.
[81] LOPEZ J, PEI A, OH J Y, et al. Effects of Polymer Coatings on Electrodeposited Lithium Metal [J]. Journal of the American Chemical Society, 2018, 140(37): 11735-44.
[82] XU R, ZHANG X Q, CHENG X B, et al. Artificial Soft-Rigid Protective Layer for Dendrite-Free Lithium Metal Anode [J]. Advanced Functional Materials, 2018, 28(8): 1705838.
[83] LIU Y, LIN D, YUEN P Y, et al. An Artificial Solid Electrolyte Interphase with High Li-Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes [J]. Advanced Materials, 2017, 29(10): 1605531.
[84] 刘洋洋, 王旭阳, 徐谢宇, et al. 锂金属负极用集流体改性研究及进展 [J]. 储能科学与技术, 2021, 10(04): 1261-72.
[85] CHENG Y, CHEN J, CHEN Y, et al. Lithium Host:Advanced Architecture Components for Lithium Metal Anode [J]. Energy Storage Materials, 2021, 38: 276-98.
[86] ZHANG R, SHEN X, CHENG X B, et al. The Dendrite Growth in 3D Structured Lithium Metal Anodes: Electron or Ion Transfer Limitation? [J]. Energy Storage Materials, 2019, 23: 556-65.
[87] YUN Q, HE Y-B, LV W, et al. Chemical Dealloying Derived 3D Porous Current Collector for Li Metal Anodes [J]. Advanced Materials, 2016, 28(32): 6932-9.
[88] WANG S H, YIN Y X, ZUO T T, et al. Stable Li Metal Anodes Via Regulating Lithium Plating/Stripping in Vertically Aligned Microchannels [J]. Advanced Materials, 2017, 29(40): 1703729.
[89] LUAN J, ZHANG Q, YUAN H, et al. Plasma-Strengthened Lithiophilicity of Copper Oxide Nanosheet-Decorated Cu Foil for Stable Lithium Metal Anode [J]. Advanced Science, 2019, 6(20): 1901433.
[90] GU Y, XU H-Y, ZHANG X-G, et al. Lithiophilic Faceted Cu(100) Surfaces: High Utilization of Host Surface and Cavities for Lithium Metal Anodes [J]. Angewandte Chemie International Edition, 2019, 58(10): 3092-6.
[91] WANG C, WANG X, ZHANG R, et al. Resolving Complex Intralayer Transition Motifs in High-Ni-Content Layered Cathode Materials for Lithium-Ion Batteries [J]. Nature Materials, 2023, 22(2): 235-41.
[92] DING Y, CANO Z P, YU A, et al. Automotive Li-Ion Batteries: Current Status and Future Perspectives [J]. Electrochemical Energy Reviews, 2019, 2(1): 1-28.
[93] KIM J M, ZHANG X, ZHANG J G, et al. A Review on the Stability and Surface Modification of Layered Transition-Metal Oxide Cathodes [J]. Materials Today, 2021, 46: 155-82.
[94] MANTHIRAM A, MURUGAN A V, SARKAR A, et al. Nanostructured Electrode Materials for Electrochemical Energy Storage and Conversion [J]. Energy & Environmental Science, 2008, 1(6): 621-38.
[95] DIXIT M, MARKOVSKY B, SCHIPPER F, et al. Origin of Structural Degradation During Cycling and Low Thermal Stability of Ni-Rich Layered Transition Metal-Based Electrode Materials [J]. The Journal of Physical Chemistry C, 2017, 121(41): 22628-36.
[96] LIN F, MARKUS I M, NORDLUND D, et al. Surface Reconstruction and Chemical Evolution of Stoichiometric Layered Cathode Materials for Lithium-Ion Batteries [J]. Nature Communications, 2014, 5(1): 3529.
[97] JUNG S K, GWON H, HONG J, et al. Understanding the Degradation Mechanisms of LiNi0.5Co0.2Mn0.3O2 Cathode Material in Lithium Ion Batteries [J]. Advanced Energy Materials, 2014, 4(1): 1300787.
[98] LIN Q, GUAN W, MENG J, et al. A New Insight into Continuous Performance Decay Mechanism of Ni-Rich Layered Oxide Cathode for High Energy Lithium Ion Batteries [J]. Nano Energy, 2018, 54: 313-21.
[99] LEE S, SU L, MESNIER A, et al. Cracking Vs. Surface Reactivity in High-Nickel Cathodes for Lithium-Ion Batteries [J]. Joule, 2023, 7(11): 2430-44.
[100] KONDRAKOV A O, SCHMIDT A, XU J, et al. Anisotropic Lattice Strain and Mechanical Degradation of High-and Low-Nickel Ncm Cathode Materials for Li-Ion Batteries [J]. The Journal of Physical Chemistry C, 2017, 121(6): 3286-94.
[101] SCHIPPER F, ERICKSON E M, ERK C, et al. Recent Advances and Remaining Challenges for Lithium Ion Battery Cathodes [J]. Journal of the Electrochemical Society, 2016, 164(1): A6220.
[102] YU F, YUAN Z, YANG T, et al. Contagious Degradation of a Chemically Active Surface on the Cathodes of Lithium-Ion Batteries [J]. Physical Chemistry Chemical Physics, 2018, 20(28): 19195-207.
[103] GUéGUEN A, STREICH D, HE M, et al. Decomposition of LiPF6 in High Energy Lithium-Ion Batteries Studied with Online Electrochemical Mass Spectrometry [J]. Journal of the Electrochemical Society, 2016, 163(6): A1095.
[104] LI Y, LI W, SHIMIZU R, et al. Elucidating the Effect of Borate Additive in High-Voltage Electrolyte for Li-Rich Layered Oxide Materials [J]. Advanced Energy Materials, 2022, 12(11): 2103033.
[105] SUN Y K, LEE Y S, YOSHIO M, et al. Synthesis and Electrochemical Properties of Zno-Coated LiNi0.5Mn1.5O4 Spinel as 5 V Cathode Material for Lithium Secondary Batteries [J]. Electrochemical and Solid-State Letters, 2002, 5(5): A99.
[106] WOO S U, YOON C S, AMINE K, et al. Significant Improvement of Electrochemical Performance of AlF3-Coated Li [Ni0.8Co0.1Mn0.1]O2 Cathode Materials [J]. Journal of the Electrochemical Society, 2007, 154(11): A1005.
[107] LIANG L, HU G, JIANG F, et al. Electrochemical Behaviours of SiO2-Coated Li Ni0.8Co0.1Mn0.1O2 Cathode Materials by a Novel Modification Method [J]. Journal of Alloys and Compounds, 2016, 657: 570-81.
[108] XIONG X, WANG Z, YIN X, et al. A Modified Lif Coating Process to Enhance the Electrochemical Performance Characteristics of LiNi0.8Co0.1Mn0.1O2 Cathode Materials [J]. Materials Letters, 2013, 110: 4-9.
[109] JAN S S, NURGUL S, SHI X, et al. Improvement of Electrochemical Performance of LiNi0.8Co0.1Mn0.1O2 Cathode Material by Graphene Nanosheets Modification [J]. Electrochimica Acta, 2014, 149: 86-93.
[110] SUN Y K, MYUNG S T, SHIN H S, et al. Novel Core-Shell-Structured Li [(Ni0.8Co0.2)0.8(Ni0.5Mn0.5)0.2]O2 Via Coprecipitation as Positive Electrode Material for Lithium Secondary Batteries [J]. The Journal of Physical Chemistry B, 2006, 110(13): 6810-5.
[111] SUN Y K, MYUNG S T, PARK B C, et al. High-Energy Cathode Material for Long-Life and Safe Lithium Batteries [J]. Nature Materials, 2009, 8(4): 320-4.
[112] HUA C, DU K, TAN C, et al. Study of Full Concentration-Gradient Li (Ni0.8Co0.1Mn0.1)O2 Cathode Material for Lithium Ion Batteries [J]. Journal of Alloys and Compounds, 2014, 614: 264-70.
[113] YUE P, WANG Z, GUO H, et al. A Low-Temperature Fluorine Substitution on the Electrochemical Performance of Layered LiNi0.8Co0.1Mn0.1O2-Zfz Cathode Materials [J]. Electrochimica Acta, 2013, 92: 1-8.
[114] LI L j, LI X h, WANG Z x, et al. Synthesis, Structural and Electrochemical Properties of LiNi0.79Co0.1Mn0.1Cr0.01O2 Via Fast Co-Precipitation [J]. Journal of Alloys and Compounds, 2010, 507(1): 172-7.
[115] WU Y, LIU X, WANG L, et al. Development of Cathode-Electrolyte-Interphase for Safer Lithium Batteries [J]. Energy Storage Materials, 2021, 37: 77-86.
[116] MA L, GLAZIER S, PETIBON R, et al. A Guide to Ethylene Carbonate-Free Electrolyte Making for Li-Ion Cells [J]. Journal of the Electrochemical Society, 2016, 164(1): A5008.
[117] XIA J, MADEC L, MA L, et al. Study of Triallyl Phosphate as an Electrolyte Additive for High Voltage Lithium-Ion Cells [J]. Journal of Power Sources, 2015, 295: 203-11.
[118] LI J, LI W, YOU Y, et al. Extending the Service Life of High-Ni Layered Oxides by Tuning the Electrode-Electrolyte Interphase [J]. Advanced Energy Materials, 2018, 8(29): 1801957.
[119] PAN R, JO E, CUI Z, et al. Degradation Pathways of Cobalt-Free LiNiO2 Cathode in Lithium Batteries [J]. Advanced Functional Materials, 2023, 33(10): 2211461.
[120] SUO L, XUE W, GOBET M, et al. Fluorine-Donating Electrolytes Enable Highly Reversible 5-V-Class Li Metal Batteries [J]. Proceedings of the National Academy of Sciences, 2018, 115(6): 1156-61.
[121] FAN X, CHEN L, JI X, et al. Highly Fluorinated Interphases Enable High-Voltage Li-Metal Batteries [J]. Chem, 2018, 4(1): 174-85.
[122] TAYLOR K A, GLAESER R M. Electron Diffraction of Frozen, Hydrated Protein Crystals [J]. Science, 1974, 186(4168): 1036-7.
[123] 张晓凯, 张丛丛, 刘忠民, et al. 冷冻电镜技术的应用与发展 [J]. 科学技术与工程, 2019, 19(24): 9-17.
[124] LI Y, LI Y, PEI A, et al. Atomic Structure of Sensitive Battery Materials and Interfaces Revealed by Cryo-Electron Microscopy [J]. Science, 2017, 358(6362): 506-10.
[125] WENG S, LI Y, WANG X. Cryo-Em for Battery Materials and Interfaces: Workflow, Achievements, and Perspectives [J]. Iscience, 2021, 24(12).
[126] 翁素婷, 刘泽鹏, 杨高靖, et al. 冷冻电镜表征锂电池中的辐照敏感材料 [J]. 储能科学与技术, 2022, 11(03): 760-80.
[127] YOUSAF M, NASEER U, IMRAN A, et al. Visualization of Battery Materials and Their Interfaces/Interphases Using Cryogenic Electron Microscopy [J]. Materials Today, 2022, 58: 238-74.
[128] CAO X, REN X, ZOU L, et al. Monolithic Solid-Electrolyte Interphases Formed in Fluorinated Orthoformate-Based Electrolytes Minimize Li Depletion and Pulverization [J]. Nature Energy, 2019, 4(9): 796-805.
[129] LIU Y, LIN D, LI Y, et al. Solubility-Mediated Sustained Release Enabling Nitrate Additive in Carbonate Electrolytes for Stable Lithium Metal Anode [J]. Nature Communications, 2018, 9(1): 3656.
[130] XU Y, WU H, HE Y, et al. Atomic to Nanoscale Origin of Vinylene Carbonate Enhanced Cycling Stability of Lithium Metal Anode Revealed by Cryo-Transmission Electron Microscopy [J]. Nano Letters, 2019, 20(1): 418-25.
[131] YUAN S, WENG S, WANG F, et al. Revisiting the Designing Criteria of Advanced Solid Electrolyte Interphase on Lithium Metal Anode under Practical Condition [J]. Nano Energy, 2021, 83: 105847.
[132] WANG J, HUANG W, PEI A, et al. Improving Cyclability of Li Metal Batteries at Elevated Temperatures and Its Origin Revealed by Cryo-Electron Microscopy [J]. Nature Energy, 2019, 4(8): 664-70.
[133] GAO Y, YAN Z, GRAY J L, et al. Polymer-Inorganic Solid-Electrolyte Interphase for Stable Lithium Metal Batteries under Lean Electrolyte Conditions [J]. Nature Materials, 2019, 18(4): 384-9.
[134] CHENG Y, WANG Z, CHEN J, et al. Catalytic Chemistry Derived Artificial Solid Electrolyte Interphase for Stable Lithium Metal Anodes Working at 20 mA cm-2 and 20 mAh cm-2 [J]. Angewandte Chemie, 2023: e202305723.
[135] CHENG D, WYNN T A, WANG X, et al. Unveiling the Stable Nature of the Solid Electrolyte Interphase between Lithium Metal and Lipon Via Cryogenic Electron Microscopy [J]. Joule, 2020, 4(11): 2484-500.
[136] LU X, CHENG Y, LI M, et al. A Stable Polymer-Based Solid-State Lithium Metal Battery and Its Interfacial Characteristics Revealed by Cryogenic Transmission Electron Microscopy [J]. Advanced Functional Materials, 2023, 33(12): 2212847.
[137] HAN B, ZOU Y, XU G, et al. Additive Stabilization of SEI on Graphite Observed Using Cryo-Electron Microscopy [J]. Energy & Environmental Science, 2021, 14(9): 4882-9.
[138] HE Y, ZHEN C, LI M, et al. Differing Electrolyte Implication on Anion and Cation Intercalation into Graphite [J]. ACS Nano, 2023, 17(21): 21730-8.
[139] YANG Y, YIN Y, DAVIES D M, et al. Liquefied Gas Electrolytes for Wide-Temperature Lithium Metal Batteries [J]. Energy & Environmental Science, 2020, 13(7): 2209-19.
[140] ALVARADO J, SCHROEDER M A, ZHANG M, et al. A Carbonate-Free, Sulfone-Based Electrolyte for High-Voltage Li-Ion Batteries [J]. Materials Today, 2018, 21(4): 341-53.
[141] ZHANG Z, YANG J, HUANG W, et al. Cathode-Electrolyte Interphase in Lithium Batteries Revealed by Cryogenic Electron Microscopy [J]. Matter, 2021, 4(1): 302-12.
[142] ADAMS B D, ZHENG J, REN X, et al. Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries [J]. Advanced Energy Materials, 2018, 8(7): 1702097.
[143] ABRAHAM M J, MURTOLA T, SCHULZ R, et al. Gromacs: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers [J]. SoftwareX, 2015, 1: 19-25.
[144] JORGENSEN W L, MAXWELL D S, TIRADO-RIVES J. Development and Testing of the Opls All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids [J]. Journal of the American Chemical Society, 1996, 118(45): 11225-36.
[145] BUSSI G, DONADIO D, PARRINELLO M. Canonical Sampling through Velocity Rescaling [J]. The Journal of Chemical Physics, 2007, 126(1): 014101.
[146] BERENDSEN H J, POSTMA J v, VAN GUNSTEREN W F, et al. Molecular Dynamics with Coupling to an External Bath [J]. The Journal of Chemical Physics, 1984, 81(8): 3684-90.
[147] KRESSE G, FURTHMüLLER J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set [J]. Physical Review B, 1996, 54(16): 11169.
[148] BLöCHL P E. Projector Augmented-Wave Method [J]. Physical Review B, 1994, 50(24): 17953.
[149] PERDEW J P, BURKE K, ERNZERHOF M. Generalized Gradient Approximation Made Simple [J]. Physical Review Letters, 1996, 77(18): 3865.
[150] GRIMME S, ANTONY J, EHRLICH S, et al. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu [J]. The Journal of Chemical Physics, 2010, 132(15): 154104.
[151] NOSé S. A Unified Formulation of the Constant Temperature Molecular Dynamics Methods [J]. The Journal of Chemical Physics, 1984, 81(1): 511-9.
[152] CHENOWETH K, VAN DUIN A C, GODDARD W A. Reaxff Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation [J]. The Journal of Physical Chemistry A, 2008, 112(5): 1040-53.
[153] SHEN X, ZHANG X Q, DING F, et al. Advanced Electrode Materials in Lithium Batteries: Retrospect and Prospect [J]. Energy Material Advances, 2021, 2021: 205324.
[154] LIN D, LIU Y, CUI Y. Reviving the Lithium Metal Anode for High-Energy Batteries [J]. Nature Nanotechnology, 2017, 12(3): 194-206.
[155] LI Q, ZHU S, LU Y. 3D Porous Cu Current Collector/Li-Metal Composite Anode for Stable Lithium-Metal Batteries [J]. Advanced Functional Materials, 2017, 27(18): 1606422.
[156] WANG S, XIONG P, ZHANG J, et al. Recent Progress on Flexible Lithium Metal Batteries: Composite Lithium Metal Anodes and Solid-State Electrolytes [J]. Energy Storage Materials, 2020, 29: 310-31.
[157] KIM M S, RYU J H, LIM Y R, et al. Langmuir-Blodgett Artificial Solid-Electrolyte Interphases for Practical Lithium Metal Batteries [J]. Nature Energy, 2018, 3(10): 889-98.
[158] WU H, JIA H, WANG C, et al. Recent Progress in Understanding Solid Electrolyte Interphase on Lithium Metal Anodes [J]. Advanced Energy Materials, 2021, 11(5): 2003092.
[159] ZHENG J, YAN P, MEI D, et al. Highly Stable Operation of Lithium Metal Batteries Enabled by the Formation of a Transient High-Concentration Electrolyte Layer [J]. Advanced Energy Materials, 2016, 6(8): 1502151.
[160] LIU Y, ZHEN Y, LI T, et al. High-Capacity, Dendrite-Free, and Ultrahigh-Rate Lithium-Metal Anodes Based on Monodisperse N-Doped Hollow Carbon Nanospheres [J]. Small, 2020, 16(44): 2004770.
[161] VAITKUS A, MERKYS A, GRAZULIS S. Validation of the Crystallography Open Database Using the Crystallographic Information Framework [J]. Journal of Applied Crystallography, 2021, 54(2): 661-72.
[162] JAIN A, ONG S P, HAUTIER G, et al. Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation [J]. APL Materials, 2013, 1(1): 011002.
[163] KAHLE L, MARCOLONGO A, MARZARI N. High-Throughput Computational Screening for Solid-State Li-Ion Conductors [J]. Energy & Environmental Science, 2020, 13(3): 928-48.
[164] SEDLMAIR J, GLEBER S C, PETH C, et al. Characterization of Refractory Organic Substances by Nexafs Using a Compact X-Ray Source [J]. Journal of Soils and Sediments, 2012, 12: 24-34.
[165] WANG J, ZHOU J, HU Y, et al. Chemical Interaction and Imaging of Single Co3O4/Graphene Sheets Studied by Scanning Transmission X-Ray Microscopy and X-Ray Absorption Spectroscopy [J]. Energy & Environmental Science, 2013, 6(3): 926-34.
[166] SHEN X, ZHANG X Q, DING F, et al. Advanced Electrode Materials in Lithium Batteries: Retrospect and Prospect [J]. Energy Material Advances, 2021, 2021: 1205324.
[167] LUO F, LIU B, ZHENG J, et al. Nano-Silicon/Carbon Composite Anode Materials Towards Practical Application for Next Generation Li-Ion Batteries [J]. Journal of the Electrochemical Society, 2015, 162(14): A2509.
[168] GUO Y, LI H, ZHAI T. Reviving Lithium-Metal Anodes for Next-Generation High-Energy Batteries [J]. Advanced Materials, 2017, 29(29): 1700007.
[169] LUO Z, QIU X, LIU C, et al. Interfacial Challenges Towards Stable Li Metal Anode [J]. Nano Energy, 2021, 79: 105507.
[170] ZHANG Y, ZUO T-T, POPOVIC J, et al. Towards Better Li Metal Anodes: Challenges and Strategies [J]. Materials Today, 2020, 33: 56-74.
[171] ZHANG X, WANG A, LIU X, et al. Dendrites in Lithium Metal Anodes: Suppression, Regulation, and Elimination [J]. Accounts of Chemical Research, 2019, 52(11): 3223-32.
[172] XIAO P, YUN X, CHEN Y, et al. Insights into the Solvation Chemistry in Liquid Electrolytes for Lithium-Based Rechargeable Batteries [J]. Chemical Society Reviews, 2023, 52: 5255-316.
[173] RIDDICK J A, BUNGER W B, SAKANO T K. Organic Solvents: Physical Properties and Methods of Purification [J]. 1986.
[174] SUáREZ-HERRERA M F, COSTA-FIGUEIREDO M, FELIU J M. Voltammetry of Basal Plane Platinum Electrodes in Acetonitrile Electrolytes: Effect of the Presence of Water [J]. Langmuir, 2012, 28(11): 5286-94.
[175] XIAO L, ZENG Z, LIU X, et al. Stable Li Metal Anode with “Ion-Solvent-Coordinated” Nonflammable Electrolyte for Safe Li Metal Batteries [J]. ACS Energy Letters, 2019, 4(2): 483-8.
[176] ZHANG Q, ZHOU C, LI M, et al. Revealing Structural Insights of Solid Electrolyte Interphase in High-Concentrated Non-Flammable Electrolyte for Li Metal Batteries by Cryo-TEM [J]. Small, 2023, 19(28): 2300849.
[177] YAMADA Y, FURUKAWA K, SODEYAMA K, et al. Unusual Stability of Acetonitrile-Based Superconcentrated Electrolytes for Fast-Charging Lithium-Ion Batteries [J]. Journal of the American Chemical Society, 2014, 136(13): 5039-46.
[178] PENG Z, CAO X, GAO P, et al. High-Power Lithium Metal Batteries Enabled by High-Concentration Acetonitrile-Based Electrolytes with Vinylene Carbonate Additive [J]. Advanced Functional Materials, 2020, 30(24): 2001285.
[179] CAO X, JIA H, XU W, et al. Localized High-Concentration Electrolytes for Lithium Batteries [J]. Journal of the Electrochemical Society, 2021, 168(1): 010522.
[180] ZHU C, SUN C, LI R, et al. Anion-Diluent Pairing for Stable High-Energy Li Metal Batteries [J]. ACS Energy Letters, 2022, 7(4): 1338-47.
[181] BEĆ K B, KARCZMIT D, KWAŚNIEWICZ M, et al. Overtones of ΝC≡N Vibration as a Probe of Structure of Liquid CH3CN, Cd3CN, and CCl3CN: Combined Infrared, Near-Infrared, and Raman Spectroscopic Studies with Anharmonic Density Functional Theory Calculations [J]. The Journal of Physical Chemistry A, 2019, 123(20): 4431-42.
[182] KERNER M, PLYLAHAN N, SCHEERS J, et al. Thermal Stability and Decomposition of Lithium Bis (Fluorosulfonyl) Imide (LiFSI) Salts [J]. RSC Advances, 2016, 6(28): 23327-34.
[183] LAFFONT L, MONTHIOUX M, SERIN V, et al. An Eels Study of the Structural and Chemical Transformation of Pan Polymer to Solid Carbon [J]. Carbon, 2004, 42(12-13): 2485-94.
[184] WANG F, GRAETZ J, MORENO M S, et al. Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy [J]. ACS Nano, 2011, 5(2): 1190-7.
[185] DONG W, HAKUKAWA H, YAMAHIRA N, et al. Mechanism of Reactive Compatibilization of PLLA/PVDF Blends Investigated by Scanning Transmission Electron Microscopy with Energy-Dispersive X-Ray Spectrometry and Electron Energy Loss Spectroscopy [J]. ACS Applied Polymer Materials, 2019, 1(4): 815-24.
[186] YU L, LI M, WEN J, et al. (S) TEM-EELS as an Advanced Characterization Technique for Lithium-Ion Batteries [J]. Materials Chemistry Frontiers, 2021, 5(14): 5186-93.
[187] ESHETU G G, JUDEZ X, LI C, et al. Lithium Azide as an Electrolyte Additive for All-Solid-State Lithium-Sulfur Batteries [J]. Angewandte Chemie International Edition, 2017, 56(48): 15368-72.
[188] GUO S, DENG Z, LI M, et al. Phosphorus-Doped Carbon Nitride Tubes with a Layered Micro-Nanostructure for Enhanced Visible-Light Photocatalytic Hydrogen Evolution [J]. Angewandte Chemie International Edition, 2016, 55(5): 1830-4.
[189] LI N W, YIN Y X, LI J Y, et al. Passivation of Lithium Metal Anode Via Hybrid Ionic Liquid Electrolyte toward Stable Li Plating/Stripping [J]. Advanced Science, 2017, 4(2): 1600400.
[190] YAN C, YAO Y X, CHEN X, et al. Lithium Nitrate Solvation Chemistry in Carbonate Electrolyte Sustains High-Voltage Lithium Metal Batteries [J]. Angewandte Chemie International Edition, 2018, 57(43): 14055-9.
[191] SEH Z W, WANG H, HSU P C, et al. Facile Synthesis of Li2S-Polypyrrole Composite Structures for High-Performance Li2S Cathodes [J]. Energy & Environmental Science, 2014, 7(2): 672-6.
[192] CHASTAIN J, KING JR R C. Handbook of X-Ray Photoelectron Spectroscopy [J]. Perkin-Elmer Corporation, 1992, 40: 221.
[193] KUMAR R, LIU J, HWANG J Y, et al. Recent Research Trends in Li-S Batteries [J]. Journal of Materials Chemistry A, 2018, 6(25): 11582-605.
[194] SHEN X, LIU H, CHENG X B, et al. Beyond Lithium Ion Batteries: Higher Energy Density Battery Systems Based on Lithium Metal Anodes [J]. Energy Storage Materials, 2018, 12: 161-75.
[195] LOPEZ C M, VAUGHEY J T, DEES D W. Morphological Transitions on Lithium Metal Anodes [J]. Journal of the Electrochemical Society, 2009, 156(9): A726.
[196] GAO X, ZHOU Y-N, HAN D, et al. Thermodynamic Understanding of Li-Dendrite Formation [J]. Joule, 2020, 4(9): 1864-79.
[197] ZHANG X, YANG Y, ZHOU Z. Towards Practical Lithium-Metal Anodes [J]. Chemical Society Reviews, 2020, 49(10): 3040-71.
[198] REN W, DING C, FU X, et al. Advanced Gel Polymer Electrolytes for Safe and Durable Lithium Metal Batteries: Challenges, Strategies, and Perspectives [J]. Energy Storage Materials, 2021, 34: 515-35.
[199] HAN Y, LIU B, XIAO Z, et al. Interface Issues of Lithium Metal Anode for High-Energy Batteries: Challenges, Strategies, and Perspectives [J]. InfoMat, 2021, 3(2): 155-74.
[200] CHENG Y, CHEN J, CHEN Y, et al. Lithium Host: Advanced Architecture Components for Lithium Metal Anode [J]. Energy Storage Materials, 2021, 38: 276-98.
[201] ZHANG H, ESHETU G G, JUDEZ X, et al. Electrolyte Additives for Lithium Metal Anodes and Rechargeable Lithium Metal Batteries: Progress and Perspectives [J]. Angewandte Chemie International Edition, 2018, 57(46): 15002-27.
[202] LIU J, BAO Z, CUI Y, et al. Pathways for Practical High-Energy Long-Cycling Lithium Metal Batteries [J]. Nature Energy, 2019, 4(3): 180-6.
[203] WANG H, LIU J, HE J, et al. Pseudo-Concentrated Electrolytes for Lithium Metal Batteries [J]. eScience, 2022, 2(5): 557-65.
[204] SANG J, TANG B, PAN K, et al. Current Status and Enhancement Strategies for All-Solid-State Lithium Batteries [J]. Accounts of Materials Research, 2023, 4(6): 472–483.
[205] HUANG K, BI S, KURT B, et al. Regulation of SEI Formation by Anion Receptors to Achieve Ultra-Stable Lithium-Metal Batteries [J]. Angewandte Chemie, 2021, 133(35): 19381-9.
[206] LIU S, JI X, PIAO N, et al. An Inorganic-Rich Solid Electrolyte Interphase for Advanced Lithium-Metal Batteries in Carbonate Electrolytes [J]. Angewandte Chemie International Edition, 2021, 60(7): 3661-71.
[207] TAN S J, WANG W P, TIAN Y F, et al. Advanced Electrolytes Enabling Safe and Stable Rechargeable Li-Metal Batteries: Progress and Prospects [J]. Advanced Functional Materials, 2021, 31(45): 2105253.
[208] ZHAI P, LIU L, GU X, et al. Interface Engineering for Lithium Metal Anodes in Liquid Electrolyte [J]. Advanced Energy Materials, 2020, 10(34): 2001257.
[209] LIU G, LU W. A Model of Concurrent Lithium Dendrite Growth, SEI Growth, SEI Penetration and Regrowth [J]. Journal of the Electrochemical Society, 2017, 164(9): A1826.
[210] WOOD K N, TEETER G. XPS on Li-Battery-Related Compounds: Analysis of Inorganic SEI Phases and a Methodology for Charge Correction [J]. ACS Applied Energy Materials, 2018, 1(9): 4493-504.
[211] PILLI A, JONES J, CHUGH N, et al. Atomic Layer Deposition of BN as a Novel Capping Barrier for B2O3 [J]. Journal of Vacuum Science & Technology A, 2019, 37(4): 041505.
[212] JAIN A, ONG S P, HAUTIER G, et al. Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation [J]. APL Materials, 2013, 1(1): 011002.
[213] SUN H H, DOLOCAN A, WEEKS J A, et al. In Situ Formation of a Multicomponent Inorganic-Rich SEI Layer Provides a Fast Charging and High Specific Energy Li-Metal Battery [J]. Journal of Materials Chemistry A, 2019, 7(30): 17782-9.
[214] XIA L, LEE S, JIANG Y, et al. Fluorinated Electrolytes for Li-Ion Batteries: The Lithium Difluoro (Oxalato) Borate Additive for Stabilizing the Solid Electrolyte Interphase [J]. ACS Omega, 2017, 2(12): 8741-50.
[215] DING N, SUMBOJA A, YIN X, et al. Reversible Lithium Electroplating for High-Energy Rechargeable Batteries [J]. Journal of the Electrochemical Society, 2023, 170(1): 010540.
[216] HUANG S, WANG S, HU G, et al. Modulation of Solid Electrolyte Interphase of Lithium-Ion Batteries by LiDFOB and LiBOB Electrolyte Additives [J]. Applied Surface Science, 2018, 441: 265-71.
[217] KRANZ S, KRANZ T, JAEGERMANN A G, et al. Is the Solid Electrolyte Interphase in Lithium-Ion Batteries Really a Solid Electrolyte? Transport Experiments on Lithium Bis(Oxalato)Borate-Based Model Interphases [J]. Journal of Power Sources, 2019, 418: 138-46.
[218] LIU J, WANG J, NI Y, et al. Recent Breakthroughs and Perspectives of High-Energy Layered Oxide Cathode Materials for Lithium Ion Batteries [J]. Materials Today, 2021, 43: 132-65.
[219] BREDDEMANN U, KROSSING I. Review on Synthesis, Characterization, and Electrochemical Properties of Fluorinated Nickel-Cobalt-Manganese Cathode Active Materials for Lithium-Ion Batteries [J]. ChemElectroChem, 2020, 7(6): 1389-430.
[220] PARK G T, RYU H H, NOH T C, et al. Microstructure-Optimized Concentration-Gradient NCM Cathode for Long-Life Li-Ion Batteries [J]. Materials Today, 2022, 52: 9-18.
[221] CHENG F, ZHANG X, QIU Y, et al. Tailoring Electrolyte to Enable High-Rate and Super-Stable Ni-Rich Ncm Cathode Materials for Li-Ion Batteries [J]. Nano Energy, 2021, 88: 106301.
[222] ZHUANG G V, CHEN G, SHIM J, et al. Li2CO3 in LiNi0.8Co0.15Al0.05O2 Cathodes and Its Effects on Capacity and Power [J]. Journal of Power Sources, 2004, 134(2): 293-7.
[223] ZHANG Y, KATAYAMA Y, TATARA R, et al. Revealing Electrolyte Oxidation Via Carbonate Dehydrogenation on Ni-Based Oxides in Li-Ion Batteries by in Situ Fourier Transform Infrared Spectroscopy [J]. Energy & Environmental Science, 2020, 13(1): 183-99.
[224] HU L, ZHANG Z, AMINE K. Fluorinated Electrolytes for Li-Ion Battery: An Fec-Based Electrolyte for High Voltage LiNi0.5Mn1.5O4/Graphite Couple [J]. Electrochemistry Communications, 2013, 35: 76-9.
[225] WANG L, MA Y, QU Y, et al. Influence of Fluoroethylene Carbonate as Co-Solvent on the High-Voltage Performance of LiNi1/3Co1/3Mn1/3O2 Cathode for Lithium-Ion Batteries [J]. Electrochimica Acta, 2016, 191: 8-15.
修改评论