[1] 宋爱国,赵辉,贾伯年. 传感器技术:(第4版)[M]. 南京: 东南大学出版社, 2021.
[2] McGeehan M A, Karipott S S, Hahn M E, et al. An optoelectronics-based sensor for measuring multi-axial shear stresses[J]. IEEE Sensors Journal, 2021, 21(22): 25641-25648.
[3] Kim R H, Kim D H, Xiao J, et al. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics[J]. Nature Materials, 2010, 9(11): 929-937.
[4] Přibil J, Přibilová A, Frollo I. Comparative measurement of the PPG signal on different human body positions by sensors working in reflection and transmission modes[J]. Engineering Proceedings, 2020, 2(1): 69-76.
[5] Castaneda D, Esparza A, Ghamari M, et al. A review on wearable photoplethysmography sensors and their potential future applications in health care[J]. International Journal of Biosensors & Bioelectronics, 2018, 4(4): 195-214.
[6] Tamura T, Maeda Y, Sekine M, et al. Wearable photoplethysmographic sensors-past and present[J]. Electronics, 2014, 3(2): 282-302.
[7] Kavsaoğlu A R, Polat K, Hariharan M. Non-invasive prediction of hemoglobin level using machine learning techniques with the PPG signal's characteristics features[J]. Applied Soft Computing, 2015, 37: 983-991.
[8] Enderle J, Bronzino J. Introduction to biomedical engineering[M]. Academic Press, 2012.
[9] Yokota T, Zalar P, Kaltenbrunner M, et al. Ultraflexible organic photonic skin[J]. Science Advances, 2016, 2(4): e1501856-1501864.
[10] Khan Y, Han D, Ting J, et al. Organic multi-channel optoelectronic sensors for wearable health monitoring[J]. IEEE Access, 2019, 7: 128114-128124.
[11] Turkey N S, Jeber J N. A flow analysis system integrating an optoelectronic detector for the quantitative determination of active ingredients in pharmaceutical formulations[J]. Microchemical Journal, 2021, 160: 105710-105719.
[12] Flores G, Perdigones F, Aracil C, et al. Microfluidic platform with absorbance sensor for glucose detection[C]//2015 10th Spanish Conference on Electron Devices (CDE). IEEE, 2015: 1-4.
[13] Lochner C M, Khan Y, Pierre A, et al. All-organic optoelectronic sensor for pulse oximetry[J]. Nature Communications, 2014, 5(1): 5745-5752.
[14] Lovecchio N, Costantini F, Parisi E, et al. Integrated optoelectronic device for detection of fluorescent molecules[J]. IEEE Transactions on Biomedical Circuits and Systems, 2018, 12(6): 1337-1344.
[15] Lim C J, Lee S, Kim J H, et al. Wearable, luminescent oxygen sensor for transcutaneous oxygen monitoring[J]. ACS Applied Materials & Interfaces, 2018, 10(48): 41026-41034.
[16] Ding H, Lv G, Cai X, et al. An optoelectronic thermometer based on microscale infrared-to-visible conversion devices[J]. Light: Science & Applications, 2022, 11(1): 130-138.
[17] Sumiya M, Fuke S. Review of polarity determination and control of GaN[J]. Materials Research Society Internet Journal of Nitride Semiconductor Research, 2004, 9: e1.
[18] Speck J S, Chichibu S F. Nonpolar and semipolar group III nitride-based materials[J]. MRS Bulletin, 2009, 34(5): 304-312.
[19] Chen F, Ji X, Lau S P. Recent progress in group III-nitride nanostructures: from materials to applications[J]. Materials Science and Engineering: R: Reports, 2020, 142: 100578-100629.
[20] Pankove J I, Miller E A, Berkeyheiser J E. GaN electroluminescent diodes[C]//1971 International Electron Devices Meeting. IEEE, 1971: 78-78.
[21] Yanagisawa T. Changes in properties of GaN blue light-emitting diodes over time[J]. Electronics Letters, 1986, 22(16): 846-847.
[22] Monroy E, Munoz E, Sánchez F J, et al. High-performance GaN pn junction photodetectors for solar ultraviolet applications[J]. Semiconductor Science and Technology, 1998, 13(9): 1042-1047.
[23] Meneghini M, Trevisanello L R, Meneghesso G, et al. A review on the reliability of GaN-based LEDs[J]. IEEE Transactions on Device and Materials Reliability, 2008, 8(2): 323-331.
[24] Zhang Y, Xu R, Kang Q, et al. Recent advances on GaN-based Micro-LEDs[J]. Micromachines, 2023, 14(5): 991-1010.
[25] Xu R, Kang Q, Zhang Y, et al. Research progress of AlGaN-Based deep ultraviolet light-emitting diodes[J]. Micromachines, 2023, 14(4): 844-854.
[26] Guo J, Ye B, Gu Y, et al. Broadband photodetector for ultraviolet to visible wavelengths based on the BA2PbI4/GaN heterostructure[J]. ACS Applied Materials & Interfaces, 2023,15(48):56014-56021.
[27] Yi C, Chen Y, Kang Z, et al. MXene‐GaN van der waals heterostructures for high-speed self-driven photodetectors and light-emitting diodes[J]. Advanced Electronic Materials, 2021, 7(5): 2000955-2000963.
[28] Janardhanam V, Zummukhozol M, Jyothi I, et al. Self-powered MoS2/n-type GaN heterojunction photodetector with broad spectral response in ultraviolet–visible–near-infrared range[J]. Sensors and Actuators A: Physical, 2023, 360: 114534-114544.
[29] Cai Z, He X, Wang K, et al. Enhancing performance of GaN/Ga2O3 P‐N junction Uvc photodetectors via interdigitated structure[J]. Small Methods, 2023: 2301148-2301157.
[30] Alamoudi H, Xin B, Mitra S, et al. Enhanced solar-blind deep UV photodetectors based on solution-processed p-MnO quantum dots and n-GaN p-n junction-structure[J]. Applied Physics Letters, 2022, 120(12):122102-122110.
[31] Wang D, Liu X, Kang Y, et al. Bidirectional photocurrent in p-n heterojunction nanowires[J]. Nature Electronics, 2021, 4(9): 645-652.
[32] Paul S, Helwig A, Müller G, et al. Opto-chemical sensor system for the detection of H2 and hydrocarbons based on InGaN/GaN nanowires[J]. Sensors and Actuators B: Chemical, 2012, 173: 120-126.
[33] Maier K, Helwig A, Müller G, et al. Detection of oxidising gases using an optochemical sensor system based on GaN/InGaN nanowires[J]. Sensors and Actuators B: Chemical, 2014, 197: 87-94.
[34] Cai Q, You H, Guo H, et al. Progress on AlGaN-based solar-blind ultraviolet photodetectors and focal plane arrays[J]. Light: Science & Applications, 2021, 10(1): 94-125.
[35] Wu G, Du L, Deng C, et al. High-performance self-driven single GaN-Based p-i-n homojunction one-dimensional microwire ultraviolet photodetectors[J]. ACS Applied Electronic Materials, 2022, 4(8): 3807-3814.
[36] Cicek E, McClintock R, Cho C Y, et al. AlxGa1-xN-based back-illuminated solar-blind photodetectors with external quantum efficiency of 89%[J]. Applied Physics Letters, 2013, 103(19):191108-191113.
[37] Reddeppa M, Park B G, Chinh N D, et al. A novel low-temperature resistive NO gas sensor based on InGaN/GaN multi-quantum well-embedded p-i-n GaN nanorods[J]. Dalton Transactions, 2019, 48(4): 1367-1375.
[38] 吕红亮,张玉明,张义门. 化合物半导体器件[M].北京: 电子工业出版社, 2009.
[39] Zhang H, Dai X, Guan N, et al. Flexible photodiodes based on nitride core/shell p-n junction nanowires[J]. ACS Applied Materials & Interfaces, 2016, 8(39): 26198-26206.
[40] Chen Y C, Shih H Y, Chen J Y, et al. An optically detectable CO2 sensor utilizing polyethylenimine and starch functionalized InGaN/GaN multiple quantum wells[J]. Applied Physics Letters, 2013, 103(2):022109-022114.
[41] Yin Y, Chen R, He R, et al. Strain visualization enabled in dual-wavelength InGaN/GaN multiple quantum wells Micro-LEDs by piezo-phototronic effect[J]. Nano Energy, 2023, 109: 108283-108293.
[42] Li K H, Fu W Y, Cheung Y F, et al. Monolithically integrated InGaN/GaN light-emitting diodes, photodetectors, and waveguides on Si substrate[J]. Optica, 2018, 5(5): 564-569.
[43] Li J, Wu J, Chen L, et al. On-chip integration of III-nitride flip-chip light-emitting diodes with photodetectors[J]. Journal of Lightwave Technology, 2021, 39(8): 2603-2608.
[44] Gao X, Liu P, Yin Q, et al. Wireless light energy harvesting and communication in a waterproof GaN optoelectronic system[J]. Communications Engineering, 2022, 1(1): 16-23.
[45] Yin J, Yang H, Luo Y, et al. III-Nitride Microsensors for 360° Angle Detection[J]. IEEE Electron Device Letters, 2022, 43(3): 458-461.
[46] He R, Liu N, Gao Y, et al. Monolithically integrated UVC AlGaN-based multiple quantum wells structure and photonic chips for solar-blind communications[J]. Nano Energy, 2022, 104: 107928-107937.
[47] Chen L, An X, Jing J, et al. Ultracompact chip-scale refractometer based on an InGaN-based monolithic photonic chip[J]. ACS Applied Materials & Interfaces, 2020, 12(44): 49748-49754.
[48] Wang Y, Xu Y, Yang Y, et al. Simultaneous light emission and detection of InGaN/GaN multiple quantum well diodes for in-plane visible light communication[J]. Optics Communications, 2017, 387: 440-445.
[49] Zhang H, Yan J, Ye Z, et al. Monolithic GaN optoelectronic system on a Si substrate[J]. Applied Physics Letters, 2022, 121(18): 181103-181109.
[50] Hou Y, Jing J, Luo Y, et al. A versatile, incubator‐compatible, monolithic GaN photonic chipscope for label-free monitoring of live cell activities[J]. Advanced Science, 2022, 9(17): 2200910-2200921.
[51] Jing J, Hou Y, Luo Y, et al. Chip-scale in situ salinity sensing based on a monolithic optoelectronic chip[J]. ACS Sensors, 2022, 7(3): 849-855.
[52] Gao X, Li T, Wu D, et al. Monolithic integrated MQW-based optoelectronic glucose sensor[J]. Optics Letters, 2023, 48(20): 5367-5370.
[53] Yang H, Luo Y, Lu G, et al. Viscosity sensors based on III-nitride optical devices integrated with droplet sliding channels[J]. IEEE Electron Device Letters, 2022, 43(12): 2169-2172.
[54] Jing J, An X, Luo Y, et al. A compact optical pressure sensor based on a III-nitride photonic chip with nanosphere-embedded PDMS[J]. ACS Applied Electronic Materials, 2021, 3(5): 1982-1987.
[55] An X, Luo Y, Yu B, et al. A chip-scale GaN-based optical pressure sensor with microdome-patterned polydimethylsiloxane (PDMS)[J]. IEEE Electron Device Letters, 2021, 42(10): 1532-1535.
[56] Shi F, Zhang H, Ye Z, et al. Miniature optical fiber curvature sensor via integration with GaN optoelectronics[J]. Communications Engineering, 2022, 1(1): 47-55.
[57] Wang B, Fu K, Fu J, et al. Miniature GaN optoelectronic temperature sensor[J]. Optics Letters, 2023, 48(16): 4209-4212.
[58] Sajid M, Khattak Z J, Rahman K, et al. Progress and future of relative humidity sensors: a review from materials perspective[J]. Bulletin of Materials Science, 2022, 45(4): 238-262.
[59] Li N, Jiang Y, Zhou C, et al. High-performance humidity sensor based on urchin-like composite of Ti3C2 MXene-derived TiO2 nanowires[J]. ACS Applied Materials & Interfaces, 2019, 11(41): 38116-38125.
[60] Dai J, Zhao H, Lin X, et al. Ultrafast response polyelectrolyte humidity sensor for respiration monitoring[J]. ACS Applied Materials & Interfaces, 2019, 11(6): 6483-6490.
[61] Si R, Xie X, Li T, et al. TiO2/NaNbO3 heterojunction for boosted humidity sensing ability[J]. Sensors and Actuators B: Chemical, 2020, 309: 127803-127812.
[62] Lin J, Gao N, Liu J, et al. Superhydrophilic Cu(OH)2 nanowire-based QCM transducer with self-healing ability for humidity detection[J]. Journal of Materials Chemistry A, 2019, 7(15): 9068-9077.
[63] Zheng X, Fan R, Li C, et al. A fast-response and highly linear humidity sensor based on quartz crystal microbalance[J]. Sensors and Actuators B: Chemical, 2019, 283: 659-665.
[64] Zhao Y, Tong R, Chen M Q, et al. Relative humidity sensor based on hollow core fiber filled with GQDs-PVA[J]. Sensors and Actuators B: Chemical, 2019, 284: 96-102.
[65] Aldaba A L, Lopez-Torres D, Elosua C, et al. SnO2-MOF-Fabry-Perot optical sensor for relative humidity measurements[J]. Sensors and Actuators B: Chemical, 2018, 257: 189-199.
[66] Liu Y, Huang H, Wang L, et al. Electrospun CeO2 nanoparticles/PVP nanofibers based high-frequency surface acoustic wave humidity sensor[J]. Sensors and Actuators B: Chemical, 2016, 223: 730-737.
[67] Su Y, Li C, Li M, et al. Surface acoustic wave humidity sensor based on three-dimensional architecture graphene/PVA/SiO2 and its application for respiration monitoring[J]. Sensors and Actuators B: Chemical, 2020, 308: 127693-127704.
[68] Liu Z, Su J, Zhou K, et al. Fully Integrated Patch Based on Lamellar Porous Film Assisted GaN Optopairs for Wireless Intelligent Respiratory Monitoring[J]. Nano Letters, 2023, 23(23): 10674-10681.
[69] Arman Kuzubasoglu B. Recent studies on the humidity sensor: a mini review[J]. ACS Applied Electronic Materials, 2022, 4(10): 4797-4807.
[70] Song P, Wang H. High‐performance polymeric materials through hydrogen‐bond cross‐linking[J]. Advanced Materials, 2020, 32(18): 1901244-1901256.
[71] Liu B, Zhou Y, Chen L, et al. High-performance sensors based on Chinese ink and water-based glue for detection of strain, temperature, and humidity[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(5): 1847-1856.
[72] Zhao G, Huang Y, Mei C, et al. Chiral nematic coatings based on cellulose nanocrystals as a multiplexing platform for humidity sensing and dual anticounterfeiting[J]. Small, 2021, 17(50): 2103936-2103946.
[73] Anichini C, Aliprandi A, Gali S M, et al. Ultrafast and highly sensitive chemically functionalized graphene oxide-based humidity sensors: harnessing device performances via the supramolecular approach[J]. ACS Applied Materials & Interfaces, 2020, 12(39): 44017-44025.
[74] Chaloeipote G, Samarnwong J, Traiwatcharanon P, et al. High-performance resistive humidity sensor based on Ag nanoparticles decorated with graphene quantum dots[J]. Royal Society Open Science, 2021, 8(7): 210407-210418.
[75] Chen Z, Lu C. Humidity sensors: a review of materials and mechanisms[J]. Sensor Letters, 2005, 3(4): 274-295.
[76] Cho S Y, Lee Y, Koh H J, et al. Superior chemical sensing performance of black phosphorus: comparison with MoS2 and graphene[J]. Advanced Materials, 2016, 28(32): 7020-7028.
[77] Yu Y, Chen H, Liu Y, et al. Humidity sensing properties of single Au-decorated boron nitride nanotubes[J]. Electrochemistry Communications, 2013, 30: 29-33.
[78] Zhang Q, Zhang J, Wan S, et al. Stimuli‐responsive 2D materials beyond graphene[J]. Advanced Functional Materials, 2018, 28(45): 1802500-1802519.
[79] Wang Z, Fan X, Li C, et al. Humiditysensing performance of 3DOM WO3 with controllable structural modifcation[J]. ACS Applied Materials & Interfaces, 2018, 10(4):3776-3783.
[80] Qi R, Lin X, Dai J, et al. Humidity sensors based on MCM-41/polypyrrole hybrid film via in-situ polymerization[J]. Sensors and Actuators B: Chemical, 2018, 277: 584-590.
[81] Zhang D, Wang D, Zong X, et al. High-performance QCM humidity sensor based on graphene oxide/tin oxide/polyaniline ternary nanocomposite prepared by in-situ oxidative polymerization method[J]. Sensors and Actuators B: Chemical, 2018, 262: 531-541.
[82] Kang T G, Park J K, Yun G H, et al. A real-time humidity sensor based on a microwave oscillator with conducting polymer PEDOT: PSS film[J]. Sensors and Actuators B: Chemical, 2019, 282: 145-151.
[83] Lin Y, Jiang H, Liang G, et al. The exceptionally high moisture responsiveness of a new conductive-coordination-polymer based chemiresistive sensor[J]. CrystEngComm, 2021, 23(19): 3549-3556.
[84] Huang X, Li B, Wang L, et al. Superhydrophilic, underwater superoleophobic, and highly stretchable humidity and chemical vapor sensors for human breath detection[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24533-24543.
[85] Kinoshita S, Yoshioka S. Structural colors in nature: the role of regularity and irregularity in the structure[J]. ChemPhysChem, 2005, 6(8): 1442-1459.
[86] Kano S, Jarulertwathana N, Mohd-Noor S, et al. Respiratory monitoring by ultrafast humidity sensors with nanomaterials: A review[J]. Sensors, 2022, 22(3): 1251-1281.
[87] Kou D, Ma W, Zhang S, et al. High-performance and multifunctional colorimetric humidity sensors based on mesoporous photonic crystals and nanogels[J]. ACS Applied Materials & Interfaces, 2018, 10(48): 41645-41654.
[88] Tulliani J M, Inserra B, Ziegler D. Carbon-based materials for humidity sensing: A short review[J]. Micromachines, 2019, 10(4): 232-261.
[89] Wu Y, Huang Q, Nie J, et al. All-carbon based flexible humidity sensor[J]. Journal of Nanoscience and Nanotechnology, 2019, 19(8): 5310-5316.
[90] Lv C, Hu C, Luo J, et al. Recent advances in graphene-based humidity sensors[J]. Nanomaterials, 2019, 9(3): 422-464.
[91] Lee Y, Yoon J, Kim Y, et al. Humidity effects according to the type of carbon nanotubes[J]. IEEE Access, 2020, 9: 6810-6816.
[92] Ghosh S, Ghosh R, Guha P K, et al. Humidity sensor based on high proton conductivity of graphene oxide[J]. IEEE Transactions on Nanotechnology, 2015, 14(5): 931-937.
[93] Songkeaw P, Onlaor K, Thiwawong T, et al. Transparent and flexible humidity sensor based on graphene oxide thin films prepared by electrostatic spray deposition technique[J]. Journal of Materials Science: Materials in Electronics, 2020, 31: 12206-12215.
[94] Zhang D, Tong J, Xia B. Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly[J]. Sensors and Actuators B: Chemical, 2014, 197: 66-72.
[95] Park S Y, Kim Y H, Lee S Y, et al. Highly selective and sensitive chemoresistive humidity sensors based on rGO/MoS2 van der Waals composites[J]. Journal of Materials Chemistry A, 2018, 6(12): 5016-5024.
[96] Liu Y, Zhang C, Zhu P. The temperature humidity monitoring system of soil based on wireless sensor networks[C]//2011 International Conference on Electric Information and Control Engineering. IEEE, 2011: 1850-1853.
[97] Imam S A, Choudhary A, Sachan V K. Design issues for wireless sensor networks and smart humidity sensors for precision agriculture: a review[C]//2015 International Conference on Soft Computing Techniques and Implementations (ICSCTI). IEEE, 2015: 181-187.
[98] Blank T A, Eksperiandova L P, Belikov K N. Recent trends of ceramic humidity sensors development: a review[J]. Sensors and Actuators B: Chemical, 2016, 228: 416-442.
[99] Duan Z, Jiang Y, Tai H. Recent advances in humidity sensors for human body related humidity detection[J]. Journal of Materials Chemistry C, 2021, 9(42): 14963-14980.
[100] Güder F, Ainla A, Redston J, et al. Paper‐based electrical respiration sensor[J]. Angewandte Chemie International Edition, 2016, 55(19): 5727-5732.
[101] Li T, Li L, Sun H, et al. Porous ionic membrane based flexible humidity sensor and its multifunctional applications[J]. Advanced Science, 2017, 4(5): 1600404-1600411.
[102] Wang Y, Zhang L, Zhou J, et al. Flexible and transparent cellulose-based ionic film as a humidity sensor[J]. ACS Applied Materials & Interfaces, 2020, 12(6): 7631-7638.
[103] He J, Xiao P, Shi J, et al. High performance humidity fluctuation sensor for wearable devices via a bioinspired atomic-precise tunable graphene-polymer heterogeneous sensing junction[J]. Chemistry of Materials, 2018, 30(13): 4343-4354.
[104] Wan T, Shao B, Ma S, et al. In‐sensor computing: materials, devices, and integration technologies[J]. Advanced Materials, 2023, 35(37): 2203830-2203844.
[105] Majumder B D, Roy J K, Padhee S. Recent advances in multifunctional sensing technology on a perspective of multi-sensor system: a review[J]. IEEE Sensors Journal, 2018, 19(4): 1204-1214.
[106] Xie M, Hisano K, Zhu M, et al. Flexible multifunctional sensors for wearable and robotic applications[J]. Advanced Materials Technologies, 2019, 4(3): 1800626-1800655.
[107] Lin M, Zheng Z, Yang L, et al. A high‐performance, sensitive, wearable multifunctional sensor based on rubber/CNT for human motion and skin temperature detection[J]. Advanced Materials, 2022, 34(1): 2107309-2107322.
[108] Seok Jo H, An S, Kwon H J, et al. Transparent body-attachable multifunctional pressure, thermal, and proximity sensor and heater[J]. Scientific Reports, 2020, 10(1): 2701-2713.
[109] Wang S, Wang X, Wang Q, et al. Flexible optoelectronic multimodal proximity/pressure/temperature sensors with low signal interference[J]. Advanced Materials, 2023, 35(49): 2304701-2304711.
[110] Dai Y, Gao S. A flexible multi-functional smart skin for force, touch position, proximity, and humidity sensing for humanoid robots[J]. IEEE Sensors Journal, 2021, 21(23): 26355-26363.
[111] Yang S, Li C, Wen N, et al. All-fabric-based multifunctional textile sensor for detection and discrimination of humidity, temperature, and strain stimuli[J]. Journal of Materials Chemistry C, 2021, 9(39): 13789-13798.
[112] Zhang Z, Lu T, Yang D, et al. A dual‐function sensor for highly sensitive detection of flame and humidity[J]. Small, 2022, 18(38): 2203334-2203342.
[113] Yamamoto Y, Harada S, Yamamoto D, et al. Printed multifunctional flexible device with an integrated motion sensor for health care monitoring[J]. Science Advances, 2016, 2(11): e1601473-1601481.
[114] Kim T, Lee S, Hong T, et al. Heterogeneous sensing in a multifunctional soft sensor for human-robot interfaces[J]. Science Robotics, 2020, 5(49): eabc6878-6891.
[115] Chen L, Chang X, Wang H, et al. Stretchable and transparent multimodal electronic-skin sensors in detecting strain, temperature, and humidity[J]. Nano Energy, 2022, 96: 107077-107086.
[116] Lu Y, Xu K, Zhang L, et al. Multimodal plant healthcare flexible sensor system[J]. ACS Nano, 2020, 14(9): 10966-10975.
[117] Li C, Yang S, Guo Y, et al. Flexible, multi-functional sensor based on all-carbon sensing medium with low coupling for ultrahigh-performance strain, temperature and humidity sensing[J]. Chemical Engineering Journal, 2021, 426: 130364-130378.
[118] Xu Y, Liu S, Zhang J, et al. Fabrication of micro-cantilever sensor based on clay minerals for humidity detection[J]. Sensors, 2023, 23(15): 6962-6974.
[119] Guo J Y, Shi B, Sun M Y, et al. Application of PI-FBG sensor for humidity measurement in unsaturated soils[J]. Measurement, 2022, 188: 110415-110426.
[120] Su P G, Chen C Y. Humidity sensing and electrical properties of Na-and K-montmorillonite[J]. Sensors and Actuators B: Chemical, 2008, 129(1): 380-385.
[121] Marlow F, Muldarisnur, Sharifi P, et al. Opals: status and prospects[J]. Angewandte Chemie International Edition, 2009, 48(34): 6212-6233.
[122] Renfro N, McClure S F. Dyed purple hydrophane opal[J]. Gems & Gemology, 2011, 47(4):260-270.
[123] Eckert A W. The world of opals[M]. John Wiley & Sons, 1997.
[124] Jia Y, Wang B, Zhang T. A comparative study of different amorphous and paracrystalline silica by NMR and SEM/EDS[J]. Journal of Wuhan University of Technology-Materials Science Edition, 2015, 30(5): 900-907.
[125] Martin R W, Middleton P G, O’donnell K P, et al. Exciton localization and the Stokes’shift in InGaN epilayers[J]. Applied Physics Letters, 1999, 74(2): 263-265.
[126] Bjorkqvist M, Paski J, Salonen J, et al. Studies on hysteresis reduction in thermally carbonized porous silicon humidity sensor[J]. IEEE Sensors Journal, 2006, 6(3): 542-547.
[127] Park E U, Choi B I, Kim J C, et al. Correlation between the sensitivity and the hysteresis of humidity sensors based on graphene oxides[J]. Sensors and Actuators B: Chemical, 2018, 258: 255-262.
[128] Islam T, Saha H. Hysteresis compensation of a porous silicon relative humidity sensor using ANN technique[J]. Sensors and Actuators B: Chemical, 2006, 114(1): 334-343.
[129] Wang X, Ye M. Hysteresis and nonlinearity compensation of relative humidity sensor using support vector machines[J]. Sensors and Actuators B: Chemical, 2008, 129(1): 274-284.
[130] Duan Z, Zhao Q, Wang S, et al. Halloysite nanotubes: natural, environmental-friendly and low-cost nanomaterials for high-performance humidity sensor[J]. Sensors and Actuators B: Chemical, 2020, 317: 128204-128211.
[131] Zhao J, Li N, Yu H, et al. Highly sensitive MoS2 humidity sensors array for noncontact sensation[J]. Advanced Materials, 2017, 29(34): 1702076-1702083.
[132] Si R, Xie X, Li T, et al. TiO2/(K, Na) NbO3 nanocomposite for boosting humidity-sensing performances[J]. ACS Sensors, 2020, 5(5): 1345-1353.
[133] Duan Z, Jiang Y, Yan M, et al. Facile, flexible, cost-saving, and environment-friendly paper-based humidity sensor for multifunctional applications[J]. ACS Applied Materials & Interfaces, 2019, 11(24): 21840-21849.
[134] Dwiputra M A, Fadhila F, Imawan C, et al. The enhanced performance of capacitive-type humidity sensors based on ZnO nanorods/WS2 nanosheets heterostructure[J]. Sensors and Actuators B: Chemical, 2020, 310: 127810-127821.
[135] Gao N, Li H Y, Zhang W, et al. QCM-based humidity sensor and sensing properties employing colloidal SnO2 nanowires[J]. Sensors and Actuators B: Chemical, 2019, 293: 129-135.
[136] Gao R, Lu D, Cheng J, et al. Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide[J]. Sensors and Actuators B: Chemical, 2016, 222: 618-624.
[137] Darragh P J, Gaskin A J, Sanders J V. Opals[J]. Scientific American, 1976, 234(4): 84-95.
[138] Bartoli F, Wilding L P. Dissolution of biogenic opal as a function of its physical and chemical properties[J]. Soil Science Society of America Journal, 1980, 44(4): 873-878.
[139] Franklin J, Wang Z Y. Refractive index matching: a general method for enhancing the optical clarity of a hydrogel matrix[J]. Chemistry of Materials, 2002, 14(11): 4487-4489.
[140] Ojeda-Mendoza G J, Contreras-Tello H, Rojas-Ochoa L F. Refractive index matching of large polydisperse silica spheres in aqueous suspensions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538: 320-326.
[141] Teoman B, Potanin A, Armenante P M. Optimization of optical transparency of personal care products using the refractive index matching method[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610: 125595-125604.
[142] Tarcan R, Todor-Boer O, Petrovai I, et al. Reduced graphene oxide today[J]. Journal of Materials Chemistry C, 2020, 8(4): 1198-1224.
[143] Ahmad H, Fan M, Hui D. Graphene oxide incorporated functional materials: a review[J]. Composites Part B: Engineering, 2018, 145: 270-280.
[144] Agarwal V, Zetterlund P B. Strategies for reduction of graphene oxide-a comprehensive review[J]. Chemical Engineering Journal, 2021, 405: 127018-127047.
[145] Feng J, Ye Y, Xiao M, et al. Synthetic routes of the reduced graphene oxide[J]. Chemical Papers, 2020, 74: 3767-3783.
[146] Toh S Y, Loh K S, Kamarudin S K, et al. Graphene production via electrochemical reduction of graphene oxide: synthesis and characterisation[J]. Chemical Engineering Journal, 2014, 251: 422-434.
[147] Graf D, Molitor F, Ensslin K, et al. Spatially resolved Raman spectroscopy of single-and few-layer graphene[J]. Nano Letters, 2007, 7(2): 238-242.
[148] Zhang Y L, Guo L, Xia H, et al. Photoreduction of graphene oxides: methods, properties, and applications[J]. Advanced Optical Materials, 2014, 2(1): 10-28.
[149] Mohandoss M, Gupta S S, Nelleri A, et al. Solar mediated reduction of graphene oxide[J]. RSC Advances, 2017, 7(2): 957-963.
[150] Du T, Adeleye A S, Zhang T, et al. Influence of light wavelength on the photoactivity, physicochemical transformation, and fate of graphene oxide in aqueous media[J]. Environmental Science: Nano, 2018, 5(11): 2590-2603.
[151] Gengler R Y N, Badali D S, Zhang D, et al. Revealing the ultrafast process behind the photoreduction of graphene oxide[J]. Nature Communications, 2013, 4(1): 2560.
[152] Zhao Z, Pu R, Wang Z, et al. Identification of ultraviolet photoinduced presolvated electrons in water as the reducing agent in the photoreduction of graphene oxide[J]. The Journal of Physical Chemistry C, 2023, 127(7): 3516-3522.
[153] Thomsen C L, Madsen D, Keiding S R, et al. Two-photon dissociation and ionization of liquid water studied by femtosecond transient absorption spectroscopy[J]. The Journal of Chemical Physics, 1999, 110(7): 3453-3462.
[154] Park S, An J, Jung I, et al. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents[J]. Nano Letters, 2009, 9(4): 1593-1597.
[155] Liu W, Speranza G. Tuning the oxygen content of reduced graphene oxide and effects on its properties[J]. ACS Omega, 2021, 6(9): 6195-6205.
[156] Guex L G, Sacchi B, Peuvot K F, et al. Experimental review: chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry[J]. Nanoscale, 2017, 9(27): 9562-9571.
[157] Basko D M, Piscanec S, Ferrari A C. Electron-electron interactions and doping dependence of the two-phonon Raman intensity in graphene[J]. Physical Review B, 2009, 80(16):165413-165422.
[158] Rabchinskii M K, Shnitov V V, Dideikin A T, et al. Nanoscale perforation of graphene oxide during photoreduction process in the argon atmosphere[J]. The Journal of Physical Chemistry C, 2016, 120(49): 28261-28269.
[159] Ansón-Casaos, Alejandro, et al. The effect of gamma-irradiation on few-layered graphene materials[J]. Applied Surface Science, 2014, 301: 264-272.
[160] Konkena B, Vasudevan S. Understanding aqueous dispersibility of graphene oxide and reduced graphene oxide through pKa measurements[J]. The Journal of Physical Chemistry Letters, 2012, 3(7): 867-872.
[161] Coates J. Interpretation of infrared spectra, a practical approach[J]. 2000.
[162] Li L Y, Dong Y F, Jiang W F, et al. High-performance capacitive humidity sensor based on silicon nanoporous pillar array[J]. Thin Solid Films, 2008, 517(2): 948-951.
[163] Traversa E. Ceramic sensors for humidity detection: the state-of-the-art and future developments[J]. Sensors and Actuators B: Chemical, 1995, 23(2-3): 135-156.
[164] Seiyama T, Yamazoe N, Arai H. Ceramic humidity sensors[J]. Sensors and Actuators, 1983, 4: 85-96.
[165] Niu H, Yue W, Li Y, et al. Ultrafast-response/recovery capacitive humidity sensor based on arc-shaped hollow structure with nanocone arrays for human physiological signals monitoring[J]. Sensors and Actuators B: Chemical, 2021, 334: 129637-129647.
[166] Yap K Z, Lim W Y, Kalkal A, et al. Electrophoretic deposited Mg ion functionalised graphene oxide based ultra-highly sensitive humidity sensor[J]. IEEE Transactions on Instrumentation and Measurement, 2023,72:1-8.
[167] Bi H, Yin K, Xie X, et al. Ultrahigh humidity sensitivity of graphene oxide[J]. Scientific Reports, 2013, 3(1): 2714-2721.
[168] Zou S, Tao L Q, Wang G, et al. Humidity-based human–machine interaction system for healthcare applications[J]. ACS Applied Materials & Interfaces, 2022, 14(10): 12606-12616.
[169] Li S, Zhang Y, Liang X, et al. Humidity-sensitive chemoelectric flexible sensors based on metal-air redox reaction for health management[J]. Nature Communications, 2022, 13(1): 5416-5426.
[170] Xia B, Liu B, Wang N, et al. Polyelectrolyte/graphene oxide nano-film integrated fiber-optic sensors for high-sensitive and rapid-response humidity measurement[J]. ACS Applied Materials & Interfaces, 2022, 14(36): 41379-41388.
[171] Wang S, Yan H, Zheng H, et al. Fast response humidity sensor based on chitosan/graphene oxide/tin dioxide composite[J]. Sensors and Actuators B: Chemical, 2023,392:134070-134079.
[172] Guo L, Jiang H B, Shao R Q, et al. Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device[J]. Carbon, 2012, 50(4): 1667-1673.
[173] Cai J, Lv C, Aoyagi E, et al. Laser direct writing of a high-performance all-graphene humidity sensor working in a novel sensing mode for portable electronics[J]. ACS Applied Materials & Interfaces, 2018, 10(28): 23987-23996.
[174] Wang X, Xiong Z, Liu Z, et al. Exfoliation at the liquid/air interface to assemble reduced graphene oxide ultrathin films for a flexible noncontact sensing device[J]. Advanced Materials, 2015, 27(8): 1370-1375.
[175] Wu Z, Sun X, Guo X, et al. Development of a rGO-BiVO4 heterojunction humidity sensor with boosted performance[J]. ACS Applied Materials & Interfaces, 2021, 13(23): 27188-27199.
[176] Zhang D, Xu Z, Yang Z, et al. High-performance flexible self-powered tin disulfide nanoflowers/reduced graphene oxide nanohybrid-based humidity sensor driven by triboelectric nanogenerator[J]. Nano Energy, 2020, 67: 104251.
[177] Trung T Q, Duy L T, Ramasundaram S, et al. Transparent, stretchable, and rapid-response humidity sensor for body-attachable wearable electronics[J]. Nano Research, 2017, 10: 2021-2033.
[178] Crebolder J M, Sloan R B. Determining the effects of eyewear fogging on visual task performance[J]. Applied Ergonomics, 2004, 35(4): 371-381.
[179] Gultepe I, Tardif R, Michaelides S C, et al. Fog research: a review of past achievements and future perspectives[J]. Pure and Applied Geophysics, 2007, 164: 1121-1159.
[180] Sorli B, Pascal-Delannoy F, Giani A, et al. Fast humidity sensor for high range 80-95% RH[J]. Sensors and Actuators A: Physical, 2002, 100(1): 24-31.
[181]Pascal-Delannoy F, Sackda A, Giani A, et al. Fast humidity sensor using optoelectronic detection on pulsed Peltier device[J]. Sensors and Actuators A: Physical, 1998, 65(2-3): 165-170.
[182] Liu H, Guo D, Sun F. Object recognition using tactile measurements: kernel sparse coding methods[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(3): 656-665.
[183] Li G, Liu S, Wang L, et al. Skin-inspired quadruple tactile sensors integrated on a robot hand enable object recognition[J]. Science Robotics, 2020, 5(49): eabc8134-8145.
[184] Jung P G, Lim G, Kim S, et al. A wearable gesture recognition device for detecting muscular activities based on air-pressure sensors[J]. IEEE Transactions on Industrial Informatics, 2015, 11(2): 485-494.
[185] Navarro S E, Mühlbacher-Karrer S, Alagi H, et al. Proximity perception in human-centered robotics: a survey on sensing systems and applications[J]. IEEE Transactions on Robotics, 2021, 38(3): 1599-1620.
[186] Huang L, Wang S, Zhang K, et al. Research progress of multifunctional flexible proximity sensors[J]. Sensors and Actuators A: Physical, 2023: 114500.
[187] Xu X, Yan B. Bioinspired luminescent HOF-based foam as ultrafast and ultrasensitive pressure and acoustic bimodal sensor for humanmachine interactive object and information recognition[J]. Advanced Materials, 2023: 2303410-2303424.
[188] Rassel S, Xu C, Zhang S, et al. Noninvasive blood glucose detection using a quantum cascade laser[J]. Analyst, 2020, 145(7): 2441-2456.
[189] Lee H K, Chang S I, Yoon E. Dual-mode capacitive proximity sensor for robot application: Implementation of tactile and proximity sensing capability on a single polymer platform using shared electrodes[J]. IEEE Sensors Journal, 2009, 9(12): 1748-1755.
[190] Kedambaimoole V, Kumar N, Shirhatti V, et al. Reduced graphene oxide tattoo as wearable proximity sensor[J]. Advanced Electronic Materials, 2021, 7(4): 2001214-2001231.
[191] Chen C H, Lin C F, Wang K H, et al. High-resolution proximity sensor using flexible semi-transparent organic photo detector[J]. Organic Electronics, 2017, 49: 305-312.
[192] Behera S K, Rath A K, Mahapatra A, et al. Identification, classification & grading of fruits using machine learning & computer intelligence: a review[J]. Journal of Ambient Intelligence and Humanized Computing, 2020: 1-11.
[193] Peng H, Shao Y, Chen K, et al. Research on multi-class fruits recognition based on machine vision and SVM[J]. IFAC-PapersOnLine, 2018, 51(17): 817-821.
[194]Alzubaidi L, Al-Shamma O, Fadhel M A, et al. A deep convolutional neural network model for multi-class fruits classification[C]//Intelligent Systems Design and Applications: 19th International Conference on Intelligent Systems Design and Applications (ISDA 2019),Springer International Publishing, 2021: 90-99.
[195] Gu J, Wang Z, Kuen J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77: 354-377.
[196] Li Z, Liu F, Yang W, et al. A survey of convolutional neural networks: analysis, applications, and prospects[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(12): 6999-7019.
修改评论