[1] 杨挺青, 罗文波, 徐平, 等. 黏弹性理论与应用[M]. 北京: 科学出版社, 2004: 13-31.
[2] PACEJKA H. Tire and Vehicle Dynamics[M]. Elsevier, 2005.
[3] MIHAI L A, CHIN L K, JANMEY P A, et al. A comparison of hyperelastic constitutive models applicable to brain and fat tissues[J]. Journal of The Royal Society Interface, 2015, 12(110): 20150486.
[4] KOPEČEK J. Swell gels[J]. Nature, 2002, 417(6887): 389-391.
[5] LIU X, TIAN S, TAO F, et al. A review of artificial neural networks in the constitutive modeling of composite materials[J]. Composites Part B: Engineering, 2021, 224: 109152.
[6] HINTON M. Failure criteria in fibre reinforced polymer composites: the world-wide failure exercise[M]. Elsevier, 2004.
[7] HINTON M J, KADDOUR A S. Triaxial test results for fibre-reinforced composites: The Second World-Wide Failure Exercise benchmark data[J]. Journal of Composite Materials, 2013, 47(6-7): 653-678.
[8] CHEN G, SHEN Z, IYER A, et al. Machine-learning-assisted de novo design of organic molecules and polymers: opportunities and challenges[J]. Polymers, 2020, 12(1): 163.
[9] GÓMEZ-BOMBARELLI R, AGUILERA-IPARRAGUIRRE J, HIRZEL T D, et al. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach[J]. Nature Materials, 2016, 15(10): 1120-1127.
[10] REN F, WARD L, WILLIAMS T, et al. Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments[J]. Science Advances, 2018, 4(4): eaaq1566.
[11] LEVINSON J, ASKELAND J, BECKER J, et al. Towards fully autonomous driving: Systems and algorithms[C]//2011 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2011: 163-168.
[12] 张峻铭, 杨伟东, 李岩. 人工智能在复合材料研究中的应用[J]. 力学进展, 2021, 51(4): 865-900.
[13] POPOVA M, ISAYEV O, TROPSHA A. Deep reinforcement learning for de novo drug design[J]. Science Advances, 2018, 4(7): eaap7885.
[14] GHABOUSSI J, GARRETT JR J H, WU X. Knowledge-based modeling of material behavior with neural networks[J]. Journal of Engineering Mechanics, 1991, 117(1): 132-153.
[15] GHABOUSSI J, SIDARTA D E. New nested adaptive neural networks (NANN) for constitutive modeling[J]. Computers and Geotechnics, 1998, 22(1): 29-52.
[16] GHABOUSSI J, PECKNOLD D A, ZHANG M, et al. Autoprogressive training of neural network constitutive models[J]. International Journal for Numerical Methods in Engineering, 1998, 42(1): 105-126.
[17] HASHASH Y M A, JUNG S, GHABOUSSI J. Numerical implementation of a neural network based material model in finite element analysis[J]. International Journal for Numerical Methods in Engineering, 2004, 59(7):989–1005.
[18] JUNG S, GHABOUSSI J. Neural network constitutive model for rate-dependent materials[J]. Computers & Structures, 2006, 84(15-16): 955-963.
[19] YUN G J, GHABOUSSI J, ELNASHAI A S. A new neural network‐based model for hysteretic behavior of materials[J]. International Journal for Numerical Methods in Engineering, 2008, 73(4): 447-469.
[20] FURUKAWA T, YAGAWA G. Implicit constitutive modelling for viscoplasticity using neural networks[J]. International Journal for Numerical Methods in Engineering, 1998, 43(2): 195-219.
[21] AL-HAIK M S, GARMESTANI H, NAVON I M. Truncated-Newton training algorithm for neurocomputational viscoplastic model[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(19): 2249-2267.
[22] AL-HAIK M S, HUSSAINI M Y, GARMESTANI H. Prediction of nonlinear viscoelastic behavior of polymeric composites using an artificial neural network[J]. International Journal of Plasticity, 2006, 22(7): 1367-1392.
[23] CHEN G. Recurrent neural networks (RNNs) learn the constitutive law of viscoelasticity[J]. Computational Mechanics, 2021, 67(3): 1009-1019.
[24] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25: 1097-1105.
[25] ABUEIDDA D W, KORIC S, SOBH N A, et al. Deep learning for plasticity and thermo-viscoplasticity[J]. International Journal of Plasticity, 2021, 136: 102852.
[26] MOZAFFAR M, BOSTANABAD R, CHEN W, et al. Deep learning predicts path-dependent plasticity[J]. Proceedings of the National Academy of Sciences, 2019, 116(52): 26414-26420.
[27] YANG C, KIM Y, RYU S, et al. Prediction of composite microstructure stress-strain curves using convolutional neural networks[J]. Materials & Design, 2020, 189: 108509.
[28] RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707.
[29] KARNIADAKIS G E, KEVREKIDIS I G, LU L, et al. Physics-informed machine learning[J]. Nature Reviews Physics, 2021, 3(6): 422-440.
[30] HAGHIGHAT E, RAISSI M, MOURE A, et al. A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 379: 113741.
[31] TAO F, LIU X, DU H, et al. Physics-informed artificial neural network approach for axial compression buckling analysis of thin-walled cylinder[J]. AIAA Journal, 2020, 58(6): 2737-2747.
[32] ZHANG R, LIU Y, SUN H. Physics-informed multi-LSTM networks for metamodeling of nonlinear structures[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 369: 113226.
[33] SAHLI COSTABAL F, YANG Y, PERDIKARIS P, et al. Physics-informed neural networks for cardiac activation mapping[J]. Frontiers in Physics, 2020, 8: 42.
[34] JAGTAP A D, MAO Z, ADAMS N, et al. Physics-informed neural networks for inverse problems in supersonic flows[J]. Journal of Computational Physics, 2022, 466: 111402.
[35] MAO Z, JAGTAP A D, KARNIADAKIS G E. Physics-informed neural networks for high-speed flows[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 360: 112789.
[36] JIN X, CAI S, LI H, et al. NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations[J]. Journal of Computational Physics, 2021, 426: 109951.
[37] SAMANIEGO E, ANITESCU C, GOSWAMI S, et al. An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 362: 112790.
[38] NGUYEN-THANH V M, ZHUANG X, RABCZUK T. A deep energy method for finite deformation hyperelasticity[J]. European Journal of Mechanics-A/Solids, 2020, 80: 103874.
[39] YANG L, MENG X, KARNIADAKIS G E. B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data[J]. Journal of Computational Physics, 2021, 425: 109913.
[40] MENG X, LI Z, ZHANG D, et al. PPINN: Parareal physics-informed neural network for time-dependent PDEs[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 370: 113250.
[41] FANG Z. A high-efficient hybrid physics-informed neural networks based on convolutional neural network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(10): 5514-5526.
[42] LAHARIYA M, KARAMI F, DEVELDER C, et al. Physics-informed recurrent neural networks for the identification of a generic energy buffer system[C]//2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS). IEEE, 2021: 1044-1049.
[43] KIRCHDOERFER T, ORTIZ M. Data-driven computational mechanics[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 304:81–101.
[44] KARAPIPERIS K, STAINIER L, ORTIZ M, et al. Data-driven multiscale modeling in mechanics[J]. Journal of the Mechanics and Physics of Solids, 2021, 147: 104239.
[45] KIRCHDOERFER T, ORTIZ M. Data driven computing with noisy material data sets[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 326: 622-641.
[46] IBANEZ R, ABISSET-CHAVANNE E, AGUADO J V, et al. A manifold learning approach to data-driven computational elasticity and inelasticity[J]. Archives of Computational Methods in Engineering, 2018, 25: 47-57.
[47] GUO X, DU Z, LIU C, et al. A new uncertainty analysis-based framework for data-driven computational mechanics[J]. Journal of Applied Mechanics, 2021, 88:1–22.
[48] KANNO Y. Simple heuristic for data-driven computational elasticity with material data involving noise and outliers: a local robust regression approach[J]. Japan Journal of Industrial and Applied Mathematics, 2018, 35(3): 1085-1101.
[49] CONTI S, MÜLLER S, ORTIZ M. Data-driven finite elasticity[J]. Archive for Rational Mechanics and Analysis, 2020, 237(1): 1-33.
[50] KANNO Y. Mixed-integer programming formulation of a data-driven solver in computational elasticity[J]. Optimization Letters, 2019, 13(7): 1505-1514.
[51] KIRCHDOERFER T, ORTIZ M. Data‐driven computing in dynamics[J]. International Journal for Numerical Methods in Engineering, 2018, 113(11): 1697-1710.
[52] NGUYEN L T K, KEIP M A. A data-driven approach to nonlinear elasticity[J]. Computers & Structures, 2018, 194: 97-115.
[53] PLATZER A, LEYGUE A, STAINIER L, et al. Finite element solver for data-driven finite strain elasticity[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 379: 113756.
[54] NGUYEN L T K, RAMBAUSEK M, KEIP M A. Variational framework for distance-minimizing method in data-driven computational mechanics[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 365: 112898.
[55] EGGERSMANN R, KIRCHDOERFER T, REESE S, et al. Model-free data-driven inelasticity[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 350: 81-99.
[56] CARRARA P, DE LORENZIS L, STAINIER L, et al. Data-driven fracture mechanics[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 372: 113390.
[57] TANG S, ZHANG G, YANG H, et al. MAP123: A data-driven approach to use 1D data for 3D nonlinear elastic materials modeling[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 357: 112587.
[58] TANG S, LI Y, QIU H, et al. MAP123-EP: A mechanistic-based data-driven approach for numerical elastoplastic analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 364: 112955.
[59] TANG S, YANG H, QIU H, et al. MAP123-EPF: a mechanistic-based data-driven approach for numerical elastoplastic modeling at finite strain[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 373: 113484.
[60] ROSENBLATT F. The perceptron: a probabilistic model for information storage and organization in the brain[J]. Psychological Review, 1958, 65(6): 386.
[61] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536.
[62] SALAKHUTDINOV R, MNIH A, HINTON G. Restricted Boltzmann machines for collaborative filtering[C]//Proceedings of the 24th International Conference on Machine Learning. 2007: 791-798.
[63] HORNIK K, STINCHCOMBE M, WHITE H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5): 359-366.
[64] NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann machines[C]// Proceedings of the 27th International Conference on Machine Learning (ICML-10). 2010: 807-814.
[65] BRIDLE J. Training stochastic model recognition algorithms as networks can lead to maximum mutual information estimation of parameters[J]. Advances in Neural Information Processing Systems 2, 1990: 211-217.
[66] SINGH S S, CHANDRA P. Bi-modal derivative activation function for sigmoidal feedforward networks[J]. Neurocomputing, 2014, 143: 182-196.
[67] DUGAS C, BENGIO Y, BÉLISLE F, et al. Incorporating second-order functional knowledge for better option pricing[J]. Advances in Neural Information Processing Systems, 2001, 13: 472-478.
[68] WILLMOTT C J, MATSUURA K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance[J]. Climate Research, 2005, 30(1): 79-82.
[69] CHAI T, DRAXLER R R. Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature[J]. Geoscientific Model Development, 2014, 7(3): 1247-1250.
[70] ROSASCO L, VITO E D, CAPONNETTO A, et al. Are loss functions all the same?[J]. Neural Computation, 2004, 16(5):1063-1076.
[71] ROBBINS H, MONRO S. A stochastic approximation method[J]. The Annals of Mathematical Statistics, 1951: 400-407.
[72] QIAN N. On the momentum term in gradient descent learning algorithms[J]. Neural Networks, 1999, 12(1): 145-151.
[73] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. MIT Press, 2016: 156-282.
[74] ELMAN J L. Finding structure in time[J]. Cognitive Science, 1990, 14(2): 179-211.
[75] ZENKNER G, NAVARRO-MARTINEZ S. A flexible and lightweight deep learning weather forecasting model[J]. Applied Intelligence, 2023, 53(21): 24991-25002.
[76] ZHAO J, ZENG D, LIANG S, et al. Prediction model for stock price trend based on recurrent neural network[J]. Journal of Ambient Intelligence and Humanized Computing, 2021, 12: 745-753.
[77] SCHUSTER M, PALIWAL K K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11): 2673-2681.
[78] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[79] CHO K, VAN MERRIËNBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. 2014: 1724–1734.
[80] KINGMA D P, BA J. Adam: A method for stochastic optimization[J]. International Conference on Learning Representations, 2015, 1-13.
[81] STEINMANN P, HOSSAIN M, POSSART G. Hyperelastic models for rubber-like materials: consistent tangent operators and suitability for Treloar’s data[J]. Archive of Applied Mechanics, 2012, 82: 1183-1217.
[82] GUO J, LONG R, MAYUMI K, et al. Mechanics of a dual cross-link gel with dynamic bonds: Steady state kinetics and large deformation effects[J]. Macromolecules, 2016, 49(9): 3497-3507.
[83] GUO J, LIU M, ZEHNDER A T, et al. Fracture mechanics of a self-healing hydrogel with covalent and physical crosslinks: A numerical study[J]. Journal of the Mechanics and Physics of Solids, 2018, 120: 79-95.
[84] BESSA M A, BOSTANABAD R, LIU Z, et al. A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 320: 633-667.
修改评论