中文版 | English
题名

等离激元超构表面上的二次谐波产生与调控

其他题名
GENERATION AND MANIPULATION OF THE SECOND HARMONIC WAVES ON PLASMONIC METASURFACES
姓名
姓名拼音
ZHANG Xuecai
学号
12031193
学位类型
博士
学位专业
070207 光学
学科门类/专业学位类别
07 理学
导师
李贵新
导师单位
材料科学与工程系
论文答辩日期
2024-05-10
论文提交日期
2024-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

光学超构表面是一种由亚波长尺度的超构单元在面内排布而构成的准二维人工结构材料。由于其具有对光场进行多维度调控的能力,且易于集成,超构表面近年来受到了广泛关注。通过引入非线性光学过程,超构表面也可以用于实现光学频率转换、光开关等功能。本论文聚焦等离激元超构表面上的二次谐波产生与调控机理的研究,通过设计等离激元纳米共振腔、超构单元的耦合效应和金属-晶体复合结构,探索调控二次谐波的振幅、偏振和相位的新原理和新方法。
纳米共振腔增强效应:在单层等离激元超构表面上,局域共振效应可以显著增强二次谐波的转换效率。然而,共振波长处存在较强的反射和散射导致泵浦光的耦合效率较低,从而限制了共振模式对局域光场的增强效果。本论文通过在超构表面上引入纳米共振腔设计,抑制了共振波长处的反射和散射损耗,从而大幅提高了二次谐波的转换效率。
耦合诱导增强效应:超构表面上的二次谐波的振幅和偏振调控主要基于对超构单元几何形状的设计而实现,而超构单元间的耦合效应通常被忽视。本论文将两组具有中心反演对称性的等离激元超构单元以六角晶格进行排列,借助超构单元间的耦合效应打破全局中心反演对称性,实现了对所产生的二次谐波的振幅和偏振的调控。
金属-晶体复合超构表面:超构表面上的手性非线性光学响应的实现主要依赖于超构单元的几何形状,难以在特定的工作波长对圆二向色性进行连续调控。本论文设计了一种由等离激元超构单元和非线性光学晶体组成的复合超构表面,借助超构单元和晶体的对称性,揭示了具有三种传播相位或几何相位的二次谐波转换通道。通过调控超构单元与晶体的面内扭转角,实现了复合超构表面上二次谐波的圆二向色性调控。
本论文系统地研究了等离激元超构表面上的二次谐波产生与调控机理。通过优化纳米共振腔的共振模式、设计超构表面的全局对称性、引入具有特定对称性的晶体材料等,不仅提高了二次谐波转换效率,而且实现了对其振幅、偏振和相位的调控。相关研究方法和结果有望为发展高效率、多功能非线性光学超构表面提供重要理论基础和技术方案。

其他摘要

Optical metasurfaces are quasi-two-dimensional artificial structural materials composed of sub-wavelength meta-atoms. For their advantages in multi-dimensional optical field manipulation and integration, metasurfaces have received widespread attention in recent years. By introducing nonlinear optical processes, optical functions like frequency conversion, switching can be realized on metasurfaces. This thesis focuses on the second harmonic generation and manipulation on plasmonic metasurfaces. By designing plasmonic nano-cavities, inter-meta-atom coupling effects and metal-crystal hybrid structures, new principles and methods are observed for controlling the amplitude, polarization, and phase of second harmonic waves.
Nano-cavity enhancement effect: On single-layer plasmonic metasurfaces, the conversion efficiency of second-harmonic waves can be enhanced by the local resonance modes. However, the significant reflection and scattering at the resonant wavelength lead to low coupling efficiency of the pump light, limiting the enhancement effect of the resonant mode on the local field. This research introduces nano-cavities onto the metasurfaces, which significantly suppress radiation losses at the resonant wavelength and greatly enhance the second-harmonic generation process.
Coupling-induced enhancement effect: The amplitude and polarization modulation of second-harmonic waves on metasurfaces are usually realized by designing the shape of meta-atoms, while the coupling of meta-atoms is usually neglected. This research arranges two groups of plasmonic meta-atoms with inversion symmetry into a hexagonal lattice, breaks the global inversion symmetry, and realizes the controlling of the amplitude and polarization of the second harmonics.
Metal-crystal hybrid metasurface: The realization of nonlinear optical chirality usually relies on the shape design of chiral meta-atoms, making it difficult to achieve a continuous chirality modulation at the certain wavelength. This research designs a hybrid metasurface composed of plasmonic meta-atoms and nonlinear optical crystals. Leveraging both symmetries of meta-atoms and crystals, three second-harmonic conversion channels with different propagation and geometric phases are observed. By using the interference between different channels and designing the in-plane twisting angle between the meta-atoms and the crystals, continuous modulation of the second-harmonic circular dichroism can be realized on the hybrid metasurface.
In summary, this thesis systematically studies the methods and mechanisms of the second-harmonic generation and manipulation on plasmonic metasurfaces. By optimizing the resonant mode of nano-cavities, designing the global symmetry-breaking effect of the metasurface, and introducing crystal materials with symmetries, not only improvements of the second-harmonic conversion efficiency achieved, but also precise modulation of the amplitude, polarization, and phase realized. The related methods and results of this thesis will provide a theoretical and practical guidance for the design of efficient multifunctional nonlinear optical metasurfaces.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2024-06
参考文献列表

[1] VESELAGO V G. The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ[J]. Soviet Physics Uspekhi, 1968, 10(4): 509.
[2] FOTEINOPOULOU S, ECONOMOU E N, SOUKOULIS C M. Refraction in Media with a Negative Refractive Index[J]. Physical Review Letters, 2003, 90(10): 107402.
[3] SMITH D R, PENDRY J B, WILTSHIRE M C K. Metamaterials and Negative Refractive Index[J]. Science, 2004, 305(5685): 788-792.
[4] SMITH D R, KROLL N. Negative Refractive Index in Left-Handed Materials[J]. Physical Review Letters, 2000, 85(14): 2933-2936.
[5] SOUKOULIS C M, LINDEN S, WEGENER M. Negative Refractive Index at Optical Wavelengths[J]. Science, 2007, 315(5808): 47-49.
[6] VALENTINE J, ZHANG S, ZENTGRAF T, et al. Three-Dimensional Optical Metamaterial with a Negative Refractive Index[J]. Nature, 2008, 455(7211): 376-379.
[7] ERGIN T, STENGER N, BRENNER P, et al. Three-Dimensional Invisibility Cloak at Optical Wavelengths[J]. Science, 2010, 328(5976): 337-339.
[8] PENDRY J B, AUBRY A, SMITH D R, et al. Transformation Optics and Subwavelength Control of Light[J]. Science, 2012, 337(6094): 549-552.
[9] PENDRY J B, SCHURIG D, SMITH D R. Controlling Electromagnetic Fields[J]. Science, 2006, 312(5781): 1780-1782.
[10] SCHURIG D, MOCK J J, JUSTICE B J, et al. Metamaterial Electromagnetic Cloak at Microwave Frequencies[J]. Science, 2006, 314(5801): 977-980.
[11] CHEN H T, TAYLOR A J, YU N. A Review of Metasurfaces: Physics and Applications[J]. Reports on Progress in Physics, 2016, 79(7): 076401.
[12] KILDISHEV A V, BOLTASSEVA A, SHALAEV V M. Planar Photonics with Metasurfaces[J]. Science, 2013, 339(6125): 1232009.
[13] YU N, CAPASSO F. Flat Optics with Designer Metasurfaces[J]. Nature Materials, 2014, 13(2): 139-150.
[14] ENGELBERG J, LEVY U. The Advantages of Metalenses Over Diffractive Lenses[J]. Nature Communications, 2020, 11(1): 1991.
[15] LAPINE M, SHADRIVOV I V, KIVSHAR Y S. Colloquium: Nonlinear metamaterials[J]. Reviews of Modern Physics, 2014, 86(3): 1093-1123.
[16] CHEN S, LI G, CHEAH K W, et al. Controlling the Phase of Optical Nonlinearity with Plasmonic Metasurfaces[J]. Nanophotonics, 2018, 7(6): 1013-1024.
[17] KRASNOK A, TYMCHENKO M, ALÙ A. Nonlinear Metasurfaces: A Paradigm Shift in Nonlinear Optics[J]. Materials Today, 2018, 21(1): 8-21.
[18] LI G, ZHANG S, ZENTGRAF T. Nonlinear Photonic Metasurfaces[J]. Nature Reviews Materials, 2017, 2(5): 17010.
[19] KAURANEN M, ZAYATS A V. Nonlinear Plasmonics[J]. Nature Photonics, 2012, 6(11): 737-748.
[20] MAO N, ZHANG G, TANG Y, et al. Nonlinear Vectorial Holography with Quad-Atom Metasurfaces[J]. Proceedings of the National Academy of Sciences, 2022, 119(22): e2204418119.
[21] HONG X, WANG K, GUAN C, et al. Chiral Third-Harmonic Metasurface for Multiplexed Holograms[J]. Nano Letters, 2022, 22(22): 8860-8866.
[22] WANG M, LI Y, TANG Y, et al. Nonlinear Chiroptical Holography with Pancharatnam–Berry Phase Controlled Plasmonic Metasurface[J]. Laser & Photonics Reviews, 2022, 16(12): 2200350.
[23] MCDONNELL C, DENG J, SIDERIS S, et al. Functional Thz Emitters Based on Pancharatnam-Berry Phase Nonlinear Metasurfaces[J]. Nature Communications, 2021, 12(1): 30.
[24] YE W, ZEUNER F, LI X, et al. Spin and Wavelength Multiplexed Nonlinear Metasurface Holography[J]. Nature Communications, 2016, 7(1): 11930.
[25] ALMEIDA E, BITTON O, PRIOR Y. Nonlinear Metamaterials for Holography[J]. Nature Communications, 2016, 7(1): 12533.
[26] WANG L, KRUK S, KOSHELEV K, et al. Nonlinear Wavefront Control with All-Dielectric Metasurfaces[J]. Nano Letters, 2018, 18(6): 3978-3984.
[27] SEGAL N, KEREN-ZUR S, HENDLER N, et al. Controlling Light with Metamaterial-Based Nonlinear Photonic Crystals[J]. Nature Photonics, 2015, 9(3): 180-184.
[28] LI L, LIU Z, REN X, et al. Metalens-Array–Based High-Dimensional and Multiphoton Quantum Source[J]. Science, 2020, 368(6498): 1487-1490.
[29] MING Y, ZHANG W, TANG J, et al. Photonic Entanglement Based on Nonlinear Metamaterials[J]. Laser & Photonics Reviews, 2020, 14(5): 1900146.
[30] SANTIAGO-CRUZ T, GENNARO S D, MITROFANOV O, et al. Resonant Metasurfaces for Generating Complex Quantum States[J]. Science, 2022, 377(6609): 991-995.
[31] ZHANG J, MA J, PARRY M, et al. Spatially Entangled Photon Pairs from Lithium Niobate Nonlocal Metasurfaces[J]. Science Advances, 2022, 8(30): eabq4240.
[32] KORT-KAMP W J M, AZAD A K, DALVIT D A R. Space-Time Quantum Metasurfaces[J]. Physical Review Letters, 2021, 127(4): 043603.
[33] YU N, GENEVET P, KATS M A, et al. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction[J]. Science, 2011, 334(6054): 333-337.
[34] LIN D, FAN P, HASMAN E, et al. Dielectric Gradient Metasurface Optical Elements[J]. Science, 2014, 345(6194): 298-302.
[35] CHEN X, HUANG L, MÜHLENBERND H, et al. Dual-Polarity Plasmonic Metalens for Visible Light[J]. Nature Communications, 2012, 3(1): 1198.
[36] BLIOKH K Y, NIV A, KLEINER V, et al. Geometrodynamics of Spinning Light[J]. Nature Photonics, 2008, 2(12): 748-753.
[37] WEN D, YUE F, LI G, et al. Helicity Multiplexed Broadband Metasurface Holograms[J]. Nature Communications, 2015, 6(1): 8241.
[38] BOMZON Z, BIENER G, KLEINER V, et al. Space-Variant Pancharatnam–Berry Phase Optical Elements with Computer-Generated Subwavelength Gratings[J]. Optics Letters, 2002, 27(13): 1141-1143.
[39] KHORASANINEJAD M, AMBROSIO A, KANHAIYA P, et al. Broadband and Chiral Binary Dielectric Meta-Holograms[J]. Science Advances, 2016, 2(5): e1501258.
[40] DENG Z L, DENG J, ZHUANG X, et al. Diatomic Metasurface for Vectorial Holography[J]. Nano Letters, 2018, 18(5): 2885-2892.
[41] DENG Z L, DENG J, ZHUANG X, et al. Facile Metagrating Holograms with Broadband and Extreme Angle Tolerance[J]. Light: Science & Applications, 2018, 7(1): 78.
[42] SINZINGER S, ARRIZÓN V. High-Efficiency Detour-Phase Holograms[J]. Optics Letters, 1997, 22(12): 928-930.
[43] JI R, XIE X, GUO X, et al. Chirality-Assisted Aharonov–Anandan Geometric-Phase Metasurfaces for Spin-Decoupled Phase Modulation[J]. ACS Photonics, 2021, 8(6): 1847-1855.
[44] BAI G D, MA Q, LI R Q, et al. Spin-Symmetry Breaking Through Metasurface Geometric Phases[J]. Physical Review Applied, 2019, 12(4): 044042.
[45] CAI J, ZHANG F, PU M, et al. All-Metallic High-Efficiency Generalized Pancharatnam–Berry Phase Metasurface with Chiral Meta-Atoms[J]. Nanophotonics, 2022, 11(9): 1961-1968.
[46] XIE X, PU M, JIN J, et al. Generalized Pancharatnam-Berry Phase in Rotationally Symmetric Meta-Atoms[J]. Physical Review Letters, 2021, 126(18): 183902.
[47] LUO J, WANG Y, PU M, et al. Multiple Rotational Doppler Effect Induced by a Single Spinning Meta-Atom[J]. Physical Review Applied, 2023, 19(4): 044064.
[48] SONG Q, ODEH M, ZÚÑIGA-PÉREZ J, et al. Plasmonic Topological Metasurface by Encircling an Exceptional Point[J]. Science, 2021, 373(6559): 1133-1137.
[49] BERRY M V. The Adiabatic Phase and Pancharatnam’s Phase for Polarized Light[J]. Journal of Modern Optics, 1987, 34(11): 1401-1407.
[50] PANCHARATNAM S. Generalized Theory of Interference and Its Applications[J]. Proceedings of the Indian Academy of Sciences - Section A, 1956, 44(6): 398-417.
[51] BERRY M V. Quantal Phase Factors Accompanying Adiabatic Changes[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1997, 392(1802): 45-57.
[52] ANANDAN J. The Geometric Phase[J]. Nature, 1992, 360(6402): 307-313.
[53] SLUSSARENKO S, ALBERUCCI A, JISHA C P, et al. Guiding Light Via Geometric Phases[J]. Nature Photonics, 2016, 10(9): 571-575.
[54] HARIHARAN P. The Geometric Phase[M]. Progress in Optics: Vol. 48. Elsevier, 2005: 149-201.
[55] CISOWSKI C, GÖTTE J B, FRANKE-ARNOLD S. Colloquium: Geometric Phases of Light: Insights from Fiber Bundle Theory[J]. Reviews of Modern Physics, 2022, 94(3): 031001.
[56] COHEN E, LAROCQUE H, BOUCHARD F, et al. Geometric phase from Aharonov–Bohm to Pancharatnam–Berry and beyond[J]. Nature Reviews Physics, 2019, 1(7): 437-449.
[57] BALTHASAR MUELLER J P, RUBIN N A, DEVLIN R C, et al. Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization[J]. Physical Review Letters, 2017, 118(11): 113901.
[58] ZHENG G, MÜHLENBERND H, KENNEY M, et al. Metasurface Holograms Reaching 80% Efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308-312.
[59] KHORASANINEJAD M, CHEN W T, DEVLIN R C, et al. Metalenses at Visible Wavelengths: Diffraction-Limited Focusing and Subwavelength Resolution Imaging[J]. Science, 2016, 352(6290): 1190-1194.
[60] WANG S, WU P C, SU V C, et al. Broadband Achromatic Optical Metasurface Devices[J]. Nature Communications, 2017, 8(1): 187.
[61] SHRESTHA S, OVERVIG A C, LU M, et al. Broadband Achromatic Dielectric Metalenses[J]. Light: Science & Applications, 2018, 7(1): 85.
[62] LIN R J, SU V C, WANG S, et al. Achromatic Metalens Array for Full-Colour Light-Field Imaging[J]. Nature Nanotechnology, 2019, 14(3): 227-231.
[63] ROBERTS A S, PORS A, ALBREKTSEN O, et al. Subwavelength Plasmonic Color Printing Protected for Ambient Use[J]. Nano Letters, 2014, 14(2): 783-787.
[64] BAO Y, YU Y, XU H, et al. Full-Colour Nanoprint-Hologram Synchronous Metasurface with Arbitrary Hue-Saturation-Brightness Control[J]. Light: Science & Applications, 2019, 8(1): 95.
[65] RUBIN N A, ZAIDI A, DORRAH A H, et al. Jones Matrix Holography with Metasurfaces[J]. Science Advances, 2021, 7(33): eabg7488.
[66] RUBIN N A, D’AVERSA G, CHEVALIER P, et al. Matrix Fourier Optics Enables a Compact Full-Stokes Polarization Camera[J]. Science, 2019, 365(6448): eaax1839.
[67] SHI Z, RUBIN N A, PARK J S, et al. Nonseparable Polarization Wavefront Transformation[J]. Physical Review Letters, 2022, 129(16): 167403.
[68] BAO Y, NAN F, YAN J, et al. Observation of Full-Parameter Jones Matrix in Bilayer Metasurface[J]. Nature Communications, 2022, 13(1): 7550.
[69] BAO Y, WEN L, CHEN Q, et al. Toward the Capacity Limit of 2d Planar Jones Matrix with a Single-Layer Metasurface[J]. Science Advances, 2021, 7(25): eabh0365.
[70] XIONG B, LIU Y, XU Y, et al. Breaking the Limitation of Polarization Multiplexing in Optical Metasurfaces with Engineered Noise[J]. Science, 2023, 379(6629): 294-299.
[71] ALLEN L, HAAR D T. Essentials of Lasers: The Commonwealth and International Library: Selected Readings in Physics[M]. Elsevier Science, 2017.
[72] FRANKEN P A, HILL A E, PETERS C W, et al. Generation of Optical Harmonics[J]. Physical Review Letters, 1961, 7(4): 118-119.
[73] KAVOKIN A V, BAUMBERG J J, MALPUECH G, et al. Microcavities[M]. Oxford University Press, 2017.
[74] VAHALA K J. Optical Microcavities[J]. Nature, 2003, 424(6950): 839-846.
[75] PELTON M. Modified Spontaneous Emission in Nanophotonic Structures[J]. Nature Photonics, 2015, 9(7): 427-435.
[76] KLEIN M W, ENKRICH C, WEGENER M, et al. Second-Harmonic Generation from Magnetic Metamaterials[J]. Science, 2006, 313(5786): 502-504.
[77] CELEBRANO M, WU X, BASELLI M, et al. Mode Matching in Multiresonant Plasmonic Nanoantennas for Enhanced Second Harmonic Generation[J]. Nature Nanotechnology, 2015, 10(5): 412-417.
[78] HALAS N J, LAL S, CHANG W S, et al. Plasmons in Strongly Coupled Metallic Nanostructures[J]. Chemical Reviews, 2011, 111(6): 3913-3961.
[79] MÜHLSCHLEGEL P, EISLER H J, MARTIN O J F, et al. Resonant Optical Antennas[J]. Science, 2005, 308(5728): 1607-1609.
[80] MIYAZAKI H T, KUROKAWA Y. Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity[J]. Physical Review Letters, 2006, 96(9): 097401.
[81] KUTTGE M, GARCÍA DE ABAJO F J, POLMAN A. Ultrasmall Mode Volume Plasmonic Nanodisk Resonators[J]. Nano Letters, 2010, 10(5): 1537-1541.
[82] CIRACÌ C, HILL R T, MOCK J J, et al. Probing the Ultimate Limits of Plasmonic Enhancement[J]. Science, 2012, 337(6098): 1072-1074.
[83] LIMONOV M F. Fano Resonance for Applications[J]. Advances in Optics and Photonics, 2021, 13(3): 703-771.
[84] MIROSHNICHENKO A E, FLACH S, KIVSHAR Y S. Fano Resonances in Nanoscale Structures[J]. Reviews of Modern Physics, 2010, 82(3): 2257-2298.
[85] LIMONOV M F, RYBIN M V, PODDUBNY A N, et al. Fano Resonances in Photonics[J]. Nature Photonics, 2017, 11(9): 543-554.
[86] KANG M, LIU T, CHAN C T, et al. Applications of Bound States in the Continuum in Photonics[J]. Nature Reviews Physics, 2023, 5(11): 659-678.
[87] HSU C W, ZHEN B, STONE A D, et al. Bound States in the Continuum[J]. Nature Reviews Materials, 2016, 1(9): 16048.
[88] MARINICA D C, BORISOV A G, SHABANOV S V. Bound States in the Continuum in Photonics[J]. Physical Review Letters, 2008, 100(18): 183902.
[89] KOSHELEV K, BOGDANOV A, KIVSHAR Y. Meta-Optics and Bound States in the Continuum[J]. Science Bulletin, 2019, 64(12): 836-842.
[90] AZZAM S I, KILDISHEV A V. Photonic Bound States in the Continuum: From Basics to Applications[J]. Advanced Optical Materials, 2021, 9(1): 2001469.
[91] YANG Y, KRAVCHENKO I I, BRIGGS D P, et al. All-Dielectric Metasurface Analogue of Electromagnetically Induced Transparency[J]. Nature Communications, 2014, 5(1): 5753.
[92] LIU H, GUO C, VAMPA G, et al. Enhanced High-Harmonic Generation from an All-Dielectric Metasurface[J]. Nature Physics, 2018, 14(10): 1006-1010.
[93] LIU N, LANGGUTH L, WEISS T, et al. Plasmonic Analogue of Electromagnetically Induced Transparency at the Drude Damping Limit[J]. Nature Materials, 2009, 8(9): 758-762.
[94] KOSHELEV K, LEPESHOV S, LIU M, et al. Asymmetric Metasurfaces with High-Q Resonances Governed by Bound States in the Continuum[J]. Physical Review Letters, 2018, 121(19): 193903.
[95] KOSHELEV K, TANG Y, LI K, et al. Nonlinear Metasurfaces Governed by Bound States in the Continuum[J]. ACS Photonics, 2019, 6(7): 1639-1644.
[96] ZOGRAF G, KOSHELEV K, ZALOGINA A, et al. High-Harmonic Generation from Resonant Dielectric Metasurfaces Empowered by Bound States in the Continuum[J]. ACS Photonics, 2022, 9(2): 567-574.
[97] AUTERE A, JUSSILA H, DAI Y, et al. Nonlinear Optics with 2D Layered Materials[J]. Advanced Materials, 2018, 30(24): 1705963.
[98] SUN Z, MARTINEZ A, WANG F. Optical Modulators with 2d Layered Materials[J]. Nature Photonics, 2016, 10(4): 227-238.
[99] MAK K F, SHAN J. Photonics and Optoelectronics of 2d Semiconductor Transition Metal Dichalcogenides[J]. Nature Photonics, 2016, 10(4): 216-226.
[100] ZHANG J, ZHAO W, YU P, et al. Second Harmonic Generation in 2d Layered Materials[J]. 2D Materials, 2020, 7(4): 042002.
[101] YIN X, YE Z, CHENET D A, et al. Edge Nonlinear Optics on a MoS2 Atomic Monolayer[J]. Science, 2014, 344(6183): 488-490.
[102] MALARD L M, ALENCAR T V, BARBOZA A P M, et al. Observation of Intense Second Harmonic Generation from MoS2 Atomic Crystals[J]. Physical Review B, 2013, 87(20): 201401.
[103] KUMAR N, NAJMAEI S, CUI Q, et al. Second Harmonic Microscopy of Monolayer MoS2[J]. Physical Review B, 2013, 87(16): 161403.
[104] TROLLE M L, SEIFERT G, PEDERSEN T G. Theory of Excitonic Second-Harmonic Generation in Monolayer Mos2[J]. Physical Review B, 2014, 89(23): 235410.
[105] LI Y, RAO Y, MAK K F, et al. Probing Symmetry Properties of Few-Layer MoS2 and h-BN by Optical Second-Harmonic Generation[J]. Nano Letters, 2013, 13(7): 3329-3333.
[106] ABDELWAHAB I, TILMANN B, WU Y, et al. Giant Second-Harmonic Generation in Ferroelectric Nboi2[J]. Nature Photonics, 2022, 16(9): 644-650.
[107] HONG H, HUANG C, MA C, et al. Twist Phase Matching in Two-Dimensional Materials[J]. Physical Review Letters, 2023, 131(23): 233801.
[108] LEE J, TYMCHENKO M, ARGYROPOULOS C, et al. Giant Nonlinear Response from Plasmonic Metasurfaces Coupled to Intersubband Transitions[J]. Nature, 2014, 511(7507): 65-69.
[109] QIAN H, LI S, CHEN C F, et al. Large Optical Nonlinearity Enabled by Coupled Metallic Quantum Wells[J]. Light: Science & Applications, 2019, 8(1): 13.
[110] SHEN K C, HUANG Y T, CHUNG T L, et al. Giant Efficiency of Visible Second-Harmonic Light by an All-Dielectric Multiple-Quantum-Well Metasurface[J]. Physical Review Applied, 2019, 12(6): 064056.
[111] MEKAWY A, ALÙ A. Giant Midinfrared Nonlinearity Based on Multiple Quantum Well Polaritonic Metasurfaces[J]. Nanophotonics, 2021, 10(1): 667-678.
[112] XIAO Y, QIAN H, LIU Z. Nonlinear Metasurface Based on Giant Optical Kerr Response of Gold Quantum Wells[J]. ACS Photonics, 2018, 5(5): 1654-1659.
[113] NEFEDKIN N, MEKAWY A, KRAKOFSKY J, et al. Overcoming Intensity Saturation in Nonlinear Multiple-Quantum-Well Metasurfaces for High-Efficiency Frequency Upconversion[J]. Advanced Materials, 2023, 35(34): 2106902.
[114] MA H, NIU J, GAO B, et al. Tunable Metasurface Based on Plasmonic Quasi Bound State in the Continuum Driven by Metallic Quantum Wells[J]. Advanced Optical Materials, 2023, 11(5): 2202584.
[115] NOOKALA N, LEE J, TYMCHENKO M, et al. Ultrathin Gradient Nonlinear Metasurface with a Giant Nonlinear Response[J]. Optica, 2016, 3(3): 283-288.
[116] LI G, CHEN S, PHOLCHAI N, et al. Continuous Control of the Nonlinearity Phase for Harmonic Generations[J]. Nature Materials, 2015, 14(6): 607-612.
[117] TYMCHENKO M, GOMEZ-DIAZ J S, LEE J, et al. Gradient Nonlinear Pancharatnam-Berry Metasurfaces[J]. Physical Review Letters, 2015, 115(20): 207403.
[118] LI G, SARTORELLO G, CHEN S, et al. Spin and Geometric Phase Control Four-Wave Mixing from Metasurfaces[J]. Laser & Photonics Reviews, 2018, 12(6): 1800034.
[119] KARNIELI A, LI Y, ARIE A. The Geometric Phase in Nonlinear Frequency Conversion[J]. Frontiers of Physics, 2021, 17(1): 12301.
[120] ELLENBOGEN T, VOLOCH-BLOCH N, GANANY-PADOWICZ A, et al. Nonlinear Generation and Manipulation of Airy Beams[J]. Nature Photonics, 2009, 3(7): 395-398.
[121] BLOCH N V, SHEMER K, SHAPIRA A, et al. Twisting Light by Nonlinear Photonic Crystals[J]. Physical Review Letters, 2012, 108(23): 233902.
[122] LIU B, GEROMEL R, SU Z, et al. Nonlinear Dielectric Geometric-Phase Metasurface with Simultaneous Structure and Lattice Symmetry Design[J]. ACS Photonics, 2023, 10(12): 4357-4366.
[123] BOYD R W. Chapter 2 - Wave-Equation Description of Nonlinear Optical Interactions[M]. BOYD R W. Nonlinear Optics (Third Edition). Burlington: Academic Press, 2008: 69-133.
[124] SIMON H J, BLOEMBERGEN N. Second-Harmonic Light Generation in Crystals with Natural Optical Activity[J]. Physical Review, 1968, 171(3): 1104-1114.
[125] TANG C L, RABIN H. Selection Rules for Circularly Polarized Waves in Nonlinear Optics[J]. Physical Review B, 1971, 3(12): 4025-4034.
[126] LIU X, ZHU X, LI L, et al. Selection Rules of High-Order-Harmonic Generation: Symmetries of Molecules and Laser Fields[J]. Physical Review A, 2016, 94(3): 033410.
[127] ALON O E, AVERBUKH V, MOISEYEV N. Selection Rules for the High Harmonic Generation Spectra[J]. Physical Review Letters, 1998, 80(17): 3743-3746.
[128] SAITO N, XIA P, LU F, et al. Observation of Selection Rules for Circularly Polarized Fields in High-Harmonic Generation from a Crystalline Solid[J]. Optica, 2017, 4(11): 1333-1336.
[129] LI G, ZENTGRAF T, ZHANG S. Rotational Doppler Effect in Nonlinear Optics[J]. Nature Physics, 2016, 12(8): 736-740.
[130] KONISHI K, HIGUCHI T, LI J, et al. Polarization-Controlled Circular Second-Harmonic Generation from Metal Hole Arrays with Threefold Rotational Symmetry[J]. Physical Review Letters, 2014, 112(13): 135502.
[131] CHEN S, LI G, ZEUNER F, et al. Symmetry-Selective Third-Harmonic Generation from Plasmonic Metacrystals[J]. Physical Review Letters, 2014, 113(3): 033901.
[132] HENTSCHEL M, SCHÄFERLING M, DUAN X, et al. Chiral Plasmonics[J]. Science Advances, 2017, 3(5): e1602735.
[133] OVERVIG A, YU N, ALÙ A. Chiral Quasi-Bound States in the Continuum[J]. Physical Review Letters, 2021, 126(7): 073001.
[134] MUN J, KIM M, YANG Y, et al. Electromagnetic Chirality: From Fundamentals to Nontraditional Chiroptical Phenomena[J]. Light: Science & Applications, 2020, 9(1): 139.
[135] GANSEL J K, THIEL M, RILL M S, et al. Gold Helix Photonic Metamaterial as Broadband Circular Polarizer[J]. Science, 2009, 325(5947): 1513-1515.
[136] GORKUNOV M V, ANTONOV A A, KIVSHAR Y S. Metasurfaces with Maximum Chirality Empowered by Bound States in the Continuum[J]. Physical Review Letters, 2020, 125(9): 093903.
[137] CHEN Y, DU W, ZHANG Q, et al. Multidimensional Nanoscopic Chiroptics[J]. Nature Reviews Physics, 2022, 4(2): 113-124.
[138] SCHÄFERLING M, DREGELY D, HENTSCHEL M, et al. Tailoring Enhanced Optical Chirality: Design Principles for Chiral Plasmonic Nanostructures[J]. Physical Review X, 2012, 2(3): 031010.
[139] VALEV V K, SILHANEK A V, VERELLEN N, et al. Asymmetric Optical Second-Harmonic Generation from Chiral G-Shaped Gold Nanostructures[J]. Physical Review Letters, 2010, 104(12): 127401.
[140] KIM D, YU J, HWANG I, et al. Giant Nonlinear Circular Dichroism from Intersubband Polaritonic Metasurfaces[J]. Nano Letters, 2020, 20(11): 8032-8039.
[141] CHEN S, ZEUNER F, WEISMANN M, et al. Giant Nonlinear Optical Activity of Achiral Origin in Planar Metasurfaces with Quadratic and Cubic Nonlinearities[J]. Advanced Materials, 2016, 28(15): 2992-2999.
[142] TANG Y, LIU Z, DENG J, et al. Nano-Kirigami Metasurface with Giant Nonlinear Optical Circular Dichroism[J]. Laser & Photonics Reviews, 2020, 14(7): 2000085.
[143] RODRIGUES S P, LAN S, KANG L, et al. Nonlinear Imaging and Spectroscopy of Chiral Metamaterials[J]. Advanced Materials, 2014, 26(35): 6157-6162.
[144] GANDOLFI M, TOGNAZZI A, ROCCO D, et al. Near-Unity Third-Harmonic Circular Dichroism Driven by a Quasibound State in the Continuum in Asymmetric Silicon Metasurfaces[J]. Physical Review A, 2021, 104(2): 023524.
[145] KOSHELEV K, TANG Y, HU Z, et al. Resonant Chiral Effects in Nonlinear Dielectric Metasurfaces[J]. ACS Photonics, 2023, 10(1): 298-306.
[146] KEREN-ZUR S, TAL M, FLEISCHER S, et al. Generation of Spatiotemporally Tailored Terahertz Wavepackets by Nonlinear Metasurfaces[J]. Nature Communications, 2019, 10(1): 1778.
[147] SIDERIS S, ZIXIAN H, MCDONNELL C, et al. Holographic THz Beam Generation by Nonlinear Plasmonic Metasurface Emitters[J]. ACS Photonics, 2023, 10(8): 2972-2979.
[148] MINERBI E, KEREN-ZUR S, ELLENBOGEN T. Nonlinear Metasurface Fresnel Zone Plates for Terahertz Generation and Manipulation[J]. Nano Letters, 2019, 19(9): 6072-6077.
[149] WANG Q, ZHANG X, XU Q, et al. Nonlinear Terahertz Generation: Chiral and Achiral Meta-Atom Coupling[J]. Advanced Functional Materials, 2023, 33(29): 2300639.
[150] MCDONNELL C, DENG J, SIDERIS S, et al. Terahertz Metagrating Emitters with Beam Steering and Full Linear Polarization Control[J]. Nano Letters, 2022, 22(7): 2603-2610.
[151] LIU J, SU R, WEI Y, et al. A Solid-State Source of Strongly Entangled Photon Pairs with High Brightness and Indistinguishability[J]. Nature Nanotechnology, 2019, 14(6): 586-593.
[152] MARINO G, SOLNTSEV A S, XU L, et al. Spontaneous Photon-Pair Generation from a Dielectric Nanoantenna[J]. Optica, 2019, 6(11): 1416-1422.
[153] SCALORA M, VINCENTI M A, DE CEGLIA D, et al. Second- and Third-Harmonic Generation in Metal-Based Structures[J]. Physical Review A, 2010, 82(4): 043828.
[154] CIRACÌ C, POUTRINA E, SCALORA M, et al. Origin of Second-Harmonic Generation Enhancement in Optical Split-Ring Resonators[J]. Physical Review B, 2012, 85(20): 201403.
[155] ROKE S, BONN M, PETUKHOV A V. Nonlinear Optical Scattering: The Concept of Effective Susceptibility[J]. Physical Review B, 2004, 70(11): 115106.
[156] LANDAU L D, LIFSHITZ E M. Chapter X - the Propagation of Electromagnetic Waves[M]. LANDAU L D, LIFSHITZ E M. Electrodynamics of Continuous Media (Second Edition): Vol. 8. Amsterdam: Pergamon, 1984: 290-330.
[157] O’BRIEN K, SUCHOWSKI H, RHO J, et al. Predicting Nonlinear Properties of Metamaterials from the Linear Response[J]. Nature Materials, 2015, 14(4): 379-383.
[158] WANG F X, RODRÍGUEZ F J, ALBERS W M, et al. Surface and Bulk Contributions to the Second-Order Nonlinear Optical Response of a Gold Film[J]. Physical Review B, 2009, 80(23): 233402.
[159] CHANG B, ZHOU C, TAREKEGNE A T, et al. Large Area Three-Dimensional Photonic Crystal Membranes: Single-Run Fabrication and Applications with Embedded Planar Defects[J]. Advanced Optical Materials, 2019, 7(2): 1801176.
[160] GARCÍA DE ABAJO F J. Colloquium: Light scattering by particle and hole arrays[J]. Reviews of Modern Physics, 2007, 79(4): 1267-1290.
[161] GENNARO S D, RAHMANI M, GIANNINI V, et al. The Interplay of Symmetry and Scattering Phase in Second Harmonic Generation from Gold Nanoantennas[J]. Nano Letters, 2016, 16(8): 5278-5285.
[162] LINDEN S, NIESLER F B P, FÖRSTNER J, et al. Collective Effects in Second-Harmonic Generation from Split-Ring-Resonator Arrays[J]. Physical Review Letters, 2012, 109(1): 015502.
[163] CZAPLICKI R, KIVINIEMI A, HUTTUNEN M J, et al. Less Is More: Enhancement of Second-Harmonic Generation from Metasurfaces by Reduced Nanoparticle Density[J]. Nano Letters, 2018, 18(12): 7709-7714.
[164] DENG J, TANG Y, CHEN S, et al. Giant Enhancement of Second-Order Nonlinearity of Epsilon-near- Zero Medium by a Plasmonic Metasurface[J]. Nano Letters, 2020, 20(7): 5421-5427.
[165] SUN Y, LARIN A, MOZHAROV A, et al. All-Optical Generation of Static Electric Field in a Single Metal-Semiconductor Nanoantenna[J]. Light: Science & Applications, 2023, 12(1): 237.
[166] ALBRECHT G, KAISER S, GIESSEN H, et al. Refractory Plasmonics without Refractory Materials[J]. Nano Letters, 2017, 17(10): 6402-6408.
[167] MAO N, DENG J, ZHANG X, et al. Nonlinear Diatomic Metasurface for Real and Fourier Space Image Encoding[J]. Nano Letters, 2020, 20(10): 7463-7468.
[168] KLEIN M W, WEGENER M, FETH N, et al. Experiments on Second- and Third-Harmonic Generation from Magnetic Metamaterials[J]. Optics Express, 2007, 15(8): 5238-5247.
[169] KLEIN M W, WEGENER M, FETH N, et al. Experiments on Second- and Third-Harmonic Generation from Magnetic Metamaterials: Erratum[J]. Optics Express, 2008, 16(11): 8055-8055.
[170] ARMSTRONG J A, BLOEMBERGEN N, DUCUING J, et al. Interactions between Light Waves in a Nonlinear Dielectric[J]. Physical Review, 1962, 127(6): 1918-1939.
[171] SAIN B, MEIER C, ZENTGRAF T. Nonlinear Optics in All-Dielectric Nanoantennas and Metasurfaces: A Review[J]. Advanced Photonics, 2019, 1(2): 024002.
[172] ZHANG X, DENG J, JIN M, et al. Giant Enhancement of Second-Harmonic Generation from a Nanocavity Metasurface[J]. Science China Physics, Mechanics & Astronomy, 2021, 64(9): 294215.
[173] HUSU H, SIIKANEN R, MÄKITALO J, et al. Metamaterials with Tailored Nonlinear Optical Response[J]. Nano Letters, 2012, 12(2): 673-677.
[174] MICHAELI L, KEREN-ZUR S, AVAYU O, et al. Nonlinear Surface Lattice Resonance in Plasmonic Nanoparticle Arrays[J]. Physical Review Letters, 2017, 118(24): 243904.
[175] KUJALA S, CANFIELD B K, KAURANEN M, et al. Multipole Interference in the Second-Harmonic Optical Radiation from Gold Nanoparticles[J]. Physical Review Letters, 2007, 98(16): 167403.
[176] ZHANG Y, WANG Y, DAI Y, et al. Chirality Logic Gates[J]. Science Advances, 2022, 8(49): eabq8246.
[177] ZHANG Y, BAI X, ARIAS MUÑOZ J, et al. Coherent Modulation of Chiral Nonlinear Optics with Crystal Symmetry[J]. Light: Science & Applications, 2022, 11(1): 216.
[178] SU H, LIU X, WEI C, et al. Pressure-Controlled Structural Symmetry Transition in Layered InSe[J]. Laser & Photonics Reviews, 2019, 13(6): 1900012.
[179] BURNS W K, BLOEMBERGEN N. Third-Harmonic Generation in Absorbing Media of Cubic or Isotropic Symmetry[J]. Physical Review B, 1971, 4(10): 3437-3450.
[180] RAHMANI M, SHOROKHOV A S, HOPKINS B, et al. Nonlinear Symmetry Breaking in Symmetric Oligomers[J]. ACS Photonics, 2017, 4(3): 454-461.
[181] JOHNSON P B, CHRISTY R W. Optical Constants of the Noble Metals[J]. Physical Review B, 1972, 6(12): 4370-4379.
[182] GUO P, SCHALLER R D, KETTERSON J B, et al. Ultrafast Switching of Tunable Infrared Plasmons in Indium Tin Oxide Nanorod Arrays with Large Absolute Amplitude[J]. Nature Photonics, 2016, 10(4): 267-273.
[183] CAPRETTI A, WANG Y, ENGHETA N, et al. Comparative Study of Second-Harmonic Generation from Epsilon-Near-Zero Indium Tin Oxide and Titanium Nitride Nanolayers Excited in the Near-Infrared Spectral Range[J]. ACS Photonics, 2015, 2(11): 1584-1591.
[184] CHO N H, GUERRERO-MARTÍNEZ A, MA J, et al. Bioinspired Chiral Inorganic Nanomaterials[J]. Nature Reviews Bioengineering, 2023, 1(2): 88-106.
[185] HAZEN R M, SHOLL D S. Chiral Selection on Inorganic Crystalline Surfaces[J]. Nature Materials, 2003, 2(6): 367-374.
[186] ERNST K H. Molecular Chirality at Surfaces[J]. Physica Status Solidi B, 2012, 249(11): 2057-2088.
[187] HENDRY E, CARPY T, JOHNSTON J, et al. Ultrasensitive Detection and Characterization of Biomolecules Using Superchiral Fields[J]. Nature Nanotechnology, 2010, 5(11): 783-787.
[188] HOLZWARTH G, HOLZWARTH N A W. Circular Dichroism and Rotatory Dispersion Near Absorption Bands of Cholesteric Liquid Crystals[J]. Journal of the Optical Society of America, 1973, 63(3): 324-331.
[189] KOBASHI J, YOSHIDA H, OZAKI M. Planar Optics with Patterned Chiral Liquid Crystals[J]. Nature Photonics, 2016, 10(6): 389-392.
[190] LODAHL P, MAHMOODIAN S, STOBBE S, et al. Chiral Quantum Optics[J]. Nature, 2017, 541(7638): 473-480.
[191] KUWATA-GONOKAMI M, SAITO N, INO Y, et al. Giant Optical Activity in Quasi-Two-Dimensional Planar Nanostructures[J]. Physical Review Letters, 2005, 95(22): 227401.
[192] ROGACHEVA A V, FEDOTOV V A, SCHWANECKE A S, et al. Giant Gyrotropy due to Electromagnetic-Field Coupling in a Bilayered Chiral Structure[J]. Physical Review Letters, 2006, 97(17): 177401.
[193] CUI Y, KANG L, LAN S, et al. Giant Chiral Optical Response from a Twisted-Arc Metamaterial[J]. Nano Letters, 2014, 14(2): 1021-1025.
[194] LIU Z, DU H, LI J, et al. Nano-Kirigami with Giant Optical Chirality[J]. Science Advances, 2018, 4(7): eaat4436.
[195] TSENG M L, LIN Z H, KUO H Y, et al. Stress-Induced 3D Chiral Fractal Metasurface for Enhanced and Stabilized Broadband Near-Field Optical Chirality[J]. Advanced Optical Materials, 2019, 7(15): 1900617.
[196] ZHANG X, LIU Y, HAN J, et al. Chiral Emission from Resonant Metasurfaces[J]. Science, 2022, 377(6611): 1215-1218.
[197] SHI T, DENG Z L, GENG G, et al. Planar Chiral Metasurfaces with Maximal and Tunable Chiroptical Response Driven by Bound States in the Continuum[J]. Nature Communications, 2022, 13(1): 4111.
[198] OVERVIG A C, MANN S A, ALÙ A. Thermal Metasurfaces: Complete Emission Control by Combining Local and Nonlocal Light-Matter Interactions[J]. Physical Review X, 2021, 11(2): 021050.
[199] ZHANG F, PU M, LI X, et al. All-Dielectric Metasurfaces for Simultaneous Giant Circular Asymmetric Transmission and Wavefront Shaping Based on Asymmetric Photonic Spin–Orbit Interactions[J]. Advanced Functional Materials, 2017, 27(47): 1704295.
[200] WANG Q, PLUM E, YANG Q, et al. Reflective Chiral Meta-Holography: Multiplexing Holograms for Circularly Polarized Waves[J]. Light: Science & Applications, 2018, 7(1): 25.
[201] CHEN Y, YANG X, GAO J. Spin-Controlled Wavefront Shaping with Plasmonic Chiral Geometric Metasurfaces[J]. Light: Science & Applications, 2018, 7(1): 84.
[202] YU H, LIU G B, YAO W. Brightened Spin-Triplet Interlayer Excitons and Optical Selection Rules in van der Waals Heterobilayers[J]. 2D Materials, 2018, 5(3): 035021.
[203] SEYLER K L, SCHAIBLEY J R, GONG P, et al. Electrical Control of Second-Harmonic Generation in a Wse2 Monolayer Transistor[J]. Nature Nanotechnology, 2015, 10(5): 407-411.
[204] BHAGAVANTAM S, CHANDRASEKHAR P. Harmonic Generation and Selection Rules in Nonlinear Optics[J]. Proceedings of the Indian Academy of Sciences - Section A, 1972, 76(1): 13-20.
[205] SCHAIBLEY J R, YU H, CLARK G, et al. Valleytronics in 2D Materials[J]. Nature Reviews Materials, 2016, 1(11): 16055.
[206] KIM B, JIN J, WANG Z, et al. Three-Dimensional Nonlinear Optical Materials from Twisted Two-Dimensional van der Waals Interfaces[J]. Nature Photonics, 2024, 18(1): 91-98.
[207] ALAM M Z, DE LEON I, BOYD R W. Large Optical Nonlinearity of Indium Tin oxide in Its Epsilon-Near-Zero Region[J]. Science, 2016, 352(6287): 795-797.
[208] LI G C, LEI D, QIU M, et al. Light-induced symmetry breaking for enhancing second-harmonic generation from an ultrathin plasmonic nanocavity[J]. Nature Communications, 2021, 12(1): 4326.
[209] BEER S, GOUR J, ALBERUCCI A, et al. Second harmonic generation under doubly resonant lattice plasmon excitation[J]. Optics Express, 2022, 30(22): 40884-40896.
[210] ZAR T, KRAUSE A, SHAVIT O, et al. Second harmonic generation from aluminum plasmonic nanocavities: from scanning to imaging[J]. Physical Chemistry Chemical Physics, 2023, 25(28): 18915-18925.
[211] WANG H, HU Z, DENG J, et al. All-optical ultrafast polarization switching with nonlinear plasmonic metasurfaces[J]. Science Advances, 2024, 10(8): eadk3882.

所在学位评定分委会
材料科学与工程
国内图书分类号
O437
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765929
专题南方科技大学
工学院_材料科学与工程系
推荐引用方式
GB/T 7714
张学才. 等离激元超构表面上的二次谐波产生与调控[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12031193-张学才-材料科学与工程(8871KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张学才]的文章
百度学术
百度学术中相似的文章
[张学才]的文章
必应学术
必应学术中相似的文章
[张学才]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。