中文版 | English
题名

基于深度学习的粘弹性本构建模

其他题名
CONSTITUTIVE MODEL OF VISCOELASTICITY BASED ON DEEP LEARNING
姓名
姓名拼音
CUI Na
学号
12132388
学位类型
硕士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
洪伟
导师单位
力学与航空航天工程系
论文答辩日期
2024-05-15
论文提交日期
2024-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

粘弹性材料在工程中有着广泛的应用,构建精确且高效的描述材料本构关系的粘弹性模型是非常重要的。粘弹性材料具有高度的历史依赖性,变形过程与加载速率相关,应力响应取决于变形的历史过程。尽管过去的研究中已经建立大量的传统模型,但是复杂的计算和非线性行为的捕获依旧是研究者面临的关键挑战。很多学者开始将机器学习和深度学习技术应用于本构建模,开发基于数据驱动的计算方法来代替传统的本构建模方法,直接由数据建立材料的应力-应变本构关系,从而预测材料的力学行为。

根据循环神经网络的原理和粘弹性材料的历史依赖性的相似性,本文提出了一种基于门控循环单元(GRU)的网络模型用于预测材料的本构关系:利用高斯分布插值方法和理论求解生成训练数据集,采用Z-score方法对数据集归一化处理,使用均方误差(MSE)损失函数和Adam优化算法迭代训练神经网络模型。设计单轴拉伸、双轴拉伸和纯剪切的数值算例,验证了GRU模型对未知数据的预测能力较好,平均误差在10%以内,是实现粘弹性本构建模的新方法。

基于迁移学习的策略,以GRU模型为预训练模型并冻结参数,在此基础上增加循环层,权重微调得到迁移模型,对应变-能量介导的非线性粘弹性行为进行训练和预测。该方法可以降低神经网络对数据量的要求及模型训练的复杂度,增强网络模型的复用性。研究表明,基于深度学习的神经网络模型为粘弹性本构建模提供了新的可行思路,未来可以进一步与仿真软件和有限元计算相结合,提高计算效率和精度。

其他摘要

Viscoelastic materials have a wide range of applications in engineering, and it is crucial to construct accurate and efficient models to describe their constitutive relationships. Viscoelastic materials exhibit a high degree of history dependence, where the deformation process is related to the loading rate, and the stress response depends on the history of deformation. Despite the establishment of numerous traditional models in past research, complex computations and the capture of nonlinear behavior remain key challenges for researchers. Many scholars have begun to apply machine learning and deep learning techniques to constitutive modeling, developing data-driven computational methods to replace traditional constitutive modeling methods, directly establishing the stress-strain constitutive relationship of materials from data, thereby predicting the mechanical behavior of materials.

Based on the principles of recurrent neural networks and the similarity of the history dependence of viscoelastic materials, this paper proposes a network model based on Gated Recurrent Units (GRUs) for predicting the constitutive relationship of materials: using Gaussian distribution interpolation methods and theoretical solutions to generate datasets, using the Z-score method to normalize the dataset, and using the Mean Squared Error (MSE) loss function and Adam optimization algorithm to iteratively train the neural network model. Numerical examples of uniaxial stretching, biaxial stretching and pure shear are designed, and it is verified that the GRU model has a better prediction ability for unknown data with an average error within 10%, which is a new method to realize the viscoelastic intrinsic constructive model.

Based on the strategy of transfer learning, the GRU model is used as a pre-training model with its parameters frozen. On this basis, a recurrent layer is added and the weights are fine-tuned to obtain the transfer model, which is trained and predicted for the nonlinear viscoelastic behavior guided by strain-energy. This method can reduce the data requirements of the neural network and the complexity of model training, enhancing the reusability of the network model. The research shows that the neural network model based on deep learning provides a new feasible idea for viscoelastic constitutive modeling, and it can be further combined with simulation software and finite element calculations in the future to improve computational efficiency and accuracy.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] 杨挺青, 罗文波, 徐平, 等. 黏弹性理论与应用[M]. 北京: 科学出版社, 2004: 13-31.
[2] PACEJKA H. Tire and Vehicle Dynamics[M]. Elsevier, 2005.
[3] MIHAI L A, CHIN L K, JANMEY P A, et al. A comparison of hyperelastic constitutive models applicable to brain and fat tissues[J]. Journal of The Royal Society Interface, 2015, 12(110): 20150486.
[4] KOPEČEK J. Swell gels[J]. Nature, 2002, 417(6887): 389-391.
[5] LIU X, TIAN S, TAO F, et al. A review of artificial neural networks in the constitutive modeling of composite materials[J]. Composites Part B: Engineering, 2021, 224: 109152.
[6] HINTON M. Failure criteria in fibre reinforced polymer composites: the world-wide failure exercise[M]. Elsevier, 2004.
[7] HINTON M J, KADDOUR A S. Triaxial test results for fibre-reinforced composites: The Second World-Wide Failure Exercise benchmark data[J]. Journal of Composite Materials, 2013, 47(6-7): 653-678.
[8] CHEN G, SHEN Z, IYER A, et al. Machine-learning-assisted de novo design of organic molecules and polymers: opportunities and challenges[J]. Polymers, 2020, 12(1): 163.
[9] GÓMEZ-BOMBARELLI R, AGUILERA-IPARRAGUIRRE J, HIRZEL T D, et al. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach[J]. Nature Materials, 2016, 15(10): 1120-1127.
[10] REN F, WARD L, WILLIAMS T, et al. Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments[J]. Science Advances, 2018, 4(4): eaaq1566.
[11] LEVINSON J, ASKELAND J, BECKER J, et al. Towards fully autonomous driving: Systems and algorithms[C]//2011 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2011: 163-168.
[12] 张峻铭, 杨伟东, 李岩. 人工智能在复合材料研究中的应用[J]. 力学进展, 2021, 51(4): 865-900.
[13] POPOVA M, ISAYEV O, TROPSHA A. Deep reinforcement learning for de novo drug design[J]. Science Advances, 2018, 4(7): eaap7885.
[14] GHABOUSSI J, GARRETT JR J H, WU X. Knowledge-based modeling of material behavior with neural networks[J]. Journal of Engineering Mechanics, 1991, 117(1): 132-153.
[15] GHABOUSSI J, SIDARTA D E. New nested adaptive neural networks (NANN) for constitutive modeling[J]. Computers and Geotechnics, 1998, 22(1): 29-52.
[16] GHABOUSSI J, PECKNOLD D A, ZHANG M, et al. Autoprogressive training of neural network constitutive models[J]. International Journal for Numerical Methods in Engineering, 1998, 42(1): 105-126.
[17] HASHASH Y M A, JUNG S, GHABOUSSI J. Numerical implementation of a neural network based material model in finite element analysis[J]. International Journal for Numerical Methods in Engineering, 2004, 59(7):989–1005.
[18] JUNG S, GHABOUSSI J. Neural network constitutive model for rate-dependent materials[J]. Computers & Structures, 2006, 84(15-16): 955-963.
[19] YUN G J, GHABOUSSI J, ELNASHAI A S. A new neural network‐based model for hysteretic behavior of materials[J]. International Journal for Numerical Methods in Engineering, 2008, 73(4): 447-469.
[20] FURUKAWA T, YAGAWA G. Implicit constitutive modelling for viscoplasticity using neural networks[J]. International Journal for Numerical Methods in Engineering, 1998, 43(2): 195-219.
[21] AL-HAIK M S, GARMESTANI H, NAVON I M. Truncated-Newton training algorithm for neurocomputational viscoplastic model[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(19): 2249-2267.
[22] AL-HAIK M S, HUSSAINI M Y, GARMESTANI H. Prediction of nonlinear viscoelastic behavior of polymeric composites using an artificial neural network[J]. International Journal of Plasticity, 2006, 22(7): 1367-1392.
[23] CHEN G. Recurrent neural networks (RNNs) learn the constitutive law of viscoelasticity[J]. Computational Mechanics, 2021, 67(3): 1009-1019.
[24] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25: 1097-1105.
[25] ABUEIDDA D W, KORIC S, SOBH N A, et al. Deep learning for plasticity and thermo-viscoplasticity[J]. International Journal of Plasticity, 2021, 136: 102852.
[26] MOZAFFAR M, BOSTANABAD R, CHEN W, et al. Deep learning predicts path-dependent plasticity[J]. Proceedings of the National Academy of Sciences, 2019, 116(52): 26414-26420.
[27] YANG C, KIM Y, RYU S, et al. Prediction of composite microstructure stress-strain curves using convolutional neural networks[J]. Materials & Design, 2020, 189: 108509.
[28] RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707.
[29] KARNIADAKIS G E, KEVREKIDIS I G, LU L, et al. Physics-informed machine learning[J]. Nature Reviews Physics, 2021, 3(6): 422-440.
[30] HAGHIGHAT E, RAISSI M, MOURE A, et al. A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 379: 113741.
[31] TAO F, LIU X, DU H, et al. Physics-informed artificial neural network approach for axial compression buckling analysis of thin-walled cylinder[J]. AIAA Journal, 2020, 58(6): 2737-2747.
[32] ZHANG R, LIU Y, SUN H. Physics-informed multi-LSTM networks for metamodeling of nonlinear structures[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 369: 113226.
[33] SAHLI COSTABAL F, YANG Y, PERDIKARIS P, et al. Physics-informed neural networks for cardiac activation mapping[J]. Frontiers in Physics, 2020, 8: 42.
[34] JAGTAP A D, MAO Z, ADAMS N, et al. Physics-informed neural networks for inverse problems in supersonic flows[J]. Journal of Computational Physics, 2022, 466: 111402.
[35] MAO Z, JAGTAP A D, KARNIADAKIS G E. Physics-informed neural networks for high-speed flows[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 360: 112789.
[36] JIN X, CAI S, LI H, et al. NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations[J]. Journal of Computational Physics, 2021, 426: 109951.
[37] SAMANIEGO E, ANITESCU C, GOSWAMI S, et al. An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 362: 112790.
[38] NGUYEN-THANH V M, ZHUANG X, RABCZUK T. A deep energy method for finite deformation hyperelasticity[J]. European Journal of Mechanics-A/Solids, 2020, 80: 103874.
[39] YANG L, MENG X, KARNIADAKIS G E. B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data[J]. Journal of Computational Physics, 2021, 425: 109913.
[40] MENG X, LI Z, ZHANG D, et al. PPINN: Parareal physics-informed neural network for time-dependent PDEs[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 370: 113250.
[41] FANG Z. A high-efficient hybrid physics-informed neural networks based on convolutional neural network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(10): 5514-5526.
[42] LAHARIYA M, KARAMI F, DEVELDER C, et al. Physics-informed recurrent neural networks for the identification of a generic energy buffer system[C]//2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS). IEEE, 2021: 1044-1049.
[43] KIRCHDOERFER T, ORTIZ M. Data-driven computational mechanics[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 304:81–101.
[44] KARAPIPERIS K, STAINIER L, ORTIZ M, et al. Data-driven multiscale modeling in mechanics[J]. Journal of the Mechanics and Physics of Solids, 2021, 147: 104239.
[45] KIRCHDOERFER T, ORTIZ M. Data driven computing with noisy material data sets[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 326: 622-641.
[46] IBANEZ R, ABISSET-CHAVANNE E, AGUADO J V, et al. A manifold learning approach to data-driven computational elasticity and inelasticity[J]. Archives of Computational Methods in Engineering, 2018, 25: 47-57.
[47] GUO X, DU Z, LIU C, et al. A new uncertainty analysis-based framework for data-driven computational mechanics[J]. Journal of Applied Mechanics, 2021, 88:1–22.
[48] KANNO Y. Simple heuristic for data-driven computational elasticity with material data involving noise and outliers: a local robust regression approach[J]. Japan Journal of Industrial and Applied Mathematics, 2018, 35(3): 1085-1101.
[49] CONTI S, MÜLLER S, ORTIZ M. Data-driven finite elasticity[J]. Archive for Rational Mechanics and Analysis, 2020, 237(1): 1-33.
[50] KANNO Y. Mixed-integer programming formulation of a data-driven solver in computational elasticity[J]. Optimization Letters, 2019, 13(7): 1505-1514.
[51] KIRCHDOERFER T, ORTIZ M. Data‐driven computing in dynamics[J]. International Journal for Numerical Methods in Engineering, 2018, 113(11): 1697-1710.
[52] NGUYEN L T K, KEIP M A. A data-driven approach to nonlinear elasticity[J]. Computers & Structures, 2018, 194: 97-115.
[53] PLATZER A, LEYGUE A, STAINIER L, et al. Finite element solver for data-driven finite strain elasticity[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 379: 113756.
[54] NGUYEN L T K, RAMBAUSEK M, KEIP M A. Variational framework for distance-minimizing method in data-driven computational mechanics[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 365: 112898.
[55] EGGERSMANN R, KIRCHDOERFER T, REESE S, et al. Model-free data-driven inelasticity[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 350: 81-99.
[56] CARRARA P, DE LORENZIS L, STAINIER L, et al. Data-driven fracture mechanics[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 372: 113390.
[57] TANG S, ZHANG G, YANG H, et al. MAP123: A data-driven approach to use 1D data for 3D nonlinear elastic materials modeling[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 357: 112587.
[58] TANG S, LI Y, QIU H, et al. MAP123-EP: A mechanistic-based data-driven approach for numerical elastoplastic analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 364: 112955.
[59] TANG S, YANG H, QIU H, et al. MAP123-EPF: a mechanistic-based data-driven approach for numerical elastoplastic modeling at finite strain[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 373: 113484.
[60] ROSENBLATT F. The perceptron: a probabilistic model for information storage and organization in the brain[J]. Psychological Review, 1958, 65(6): 386.
[61] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536.
[62] SALAKHUTDINOV R, MNIH A, HINTON G. Restricted Boltzmann machines for collaborative filtering[C]//Proceedings of the 24th International Conference on Machine Learning. 2007: 791-798.
[63] HORNIK K, STINCHCOMBE M, WHITE H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5): 359-366.
[64] NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann machines[C]// Proceedings of the 27th International Conference on Machine Learning (ICML-10). 2010: 807-814.
[65] BRIDLE J. Training stochastic model recognition algorithms as networks can lead to maximum mutual information estimation of parameters[J]. Advances in Neural Information Processing Systems 2, 1990: 211-217.
[66] SINGH S S, CHANDRA P. Bi-modal derivative activation function for sigmoidal feedforward networks[J]. Neurocomputing, 2014, 143: 182-196.
[67] DUGAS C, BENGIO Y, BÉLISLE F, et al. Incorporating second-order functional knowledge for better option pricing[J]. Advances in Neural Information Processing Systems, 2001, 13: 472-478.
[68] WILLMOTT C J, MATSUURA K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance[J]. Climate Research, 2005, 30(1): 79-82.
[69] CHAI T, DRAXLER R R. Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature[J]. Geoscientific Model Development, 2014, 7(3): 1247-1250.
[70] ROSASCO L, VITO E D, CAPONNETTO A, et al. Are loss functions all the same?[J]. Neural Computation, 2004, 16(5):1063-1076.
[71] ROBBINS H, MONRO S. A stochastic approximation method[J]. The Annals of Mathematical Statistics, 1951: 400-407.
[72] QIAN N. On the momentum term in gradient descent learning algorithms[J]. Neural Networks, 1999, 12(1): 145-151.
[73] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. MIT Press, 2016: 156-282.
[74] ELMAN J L. Finding structure in time[J]. Cognitive Science, 1990, 14(2): 179-211.
[75] ZENKNER G, NAVARRO-MARTINEZ S. A flexible and lightweight deep learning weather forecasting model[J]. Applied Intelligence, 2023, 53(21): 24991-25002.
[76] ZHAO J, ZENG D, LIANG S, et al. Prediction model for stock price trend based on recurrent neural network[J]. Journal of Ambient Intelligence and Humanized Computing, 2021, 12: 745-753.
[77] SCHUSTER M, PALIWAL K K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11): 2673-2681.
[78] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[79] CHO K, VAN MERRIËNBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. 2014: 1724–1734.
[80] KINGMA D P, BA J. Adam: A method for stochastic optimization[J]. International Conference on Learning Representations, 2015, 1-13.
[81] STEINMANN P, HOSSAIN M, POSSART G. Hyperelastic models for rubber-like materials: consistent tangent operators and suitability for Treloar’s data[J]. Archive of Applied Mechanics, 2012, 82: 1183-1217.
[82] GUO J, LONG R, MAYUMI K, et al. Mechanics of a dual cross-link gel with dynamic bonds: Steady state kinetics and large deformation effects[J]. Macromolecules, 2016, 49(9): 3497-3507.
[83] GUO J, LIU M, ZEHNDER A T, et al. Fracture mechanics of a self-healing hydrogel with covalent and physical crosslinks: A numerical study[J]. Journal of the Mechanics and Physics of Solids, 2018, 120: 79-95.
[84] BESSA M A, BOSTANABAD R, LIU Z, et al. A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 320: 633-667.

所在学位评定分委会
力学
国内图书分类号
O343.1
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765927
专题南方科技大学
工学院_力学与航空航天工程系
推荐引用方式
GB/T 7714
崔娜. 基于深度学习的粘弹性本构建模[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132388-崔娜-力学与航空航天工(4220KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[崔娜]的文章
百度学术
百度学术中相似的文章
[崔娜]的文章
必应学术
必应学术中相似的文章
[崔娜]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。