[1] VESELAGO V G. The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ[J]. Soviet Physics Uspekhi, 1968, 10(4): 509.
[2] FOTEINOPOULOU S, ECONOMOU E N, SOUKOULIS C M. Refraction in Media with a Negative Refractive Index[J]. Physical Review Letters, 2003, 90(10): 107402.
[3] SMITH D R, PENDRY J B, WILTSHIRE M C K. Metamaterials and Negative Refractive Index[J]. Science, 2004, 305(5685): 788-792.
[4] SMITH D R, KROLL N. Negative Refractive Index in Left-Handed Materials[J]. Physical Review Letters, 2000, 85(14): 2933-2936.
[5] SOUKOULIS C M, LINDEN S, WEGENER M. Negative Refractive Index at Optical Wavelengths[J]. Science, 2007, 315(5808): 47-49.
[6] VALENTINE J, ZHANG S, ZENTGRAF T, et al. Three-Dimensional Optical Metamaterial with a Negative Refractive Index[J]. Nature, 2008, 455(7211): 376-379.
[7] ERGIN T, STENGER N, BRENNER P, et al. Three-Dimensional Invisibility Cloak at Optical Wavelengths[J]. Science, 2010, 328(5976): 337-339.
[8] PENDRY J B, AUBRY A, SMITH D R, et al. Transformation Optics and Subwavelength Control of Light[J]. Science, 2012, 337(6094): 549-552.
[9] PENDRY J B, SCHURIG D, SMITH D R. Controlling Electromagnetic Fields[J]. Science, 2006, 312(5781): 1780-1782.
[10] SCHURIG D, MOCK J J, JUSTICE B J, et al. Metamaterial Electromagnetic Cloak at Microwave Frequencies[J]. Science, 2006, 314(5801): 977-980.
[11] CHEN H T, TAYLOR A J, YU N. A Review of Metasurfaces: Physics and Applications[J]. Reports on Progress in Physics, 2016, 79(7): 076401.
[12] KILDISHEV A V, BOLTASSEVA A, SHALAEV V M. Planar Photonics with Metasurfaces[J]. Science, 2013, 339(6125): 1232009.
[13] YU N, CAPASSO F. Flat Optics with Designer Metasurfaces[J]. Nature Materials, 2014, 13(2): 139-150.
[14] ENGELBERG J, LEVY U. The Advantages of Metalenses Over Diffractive Lenses[J]. Nature Communications, 2020, 11(1): 1991.
[15] LAPINE M, SHADRIVOV I V, KIVSHAR Y S. Colloquium: Nonlinear metamaterials[J]. Reviews of Modern Physics, 2014, 86(3): 1093-1123.
[16] CHEN S, LI G, CHEAH K W, et al. Controlling the Phase of Optical Nonlinearity with Plasmonic Metasurfaces[J]. Nanophotonics, 2018, 7(6): 1013-1024.
[17] KRASNOK A, TYMCHENKO M, ALÙ A. Nonlinear Metasurfaces: A Paradigm Shift in Nonlinear Optics[J]. Materials Today, 2018, 21(1): 8-21.
[18] LI G, ZHANG S, ZENTGRAF T. Nonlinear Photonic Metasurfaces[J]. Nature Reviews Materials, 2017, 2(5): 17010.
[19] KAURANEN M, ZAYATS A V. Nonlinear Plasmonics[J]. Nature Photonics, 2012, 6(11): 737-748.
[20] MAO N, ZHANG G, TANG Y, et al. Nonlinear Vectorial Holography with Quad-Atom Metasurfaces[J]. Proceedings of the National Academy of Sciences, 2022, 119(22): e2204418119.
[21] HONG X, WANG K, GUAN C, et al. Chiral Third-Harmonic Metasurface for Multiplexed Holograms[J]. Nano Letters, 2022, 22(22): 8860-8866.
[22] WANG M, LI Y, TANG Y, et al. Nonlinear Chiroptical Holography with Pancharatnam–Berry Phase Controlled Plasmonic Metasurface[J]. Laser & Photonics Reviews, 2022, 16(12): 2200350.
[23] MCDONNELL C, DENG J, SIDERIS S, et al. Functional Thz Emitters Based on Pancharatnam-Berry Phase Nonlinear Metasurfaces[J]. Nature Communications, 2021, 12(1): 30.
[24] YE W, ZEUNER F, LI X, et al. Spin and Wavelength Multiplexed Nonlinear Metasurface Holography[J]. Nature Communications, 2016, 7(1): 11930.
[25] ALMEIDA E, BITTON O, PRIOR Y. Nonlinear Metamaterials for Holography[J]. Nature Communications, 2016, 7(1): 12533.
[26] WANG L, KRUK S, KOSHELEV K, et al. Nonlinear Wavefront Control with All-Dielectric Metasurfaces[J]. Nano Letters, 2018, 18(6): 3978-3984.
[27] SEGAL N, KEREN-ZUR S, HENDLER N, et al. Controlling Light with Metamaterial-Based Nonlinear Photonic Crystals[J]. Nature Photonics, 2015, 9(3): 180-184.
[28] LI L, LIU Z, REN X, et al. Metalens-Array–Based High-Dimensional and Multiphoton Quantum Source[J]. Science, 2020, 368(6498): 1487-1490.
[29] MING Y, ZHANG W, TANG J, et al. Photonic Entanglement Based on Nonlinear Metamaterials[J]. Laser & Photonics Reviews, 2020, 14(5): 1900146.
[30] SANTIAGO-CRUZ T, GENNARO S D, MITROFANOV O, et al. Resonant Metasurfaces for Generating Complex Quantum States[J]. Science, 2022, 377(6609): 991-995.
[31] ZHANG J, MA J, PARRY M, et al. Spatially Entangled Photon Pairs from Lithium Niobate Nonlocal Metasurfaces[J]. Science Advances, 2022, 8(30): eabq4240.
[32] KORT-KAMP W J M, AZAD A K, DALVIT D A R. Space-Time Quantum Metasurfaces[J]. Physical Review Letters, 2021, 127(4): 043603.
[33] YU N, GENEVET P, KATS M A, et al. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction[J]. Science, 2011, 334(6054): 333-337.
[34] LIN D, FAN P, HASMAN E, et al. Dielectric Gradient Metasurface Optical Elements[J]. Science, 2014, 345(6194): 298-302.
[35] CHEN X, HUANG L, MÜHLENBERND H, et al. Dual-Polarity Plasmonic Metalens for Visible Light[J]. Nature Communications, 2012, 3(1): 1198.
[36] BLIOKH K Y, NIV A, KLEINER V, et al. Geometrodynamics of Spinning Light[J]. Nature Photonics, 2008, 2(12): 748-753.
[37] WEN D, YUE F, LI G, et al. Helicity Multiplexed Broadband Metasurface Holograms[J]. Nature Communications, 2015, 6(1): 8241.
[38] BOMZON Z, BIENER G, KLEINER V, et al. Space-Variant Pancharatnam–Berry Phase Optical Elements with Computer-Generated Subwavelength Gratings[J]. Optics Letters, 2002, 27(13): 1141-1143.
[39] KHORASANINEJAD M, AMBROSIO A, KANHAIYA P, et al. Broadband and Chiral Binary Dielectric Meta-Holograms[J]. Science Advances, 2016, 2(5): e1501258.
[40] DENG Z L, DENG J, ZHUANG X, et al. Diatomic Metasurface for Vectorial Holography[J]. Nano Letters, 2018, 18(5): 2885-2892.
[41] DENG Z L, DENG J, ZHUANG X, et al. Facile Metagrating Holograms with Broadband and Extreme Angle Tolerance[J]. Light: Science & Applications, 2018, 7(1): 78.
[42] SINZINGER S, ARRIZÓN V. High-Efficiency Detour-Phase Holograms[J]. Optics Letters, 1997, 22(12): 928-930.
[43] JI R, XIE X, GUO X, et al. Chirality-Assisted Aharonov–Anandan Geometric-Phase Metasurfaces for Spin-Decoupled Phase Modulation[J]. ACS Photonics, 2021, 8(6): 1847-1855.
[44] BAI G D, MA Q, LI R Q, et al. Spin-Symmetry Breaking Through Metasurface Geometric Phases[J]. Physical Review Applied, 2019, 12(4): 044042.
[45] CAI J, ZHANG F, PU M, et al. All-Metallic High-Efficiency Generalized Pancharatnam–Berry Phase Metasurface with Chiral Meta-Atoms[J]. Nanophotonics, 2022, 11(9): 1961-1968.
[46] XIE X, PU M, JIN J, et al. Generalized Pancharatnam-Berry Phase in Rotationally Symmetric Meta-Atoms[J]. Physical Review Letters, 2021, 126(18): 183902.
[47] LUO J, WANG Y, PU M, et al. Multiple Rotational Doppler Effect Induced by a Single Spinning Meta-Atom[J]. Physical Review Applied, 2023, 19(4): 044064.
[48] SONG Q, ODEH M, ZÚÑIGA-PÉREZ J, et al. Plasmonic Topological Metasurface by Encircling an Exceptional Point[J]. Science, 2021, 373(6559): 1133-1137.
[49] BERRY M V. The Adiabatic Phase and Pancharatnam’s Phase for Polarized Light[J]. Journal of Modern Optics, 1987, 34(11): 1401-1407.
[50] PANCHARATNAM S. Generalized Theory of Interference and Its Applications[J]. Proceedings of the Indian Academy of Sciences - Section A, 1956, 44(6): 398-417.
[51] BERRY M V. Quantal Phase Factors Accompanying Adiabatic Changes[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1997, 392(1802): 45-57.
[52] ANANDAN J. The Geometric Phase[J]. Nature, 1992, 360(6402): 307-313.
[53] SLUSSARENKO S, ALBERUCCI A, JISHA C P, et al. Guiding Light Via Geometric Phases[J]. Nature Photonics, 2016, 10(9): 571-575.
[54] HARIHARAN P. The Geometric Phase[M]. Progress in Optics: Vol. 48. Elsevier, 2005: 149-201.
[55] CISOWSKI C, GÖTTE J B, FRANKE-ARNOLD S. Colloquium: Geometric Phases of Light: Insights from Fiber Bundle Theory[J]. Reviews of Modern Physics, 2022, 94(3): 031001.
[56] COHEN E, LAROCQUE H, BOUCHARD F, et al. Geometric phase from Aharonov–Bohm to Pancharatnam–Berry and beyond[J]. Nature Reviews Physics, 2019, 1(7): 437-449.
[57] BALTHASAR MUELLER J P, RUBIN N A, DEVLIN R C, et al. Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization[J]. Physical Review Letters, 2017, 118(11): 113901.
[58] ZHENG G, MÜHLENBERND H, KENNEY M, et al. Metasurface Holograms Reaching 80% Efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308-312.
[59] KHORASANINEJAD M, CHEN W T, DEVLIN R C, et al. Metalenses at Visible Wavelengths: Diffraction-Limited Focusing and Subwavelength Resolution Imaging[J]. Science, 2016, 352(6290): 1190-1194.
[60] WANG S, WU P C, SU V C, et al. Broadband Achromatic Optical Metasurface Devices[J]. Nature Communications, 2017, 8(1): 187.
[61] SHRESTHA S, OVERVIG A C, LU M, et al. Broadband Achromatic Dielectric Metalenses[J]. Light: Science & Applications, 2018, 7(1): 85.
[62] LIN R J, SU V C, WANG S, et al. Achromatic Metalens Array for Full-Colour Light-Field Imaging[J]. Nature Nanotechnology, 2019, 14(3): 227-231.
[63] ROBERTS A S, PORS A, ALBREKTSEN O, et al. Subwavelength Plasmonic Color Printing Protected for Ambient Use[J]. Nano Letters, 2014, 14(2): 783-787.
[64] BAO Y, YU Y, XU H, et al. Full-Colour Nanoprint-Hologram Synchronous Metasurface with Arbitrary Hue-Saturation-Brightness Control[J]. Light: Science & Applications, 2019, 8(1): 95.
[65] RUBIN N A, ZAIDI A, DORRAH A H, et al. Jones Matrix Holography with Metasurfaces[J]. Science Advances, 2021, 7(33): eabg7488.
[66] RUBIN N A, D’AVERSA G, CHEVALIER P, et al. Matrix Fourier Optics Enables a Compact Full-Stokes Polarization Camera[J]. Science, 2019, 365(6448): eaax1839.
[67] SHI Z, RUBIN N A, PARK J S, et al. Nonseparable Polarization Wavefront Transformation[J]. Physical Review Letters, 2022, 129(16): 167403.
[68] BAO Y, NAN F, YAN J, et al. Observation of Full-Parameter Jones Matrix in Bilayer Metasurface[J]. Nature Communications, 2022, 13(1): 7550.
[69] BAO Y, WEN L, CHEN Q, et al. Toward the Capacity Limit of 2d Planar Jones Matrix with a Single-Layer Metasurface[J]. Science Advances, 2021, 7(25): eabh0365.
[70] XIONG B, LIU Y, XU Y, et al. Breaking the Limitation of Polarization Multiplexing in Optical Metasurfaces with Engineered Noise[J]. Science, 2023, 379(6629): 294-299.
[71] ALLEN L, HAAR D T. Essentials of Lasers: The Commonwealth and International Library: Selected Readings in Physics[M]. Elsevier Science, 2017.
[72] FRANKEN P A, HILL A E, PETERS C W, et al. Generation of Optical Harmonics[J]. Physical Review Letters, 1961, 7(4): 118-119.
[73] KAVOKIN A V, BAUMBERG J J, MALPUECH G, et al. Microcavities[M]. Oxford University Press, 2017.
[74] VAHALA K J. Optical Microcavities[J]. Nature, 2003, 424(6950): 839-846.
[75] PELTON M. Modified Spontaneous Emission in Nanophotonic Structures[J]. Nature Photonics, 2015, 9(7): 427-435.
[76] KLEIN M W, ENKRICH C, WEGENER M, et al. Second-Harmonic Generation from Magnetic Metamaterials[J]. Science, 2006, 313(5786): 502-504.
[77] CELEBRANO M, WU X, BASELLI M, et al. Mode Matching in Multiresonant Plasmonic Nanoantennas for Enhanced Second Harmonic Generation[J]. Nature Nanotechnology, 2015, 10(5): 412-417.
[78] HALAS N J, LAL S, CHANG W S, et al. Plasmons in Strongly Coupled Metallic Nanostructures[J]. Chemical Reviews, 2011, 111(6): 3913-3961.
[79] MÜHLSCHLEGEL P, EISLER H J, MARTIN O J F, et al. Resonant Optical Antennas[J]. Science, 2005, 308(5728): 1607-1609.
[80] MIYAZAKI H T, KUROKAWA Y. Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity[J]. Physical Review Letters, 2006, 96(9): 097401.
[81] KUTTGE M, GARCÍA DE ABAJO F J, POLMAN A. Ultrasmall Mode Volume Plasmonic Nanodisk Resonators[J]. Nano Letters, 2010, 10(5): 1537-1541.
[82] CIRACÌ C, HILL R T, MOCK J J, et al. Probing the Ultimate Limits of Plasmonic Enhancement[J]. Science, 2012, 337(6098): 1072-1074.
[83] LIMONOV M F. Fano Resonance for Applications[J]. Advances in Optics and Photonics, 2021, 13(3): 703-771.
[84] MIROSHNICHENKO A E, FLACH S, KIVSHAR Y S. Fano Resonances in Nanoscale Structures[J]. Reviews of Modern Physics, 2010, 82(3): 2257-2298.
[85] LIMONOV M F, RYBIN M V, PODDUBNY A N, et al. Fano Resonances in Photonics[J]. Nature Photonics, 2017, 11(9): 543-554.
[86] KANG M, LIU T, CHAN C T, et al. Applications of Bound States in the Continuum in Photonics[J]. Nature Reviews Physics, 2023, 5(11): 659-678.
[87] HSU C W, ZHEN B, STONE A D, et al. Bound States in the Continuum[J]. Nature Reviews Materials, 2016, 1(9): 16048.
[88] MARINICA D C, BORISOV A G, SHABANOV S V. Bound States in the Continuum in Photonics[J]. Physical Review Letters, 2008, 100(18): 183902.
[89] KOSHELEV K, BOGDANOV A, KIVSHAR Y. Meta-Optics and Bound States in the Continuum[J]. Science Bulletin, 2019, 64(12): 836-842.
[90] AZZAM S I, KILDISHEV A V. Photonic Bound States in the Continuum: From Basics to Applications[J]. Advanced Optical Materials, 2021, 9(1): 2001469.
[91] YANG Y, KRAVCHENKO I I, BRIGGS D P, et al. All-Dielectric Metasurface Analogue of Electromagnetically Induced Transparency[J]. Nature Communications, 2014, 5(1): 5753.
[92] LIU H, GUO C, VAMPA G, et al. Enhanced High-Harmonic Generation from an All-Dielectric Metasurface[J]. Nature Physics, 2018, 14(10): 1006-1010.
[93] LIU N, LANGGUTH L, WEISS T, et al. Plasmonic Analogue of Electromagnetically Induced Transparency at the Drude Damping Limit[J]. Nature Materials, 2009, 8(9): 758-762.
[94] KOSHELEV K, LEPESHOV S, LIU M, et al. Asymmetric Metasurfaces with High-Q Resonances Governed by Bound States in the Continuum[J]. Physical Review Letters, 2018, 121(19): 193903.
[95] KOSHELEV K, TANG Y, LI K, et al. Nonlinear Metasurfaces Governed by Bound States in the Continuum[J]. ACS Photonics, 2019, 6(7): 1639-1644.
[96] ZOGRAF G, KOSHELEV K, ZALOGINA A, et al. High-Harmonic Generation from Resonant Dielectric Metasurfaces Empowered by Bound States in the Continuum[J]. ACS Photonics, 2022, 9(2): 567-574.
[97] AUTERE A, JUSSILA H, DAI Y, et al. Nonlinear Optics with 2D Layered Materials[J]. Advanced Materials, 2018, 30(24): 1705963.
[98] SUN Z, MARTINEZ A, WANG F. Optical Modulators with 2d Layered Materials[J]. Nature Photonics, 2016, 10(4): 227-238.
[99] MAK K F, SHAN J. Photonics and Optoelectronics of 2d Semiconductor Transition Metal Dichalcogenides[J]. Nature Photonics, 2016, 10(4): 216-226.
[100] ZHANG J, ZHAO W, YU P, et al. Second Harmonic Generation in 2d Layered Materials[J]. 2D Materials, 2020, 7(4): 042002.
[101] YIN X, YE Z, CHENET D A, et al. Edge Nonlinear Optics on a MoS2 Atomic Monolayer[J]. Science, 2014, 344(6183): 488-490.
[102] MALARD L M, ALENCAR T V, BARBOZA A P M, et al. Observation of Intense Second Harmonic Generation from MoS2 Atomic Crystals[J]. Physical Review B, 2013, 87(20): 201401.
[103] KUMAR N, NAJMAEI S, CUI Q, et al. Second Harmonic Microscopy of Monolayer MoS2[J]. Physical Review B, 2013, 87(16): 161403.
[104] TROLLE M L, SEIFERT G, PEDERSEN T G. Theory of Excitonic Second-Harmonic Generation in Monolayer Mos2[J]. Physical Review B, 2014, 89(23): 235410.
[105] LI Y, RAO Y, MAK K F, et al. Probing Symmetry Properties of Few-Layer MoS2 and h-BN by Optical Second-Harmonic Generation[J]. Nano Letters, 2013, 13(7): 3329-3333.
[106] ABDELWAHAB I, TILMANN B, WU Y, et al. Giant Second-Harmonic Generation in Ferroelectric Nboi2[J]. Nature Photonics, 2022, 16(9): 644-650.
[107] HONG H, HUANG C, MA C, et al. Twist Phase Matching in Two-Dimensional Materials[J]. Physical Review Letters, 2023, 131(23): 233801.
[108] LEE J, TYMCHENKO M, ARGYROPOULOS C, et al. Giant Nonlinear Response from Plasmonic Metasurfaces Coupled to Intersubband Transitions[J]. Nature, 2014, 511(7507): 65-69.
[109] QIAN H, LI S, CHEN C F, et al. Large Optical Nonlinearity Enabled by Coupled Metallic Quantum Wells[J]. Light: Science & Applications, 2019, 8(1): 13.
[110] SHEN K C, HUANG Y T, CHUNG T L, et al. Giant Efficiency of Visible Second-Harmonic Light by an All-Dielectric Multiple-Quantum-Well Metasurface[J]. Physical Review Applied, 2019, 12(6): 064056.
[111] MEKAWY A, ALÙ A. Giant Midinfrared Nonlinearity Based on Multiple Quantum Well Polaritonic Metasurfaces[J]. Nanophotonics, 2021, 10(1): 667-678.
[112] XIAO Y, QIAN H, LIU Z. Nonlinear Metasurface Based on Giant Optical Kerr Response of Gold Quantum Wells[J]. ACS Photonics, 2018, 5(5): 1654-1659.
[113] NEFEDKIN N, MEKAWY A, KRAKOFSKY J, et al. Overcoming Intensity Saturation in Nonlinear Multiple-Quantum-Well Metasurfaces for High-Efficiency Frequency Upconversion[J]. Advanced Materials, 2023, 35(34): 2106902.
[114] MA H, NIU J, GAO B, et al. Tunable Metasurface Based on Plasmonic Quasi Bound State in the Continuum Driven by Metallic Quantum Wells[J]. Advanced Optical Materials, 2023, 11(5): 2202584.
[115] NOOKALA N, LEE J, TYMCHENKO M, et al. Ultrathin Gradient Nonlinear Metasurface with a Giant Nonlinear Response[J]. Optica, 2016, 3(3): 283-288.
[116] LI G, CHEN S, PHOLCHAI N, et al. Continuous Control of the Nonlinearity Phase for Harmonic Generations[J]. Nature Materials, 2015, 14(6): 607-612.
[117] TYMCHENKO M, GOMEZ-DIAZ J S, LEE J, et al. Gradient Nonlinear Pancharatnam-Berry Metasurfaces[J]. Physical Review Letters, 2015, 115(20): 207403.
[118] LI G, SARTORELLO G, CHEN S, et al. Spin and Geometric Phase Control Four-Wave Mixing from Metasurfaces[J]. Laser & Photonics Reviews, 2018, 12(6): 1800034.
[119] KARNIELI A, LI Y, ARIE A. The Geometric Phase in Nonlinear Frequency Conversion[J]. Frontiers of Physics, 2021, 17(1): 12301.
[120] ELLENBOGEN T, VOLOCH-BLOCH N, GANANY-PADOWICZ A, et al. Nonlinear Generation and Manipulation of Airy Beams[J]. Nature Photonics, 2009, 3(7): 395-398.
[121] BLOCH N V, SHEMER K, SHAPIRA A, et al. Twisting Light by Nonlinear Photonic Crystals[J]. Physical Review Letters, 2012, 108(23): 233902.
[122] LIU B, GEROMEL R, SU Z, et al. Nonlinear Dielectric Geometric-Phase Metasurface with Simultaneous Structure and Lattice Symmetry Design[J]. ACS Photonics, 2023, 10(12): 4357-4366.
[123] BOYD R W. Chapter 2 - Wave-Equation Description of Nonlinear Optical Interactions[M]. BOYD R W. Nonlinear Optics (Third Edition). Burlington: Academic Press, 2008: 69-133.
[124] SIMON H J, BLOEMBERGEN N. Second-Harmonic Light Generation in Crystals with Natural Optical Activity[J]. Physical Review, 1968, 171(3): 1104-1114.
[125] TANG C L, RABIN H. Selection Rules for Circularly Polarized Waves in Nonlinear Optics[J]. Physical Review B, 1971, 3(12): 4025-4034.
[126] LIU X, ZHU X, LI L, et al. Selection Rules of High-Order-Harmonic Generation: Symmetries of Molecules and Laser Fields[J]. Physical Review A, 2016, 94(3): 033410.
[127] ALON O E, AVERBUKH V, MOISEYEV N. Selection Rules for the High Harmonic Generation Spectra[J]. Physical Review Letters, 1998, 80(17): 3743-3746.
[128] SAITO N, XIA P, LU F, et al. Observation of Selection Rules for Circularly Polarized Fields in High-Harmonic Generation from a Crystalline Solid[J]. Optica, 2017, 4(11): 1333-1336.
[129] LI G, ZENTGRAF T, ZHANG S. Rotational Doppler Effect in Nonlinear Optics[J]. Nature Physics, 2016, 12(8): 736-740.
[130] KONISHI K, HIGUCHI T, LI J, et al. Polarization-Controlled Circular Second-Harmonic Generation from Metal Hole Arrays with Threefold Rotational Symmetry[J]. Physical Review Letters, 2014, 112(13): 135502.
[131] CHEN S, LI G, ZEUNER F, et al. Symmetry-Selective Third-Harmonic Generation from Plasmonic Metacrystals[J]. Physical Review Letters, 2014, 113(3): 033901.
[132] HENTSCHEL M, SCHÄFERLING M, DUAN X, et al. Chiral Plasmonics[J]. Science Advances, 2017, 3(5): e1602735.
[133] OVERVIG A, YU N, ALÙ A. Chiral Quasi-Bound States in the Continuum[J]. Physical Review Letters, 2021, 126(7): 073001.
[134] MUN J, KIM M, YANG Y, et al. Electromagnetic Chirality: From Fundamentals to Nontraditional Chiroptical Phenomena[J]. Light: Science & Applications, 2020, 9(1): 139.
[135] GANSEL J K, THIEL M, RILL M S, et al. Gold Helix Photonic Metamaterial as Broadband Circular Polarizer[J]. Science, 2009, 325(5947): 1513-1515.
[136] GORKUNOV M V, ANTONOV A A, KIVSHAR Y S. Metasurfaces with Maximum Chirality Empowered by Bound States in the Continuum[J]. Physical Review Letters, 2020, 125(9): 093903.
[137] CHEN Y, DU W, ZHANG Q, et al. Multidimensional Nanoscopic Chiroptics[J]. Nature Reviews Physics, 2022, 4(2): 113-124.
[138] SCHÄFERLING M, DREGELY D, HENTSCHEL M, et al. Tailoring Enhanced Optical Chirality: Design Principles for Chiral Plasmonic Nanostructures[J]. Physical Review X, 2012, 2(3): 031010.
[139] VALEV V K, SILHANEK A V, VERELLEN N, et al. Asymmetric Optical Second-Harmonic Generation from Chiral G-Shaped Gold Nanostructures[J]. Physical Review Letters, 2010, 104(12): 127401.
[140] KIM D, YU J, HWANG I, et al. Giant Nonlinear Circular Dichroism from Intersubband Polaritonic Metasurfaces[J]. Nano Letters, 2020, 20(11): 8032-8039.
[141] CHEN S, ZEUNER F, WEISMANN M, et al. Giant Nonlinear Optical Activity of Achiral Origin in Planar Metasurfaces with Quadratic and Cubic Nonlinearities[J]. Advanced Materials, 2016, 28(15): 2992-2999.
[142] TANG Y, LIU Z, DENG J, et al. Nano-Kirigami Metasurface with Giant Nonlinear Optical Circular Dichroism[J]. Laser & Photonics Reviews, 2020, 14(7): 2000085.
[143] RODRIGUES S P, LAN S, KANG L, et al. Nonlinear Imaging and Spectroscopy of Chiral Metamaterials[J]. Advanced Materials, 2014, 26(35): 6157-6162.
[144] GANDOLFI M, TOGNAZZI A, ROCCO D, et al. Near-Unity Third-Harmonic Circular Dichroism Driven by a Quasibound State in the Continuum in Asymmetric Silicon Metasurfaces[J]. Physical Review A, 2021, 104(2): 023524.
[145] KOSHELEV K, TANG Y, HU Z, et al. Resonant Chiral Effects in Nonlinear Dielectric Metasurfaces[J]. ACS Photonics, 2023, 10(1): 298-306.
[146] KEREN-ZUR S, TAL M, FLEISCHER S, et al. Generation of Spatiotemporally Tailored Terahertz Wavepackets by Nonlinear Metasurfaces[J]. Nature Communications, 2019, 10(1): 1778.
[147] SIDERIS S, ZIXIAN H, MCDONNELL C, et al. Holographic THz Beam Generation by Nonlinear Plasmonic Metasurface Emitters[J]. ACS Photonics, 2023, 10(8): 2972-2979.
[148] MINERBI E, KEREN-ZUR S, ELLENBOGEN T. Nonlinear Metasurface Fresnel Zone Plates for Terahertz Generation and Manipulation[J]. Nano Letters, 2019, 19(9): 6072-6077.
[149] WANG Q, ZHANG X, XU Q, et al. Nonlinear Terahertz Generation: Chiral and Achiral Meta-Atom Coupling[J]. Advanced Functional Materials, 2023, 33(29): 2300639.
[150] MCDONNELL C, DENG J, SIDERIS S, et al. Terahertz Metagrating Emitters with Beam Steering and Full Linear Polarization Control[J]. Nano Letters, 2022, 22(7): 2603-2610.
[151] LIU J, SU R, WEI Y, et al. A Solid-State Source of Strongly Entangled Photon Pairs with High Brightness and Indistinguishability[J]. Nature Nanotechnology, 2019, 14(6): 586-593.
[152] MARINO G, SOLNTSEV A S, XU L, et al. Spontaneous Photon-Pair Generation from a Dielectric Nanoantenna[J]. Optica, 2019, 6(11): 1416-1422.
[153] SCALORA M, VINCENTI M A, DE CEGLIA D, et al. Second- and Third-Harmonic Generation in Metal-Based Structures[J]. Physical Review A, 2010, 82(4): 043828.
[154] CIRACÌ C, POUTRINA E, SCALORA M, et al. Origin of Second-Harmonic Generation Enhancement in Optical Split-Ring Resonators[J]. Physical Review B, 2012, 85(20): 201403.
[155] ROKE S, BONN M, PETUKHOV A V. Nonlinear Optical Scattering: The Concept of Effective Susceptibility[J]. Physical Review B, 2004, 70(11): 115106.
[156] LANDAU L D, LIFSHITZ E M. Chapter X - the Propagation of Electromagnetic Waves[M]. LANDAU L D, LIFSHITZ E M. Electrodynamics of Continuous Media (Second Edition): Vol. 8. Amsterdam: Pergamon, 1984: 290-330.
[157] O’BRIEN K, SUCHOWSKI H, RHO J, et al. Predicting Nonlinear Properties of Metamaterials from the Linear Response[J]. Nature Materials, 2015, 14(4): 379-383.
[158] WANG F X, RODRÍGUEZ F J, ALBERS W M, et al. Surface and Bulk Contributions to the Second-Order Nonlinear Optical Response of a Gold Film[J]. Physical Review B, 2009, 80(23): 233402.
[159] CHANG B, ZHOU C, TAREKEGNE A T, et al. Large Area Three-Dimensional Photonic Crystal Membranes: Single-Run Fabrication and Applications with Embedded Planar Defects[J]. Advanced Optical Materials, 2019, 7(2): 1801176.
[160] GARCÍA DE ABAJO F J. Colloquium: Light scattering by particle and hole arrays[J]. Reviews of Modern Physics, 2007, 79(4): 1267-1290.
[161] GENNARO S D, RAHMANI M, GIANNINI V, et al. The Interplay of Symmetry and Scattering Phase in Second Harmonic Generation from Gold Nanoantennas[J]. Nano Letters, 2016, 16(8): 5278-5285.
[162] LINDEN S, NIESLER F B P, FÖRSTNER J, et al. Collective Effects in Second-Harmonic Generation from Split-Ring-Resonator Arrays[J]. Physical Review Letters, 2012, 109(1): 015502.
[163] CZAPLICKI R, KIVINIEMI A, HUTTUNEN M J, et al. Less Is More: Enhancement of Second-Harmonic Generation from Metasurfaces by Reduced Nanoparticle Density[J]. Nano Letters, 2018, 18(12): 7709-7714.
[164] DENG J, TANG Y, CHEN S, et al. Giant Enhancement of Second-Order Nonlinearity of Epsilon-near- Zero Medium by a Plasmonic Metasurface[J]. Nano Letters, 2020, 20(7): 5421-5427.
[165] SUN Y, LARIN A, MOZHAROV A, et al. All-Optical Generation of Static Electric Field in a Single Metal-Semiconductor Nanoantenna[J]. Light: Science & Applications, 2023, 12(1): 237.
[166] ALBRECHT G, KAISER S, GIESSEN H, et al. Refractory Plasmonics without Refractory Materials[J]. Nano Letters, 2017, 17(10): 6402-6408.
[167] MAO N, DENG J, ZHANG X, et al. Nonlinear Diatomic Metasurface for Real and Fourier Space Image Encoding[J]. Nano Letters, 2020, 20(10): 7463-7468.
[168] KLEIN M W, WEGENER M, FETH N, et al. Experiments on Second- and Third-Harmonic Generation from Magnetic Metamaterials[J]. Optics Express, 2007, 15(8): 5238-5247.
[169] KLEIN M W, WEGENER M, FETH N, et al. Experiments on Second- and Third-Harmonic Generation from Magnetic Metamaterials: Erratum[J]. Optics Express, 2008, 16(11): 8055-8055.
[170] ARMSTRONG J A, BLOEMBERGEN N, DUCUING J, et al. Interactions between Light Waves in a Nonlinear Dielectric[J]. Physical Review, 1962, 127(6): 1918-1939.
[171] SAIN B, MEIER C, ZENTGRAF T. Nonlinear Optics in All-Dielectric Nanoantennas and Metasurfaces: A Review[J]. Advanced Photonics, 2019, 1(2): 024002.
[172] ZHANG X, DENG J, JIN M, et al. Giant Enhancement of Second-Harmonic Generation from a Nanocavity Metasurface[J]. Science China Physics, Mechanics & Astronomy, 2021, 64(9): 294215.
[173] HUSU H, SIIKANEN R, MÄKITALO J, et al. Metamaterials with Tailored Nonlinear Optical Response[J]. Nano Letters, 2012, 12(2): 673-677.
[174] MICHAELI L, KEREN-ZUR S, AVAYU O, et al. Nonlinear Surface Lattice Resonance in Plasmonic Nanoparticle Arrays[J]. Physical Review Letters, 2017, 118(24): 243904.
[175] KUJALA S, CANFIELD B K, KAURANEN M, et al. Multipole Interference in the Second-Harmonic Optical Radiation from Gold Nanoparticles[J]. Physical Review Letters, 2007, 98(16): 167403.
[176] ZHANG Y, WANG Y, DAI Y, et al. Chirality Logic Gates[J]. Science Advances, 2022, 8(49): eabq8246.
[177] ZHANG Y, BAI X, ARIAS MUÑOZ J, et al. Coherent Modulation of Chiral Nonlinear Optics with Crystal Symmetry[J]. Light: Science & Applications, 2022, 11(1): 216.
[178] SU H, LIU X, WEI C, et al. Pressure-Controlled Structural Symmetry Transition in Layered InSe[J]. Laser & Photonics Reviews, 2019, 13(6): 1900012.
[179] BURNS W K, BLOEMBERGEN N. Third-Harmonic Generation in Absorbing Media of Cubic or Isotropic Symmetry[J]. Physical Review B, 1971, 4(10): 3437-3450.
[180] RAHMANI M, SHOROKHOV A S, HOPKINS B, et al. Nonlinear Symmetry Breaking in Symmetric Oligomers[J]. ACS Photonics, 2017, 4(3): 454-461.
[181] JOHNSON P B, CHRISTY R W. Optical Constants of the Noble Metals[J]. Physical Review B, 1972, 6(12): 4370-4379.
[182] GUO P, SCHALLER R D, KETTERSON J B, et al. Ultrafast Switching of Tunable Infrared Plasmons in Indium Tin Oxide Nanorod Arrays with Large Absolute Amplitude[J]. Nature Photonics, 2016, 10(4): 267-273.
[183] CAPRETTI A, WANG Y, ENGHETA N, et al. Comparative Study of Second-Harmonic Generation from Epsilon-Near-Zero Indium Tin Oxide and Titanium Nitride Nanolayers Excited in the Near-Infrared Spectral Range[J]. ACS Photonics, 2015, 2(11): 1584-1591.
[184] CHO N H, GUERRERO-MARTÍNEZ A, MA J, et al. Bioinspired Chiral Inorganic Nanomaterials[J]. Nature Reviews Bioengineering, 2023, 1(2): 88-106.
[185] HAZEN R M, SHOLL D S. Chiral Selection on Inorganic Crystalline Surfaces[J]. Nature Materials, 2003, 2(6): 367-374.
[186] ERNST K H. Molecular Chirality at Surfaces[J]. Physica Status Solidi B, 2012, 249(11): 2057-2088.
[187] HENDRY E, CARPY T, JOHNSTON J, et al. Ultrasensitive Detection and Characterization of Biomolecules Using Superchiral Fields[J]. Nature Nanotechnology, 2010, 5(11): 783-787.
[188] HOLZWARTH G, HOLZWARTH N A W. Circular Dichroism and Rotatory Dispersion Near Absorption Bands of Cholesteric Liquid Crystals[J]. Journal of the Optical Society of America, 1973, 63(3): 324-331.
[189] KOBASHI J, YOSHIDA H, OZAKI M. Planar Optics with Patterned Chiral Liquid Crystals[J]. Nature Photonics, 2016, 10(6): 389-392.
[190] LODAHL P, MAHMOODIAN S, STOBBE S, et al. Chiral Quantum Optics[J]. Nature, 2017, 541(7638): 473-480.
[191] KUWATA-GONOKAMI M, SAITO N, INO Y, et al. Giant Optical Activity in Quasi-Two-Dimensional Planar Nanostructures[J]. Physical Review Letters, 2005, 95(22): 227401.
[192] ROGACHEVA A V, FEDOTOV V A, SCHWANECKE A S, et al. Giant Gyrotropy due to Electromagnetic-Field Coupling in a Bilayered Chiral Structure[J]. Physical Review Letters, 2006, 97(17): 177401.
[193] CUI Y, KANG L, LAN S, et al. Giant Chiral Optical Response from a Twisted-Arc Metamaterial[J]. Nano Letters, 2014, 14(2): 1021-1025.
[194] LIU Z, DU H, LI J, et al. Nano-Kirigami with Giant Optical Chirality[J]. Science Advances, 2018, 4(7): eaat4436.
[195] TSENG M L, LIN Z H, KUO H Y, et al. Stress-Induced 3D Chiral Fractal Metasurface for Enhanced and Stabilized Broadband Near-Field Optical Chirality[J]. Advanced Optical Materials, 2019, 7(15): 1900617.
[196] ZHANG X, LIU Y, HAN J, et al. Chiral Emission from Resonant Metasurfaces[J]. Science, 2022, 377(6611): 1215-1218.
[197] SHI T, DENG Z L, GENG G, et al. Planar Chiral Metasurfaces with Maximal and Tunable Chiroptical Response Driven by Bound States in the Continuum[J]. Nature Communications, 2022, 13(1): 4111.
[198] OVERVIG A C, MANN S A, ALÙ A. Thermal Metasurfaces: Complete Emission Control by Combining Local and Nonlocal Light-Matter Interactions[J]. Physical Review X, 2021, 11(2): 021050.
[199] ZHANG F, PU M, LI X, et al. All-Dielectric Metasurfaces for Simultaneous Giant Circular Asymmetric Transmission and Wavefront Shaping Based on Asymmetric Photonic Spin–Orbit Interactions[J]. Advanced Functional Materials, 2017, 27(47): 1704295.
[200] WANG Q, PLUM E, YANG Q, et al. Reflective Chiral Meta-Holography: Multiplexing Holograms for Circularly Polarized Waves[J]. Light: Science & Applications, 2018, 7(1): 25.
[201] CHEN Y, YANG X, GAO J. Spin-Controlled Wavefront Shaping with Plasmonic Chiral Geometric Metasurfaces[J]. Light: Science & Applications, 2018, 7(1): 84.
[202] YU H, LIU G B, YAO W. Brightened Spin-Triplet Interlayer Excitons and Optical Selection Rules in van der Waals Heterobilayers[J]. 2D Materials, 2018, 5(3): 035021.
[203] SEYLER K L, SCHAIBLEY J R, GONG P, et al. Electrical Control of Second-Harmonic Generation in a Wse2 Monolayer Transistor[J]. Nature Nanotechnology, 2015, 10(5): 407-411.
[204] BHAGAVANTAM S, CHANDRASEKHAR P. Harmonic Generation and Selection Rules in Nonlinear Optics[J]. Proceedings of the Indian Academy of Sciences - Section A, 1972, 76(1): 13-20.
[205] SCHAIBLEY J R, YU H, CLARK G, et al. Valleytronics in 2D Materials[J]. Nature Reviews Materials, 2016, 1(11): 16055.
[206] KIM B, JIN J, WANG Z, et al. Three-Dimensional Nonlinear Optical Materials from Twisted Two-Dimensional van der Waals Interfaces[J]. Nature Photonics, 2024, 18(1): 91-98.
[207] ALAM M Z, DE LEON I, BOYD R W. Large Optical Nonlinearity of Indium Tin oxide in Its Epsilon-Near-Zero Region[J]. Science, 2016, 352(6287): 795-797.
[208] LI G C, LEI D, QIU M, et al. Light-induced symmetry breaking for enhancing second-harmonic generation from an ultrathin plasmonic nanocavity[J]. Nature Communications, 2021, 12(1): 4326.
[209] BEER S, GOUR J, ALBERUCCI A, et al. Second harmonic generation under doubly resonant lattice plasmon excitation[J]. Optics Express, 2022, 30(22): 40884-40896.
[210] ZAR T, KRAUSE A, SHAVIT O, et al. Second harmonic generation from aluminum plasmonic nanocavities: from scanning to imaging[J]. Physical Chemistry Chemical Physics, 2023, 25(28): 18915-18925.
[211] WANG H, HU Z, DENG J, et al. All-optical ultrafast polarization switching with nonlinear plasmonic metasurfaces[J]. Science Advances, 2024, 10(8): eadk3882.
修改评论